Research article

On Schrödinger-Poisson equations with a critical nonlocal term

  • Received: 23 January 2024 Revised: 05 March 2024 Accepted: 11 March 2024 Published: 21 March 2024
  • MSC : 35A15, 35J60

  • In this paper, we study the following non-autonomous Schrödinger-Poisson equation with a critical nonlocal term and a critical nonlinearity:

    $ \begin{equation*} \left\{\begin{aligned} & -\Delta u +V(x) u + \lambda \phi |u|^3 u = f(u) + (u^+)^5,\ \ {\rm in } \ \ \ \ \mathbb{R}^3,\\ & -\Delta \phi = |u|^5, \ \ {\rm in } \ \ \ \ \mathbb{R}^3. \end{aligned}\right. \end{equation*} $

    First, we consider the case that the nonlinearity satisfies the Berestycki-Lions type condition with critical growth. Second, we consider the case that $ \mathrm{int}V^{-1}(0) $ is contained in a spherical shell. By using variational methods, we obtain the existence and asymptotic behavior of positive solutions.

    Citation: Xinyi Zhang, Jian Zhang. On Schrödinger-Poisson equations with a critical nonlocal term[J]. AIMS Mathematics, 2024, 9(5): 11122-11138. doi: 10.3934/math.2024545

    Related Papers:

  • In this paper, we study the following non-autonomous Schrödinger-Poisson equation with a critical nonlocal term and a critical nonlinearity:

    $ \begin{equation*} \left\{\begin{aligned} & -\Delta u +V(x) u + \lambda \phi |u|^3 u = f(u) + (u^+)^5,\ \ {\rm in } \ \ \ \ \mathbb{R}^3,\\ & -\Delta \phi = |u|^5, \ \ {\rm in } \ \ \ \ \mathbb{R}^3. \end{aligned}\right. \end{equation*} $

    First, we consider the case that the nonlinearity satisfies the Berestycki-Lions type condition with critical growth. Second, we consider the case that $ \mathrm{int}V^{-1}(0) $ is contained in a spherical shell. By using variational methods, we obtain the existence and asymptotic behavior of positive solutions.



    加载中


    [1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [2] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90–108. http://doi.org/10.1016/j.jmaa.2008.03.057 doi: 10.1016/j.jmaa.2008.03.057
    [3] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Method Nonl. An., 11 (1998), 283–293. http://doi.org/10.12775/TMNA.1998.019 doi: 10.12775/TMNA.1998.019
    [4] H. Berestycki, T. Gallouët, O. Kavian, Equations de champs scalaires euclidiens non linéaire dans le plan, C. R. Acad. Sci. Paris Ser. I Math., 297 (1983), 307–310.
    [5] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
    [6] J. Byeon, L. Jeanjean, Standing waves for nonlinear Schrodinger equations with a general nonlinearity, Arch. Rational Mech. Anal., 185 (2007), 185–200. http://doi.org/10.1007/s00205-006-0019-3 doi: 10.1007/s00205-006-0019-3
    [7] G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Communications in Applied Analysis, 7 (2003), 417–423.
    [8] T. D'Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations, P. Roy. Soc. Edinb. A, 134 (2004), 893–906. http://doi.org/10.1017/S030821050000353X doi: 10.1017/S030821050000353X
    [9] T. D'Aprile, D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307–322. http://doi.org/10.1515/ans-2004-0305 doi: 10.1515/ans-2004-0305
    [10] P. d'Avenia, Non-radially symmetric solution of the nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177–192. http://doi.org/10.1515/ans-2002-0205 doi: 10.1515/ans-2002-0205
    [11] M. del Pino, P. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var., 4 (1996), 121–137. http://doi.org/10.1007/BF01189950 doi: 10.1007/BF01189950
    [12] X. Feng, Ground state solution for a class of Schrödinger-Poisson-type systems with partial potential, Z. Angew. Math. Phys., 71 (2020), 37. http://doi.org/10.1007/s00033-020-1254-4 doi: 10.1007/s00033-020-1254-4
    [13] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^N$, P. Roy. Soc. Edinb. A, 129 (1999), 787–809. http://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147
    [14] L. Jeanjean, S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equ., 11 (2006), 813–840. http://doi.org/10.57262/ade/1355867677 doi: 10.57262/ade/1355867677
    [15] H. Liu, Positive solutions of an asymptotically periodic Schrödinger-Poisson system with critical exponent, Nonlinear Anal. Real, 32 (2016), 198–212. http://doi.org/10.1016/j.nonrwa.2016.04.007 doi: 10.1016/j.nonrwa.2016.04.007
    [16] F. Y. Li, Y. H. Li, J. P. Shi, Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16 (2014), 1450036. http://doi.org/10.1142/S0219199714500369 doi: 10.1142/S0219199714500369
    [17] F. Y. Li, Y. H. Li, J. P. Shi, Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term, Calc. Var., 56 (2017), 134. http://doi.org/10.1007/s00526-017-1229-2 doi: 10.1007/s00526-017-1229-2
    [18] A. Paredes, D. N. Olivieri, H. Michinel, From optics to dark matter: A review on nonlinear Schrödinger-Poisson systems, Physica D, 403 (2020), 132301. http://doi.org/10.1016/j.physd.2019.132301 doi: 10.1016/j.physd.2019.132301
    [19] A. Pomponio, A. Azzollini, P. d'Avenia, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779–791. http://doi.org/10.1016/j.anihpc.2009.11.012 doi: 10.1016/j.anihpc.2009.11.012
    [20] S. Pekar, Untersuchungen über Die Elektronentheorie Der Kristalle, Berlin: Akademie Verlag, 1954. http://doi.org/10.1515/9783112649305
    [21] P. Pucci, J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681–703.
    [22] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. http://doi.org/10.1016/j.jfa.2006.04.005 doi: 10.1016/j.jfa.2006.04.005
    [23] W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149–162. https://doi.org/10.1007/BF01626517 doi: 10.1007/BF01626517
    [24] M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1
    [25] J. Zhang, On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear Anal., 75 (2012), 6391–6401. http://doi.org/10.1016/j.na.2012.07.008 doi: 10.1016/j.na.2012.07.008
    [26] J. Zhang, Z. Lou, Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth, J. Math. Phys., 62 (2021), 011506. http://doi.org/10.1063/5.0028510 doi: 10.1063/5.0028510
    [27] J. Zhang, W. Zou, The critical case for a Berestycki-Lions theorem, Sci. China Math., 57 (2014), 541–554. http://doi.org/10.1007/s11425-013-4687-9 doi: 10.1007/s11425-013-4687-9
    [28] J. J. Zhang, W. Zou, A Berestycki-Lions theorem revisited, Commmun. Contemp. Math., 14 (2012), 1250033. http://doi.org/10.1142/S0219199712500332 doi: 10.1142/S0219199712500332
    [29] J. J. Zhang, J. M. do Ó, M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 19 (2017), 1650028. http://doi.org/10.1142/S0219199716500280 doi: 10.1142/S0219199716500280
    [30] L. Zhao, F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), 2150–2164. http://doi.org/10.1016/j.na.2008.02.116 doi: 10.1016/j.na.2008.02.116
    [31] Q. F. Zhang, K. Chen, S. Q. Liu, J. M. Fan, Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system, AIMS Mathematics, 6 (2021), 7833–7844. http://doi.org/10.3934/math.2021455 doi: 10.3934/math.2021455
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(822) PDF downloads(61) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog