We introduce the class of $ \psi $-convex functions $ f:[0, \infty)\to \mathbb{R} $, where $ \psi\in C([0, 1]) $ satisfies $ \psi\geq 0 $ and $ \psi(0)\neq \psi(1) $. This class includes several types of convex functions introduced in previous works. We first study some properties of such functions. Next, we establish a double Hermite-Hadamard-type inequality involving $ \psi $-convex functions and a Simpson-type inequality for functions $ f\in C^1([0, \infty)) $ such that $ |f'| $ is $ \psi $-convex. Our obtained results are new and recover several existing results from the literature.
Citation: Hassen Aydi, Bessem Samet, Manuel De la Sen. On $ \psi $-convex functions and related inequalities[J]. AIMS Mathematics, 2024, 9(5): 11139-11155. doi: 10.3934/math.2024546
We introduce the class of $ \psi $-convex functions $ f:[0, \infty)\to \mathbb{R} $, where $ \psi\in C([0, 1]) $ satisfies $ \psi\geq 0 $ and $ \psi(0)\neq \psi(1) $. This class includes several types of convex functions introduced in previous works. We first study some properties of such functions. Next, we establish a double Hermite-Hadamard-type inequality involving $ \psi $-convex functions and a Simpson-type inequality for functions $ f\in C^1([0, \infty)) $ such that $ |f'| $ is $ \psi $-convex. Our obtained results are new and recover several existing results from the literature.
[1] | J. M. Borwein, J. D. Vanderwerff, Convex functions: Constructions, characterizations and counterexamples, Cambridge University Press, Cambridge, 2010. |
[2] | R. Correa, A. Hantoute, M. A. López, Fundamentals of convex analysis and optimization, Springer, Cham, Switzerland, 2023 |
[3] | J. R. Giles, Convex analysis with application in the differentiation of convex functions, Pitman Publ., Boston-London-Melbourne, 1982. |
[4] | C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, Springer-Verlag, New York, 2006. |
[5] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Boston, 1992. |
[6] | R. R. Phelps, Convex functions, monotone operators and differentiability, 2 Eds., Springer-Verlag, New York, 1993. |
[7] | A. W. Roberts, D. E. Varberg, Convex functions, Academic Press, New York, 1973. |
[8] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215. |
[9] | C. Hermite, Sur deux limites d'une intégrale défine, Mathesis, 3 (1983), 1–82. |
[10] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, Melbourne, 2000. |
[11] | S. S. Dragomir, New inequalities of Hermite-Hadamard type for $\log$ convex functions, Khayyam J. Math., 3 (2017), 98–15. https://doi.org/10.22034/KJM.2017.47458 doi: 10.22034/KJM.2017.47458 |
[12] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for $s$-logarithmically convex functions, Acta Math. Sci. Ser. A (Chin. Ed.), 35 (2015), 515–524. https://doi.org/10.13140/RG.2.1.4385.9044 doi: 10.13140/RG.2.1.4385.9044 |
[13] | S. S. Dragomir, B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic $p$-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 3413–3423. https://doi.org/10.1007/s13398-019-00708-2 doi: 10.1007/s13398-019-00708-2 |
[14] | M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for $s$-convex functions, Miskolc Math. Notes, 16 (2015), 491–501. https://doi.org/10.18514/MMN.2015.1099 doi: 10.18514/MMN.2015.1099 |
[15] | S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995 |
[16] | B. Samet, On an implicit convexity concept and some integral inequalities, J. Inequal. Appl., 2016 (2016), 308. https://doi.org/10.1186/s13660-016-1253-3 doi: 10.1186/s13660-016-1253-3 |
[17] | P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for $F$-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359. https://doi.org/10.1186/s13660-018-1950-1 doi: 10.1186/s13660-018-1950-1 |
[18] | H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for $h$-convex and harmonically $h$-convex interval-valued functions, Mathematics, 10 (2021), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074 |
[19] | S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for $m$-convex functions, Tamkang J. Math., 3 (2002), 45–55. |
[20] | H. Kadakal, $(m_1, m_2)$-convexity and some new Hermite-Hadamard type inequalities, Int. J. Math. Model. Comput., 9 (2019), 297–309. https://doi.org/10.13140/2.1.2919.7126 doi: 10.13140/2.1.2919.7126 |
[21] | M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard-type inequalities for $m$-convex and $(\alpha, m)$-convex functions, J. Inequal. Pure Appl. Math., 9 (2007), 96. https://doi.org/10.1186/s13660-020-02442-5 doi: 10.1186/s13660-020-02442-5 |
[22] | H. Kadakal, $(\alpha, m_1, m_2)$-convexity and some inequalities of Hermite-Hadamard type, Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat., 68 (2019), 2128–2142. https://doi.org/10.31801/cfsuasmas.511184 doi: 10.31801/cfsuasmas.511184 |
[23] | S. Qaisar, C. He, S. Hussain, A generalization of Simpson's type inequality for differentiable functions using $(\alpha, m)$-convex functions and applications, J. Inequal. Appl., 2013 (2013), 1–13. https://doi.org/10.1186/1029-242X-2013-158 doi: 10.1186/1029-242X-2013-158 |
[24] | M. Alomari, M. Darus, On some inequalities of Simpson-type via quasi-convex functions and applications, Transylv. J. Math. Mech., 2 (2010), 15–24. |
[25] | S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications, Tamkang J. Math., 30 (1999), 53–58. |
[26] | V. N. Huy, Q. A. Ngô, New inequalities of Simpson-like type involving $n$ knots and the mth derivative, Math. Comput. Model., 52 (2010), 522–528. https://doi.org/10.1016/j.mcm.2010.03.049 doi: 10.1016/j.mcm.2010.03.049 |
[27] | Z. Liu, An inequality of Simpson type, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2155–2158. https://doi.org/10.1098/rspa.2005.1505 doi: 10.1098/rspa.2005.1505 |
[28] | Z. Liu, Some sharp modified Simpson type inequalities and applications, Vietnam J. Math., 39 (2011), 135–144. |
[29] | G. Toader, Some generalizations of the convexity, In: Proceedings of the Colloquium on Approximation and Optimization (Cluj-Napoca, 1985), Univ. Cluj-Napoca, Cluj, 1985,329–338. |
[30] | V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, Romania, 1993. |
[31] | T. Lara, J. Matkowski, N. Merentes, R. Quintero, M. Wróbel, A generalization of $m$-convexity and a sandwich theorem, Ann. Math. Silesianae, 31 (2017), 107–126. https://doi.org/10.1515/amsil-2017-0003 doi: 10.1515/amsil-2017-0003 |