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1. Introduction
The class of convex functions is widely used in many branches of pure and applied mathematics.

Due to this reason, we find in the literature several studies related to convex functions, see e.g., [1-
7]. One of the most famous inequalities involving convex functions is the double Hermite-Hadamard

inequality [8,9]:
b
f(a+b)§ Lf f(x)dxsw’ (1.1)
b-a ], 2

2
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which holds for any convex function f : I — R and a,b € I, where a < b and I is an interval
of R. For more details about (1.1), see e.g., [10]. The double inequality (1.1) has been refined and
extended to various classes of functions such as log-convex functions [11], s-logarithmically convex
functions [12], hyperbolic p-convex functions [13], s-convex functions [14], convex functions on the
co-ordinates [15], F-convex functions [16, 17], h-convex and harmonically A-convex interval-valued
functions [18], m-convex functions [19], (m,, m,)-convex functions [20], (a, m)-convex functions [21],
(a0, my, my)-convex functions [22], etc. In particular, when f : [0,00) — R is m-convex (see
Definition 2.2), where 0 < m < 1, Dragomir [19] proved that for all a,b > 0 with 0 < a < b, we
have

b
= f<x>dxs§mi“{f<a>+’"f ARCE (%)}

and

x a b
f(a;b)ébiaf”ﬂxﬂsz(m)dxgm:l(f(a);f(b)+mf(m);f(m)).

Notice that, if f is convex (so m = 1, see Definition 2.2), the above double inequality reduces to (1.1).
Another important inequality, which is very useful in numerical integrations, is the Simpson’s

inequality
b b b -
‘—ff( var- 3| LSO g (2 )”_( 1l

2880

where f € C*([a, b]) and || /|| = max,<.<; |f ¥ (x)|. The above inequality has been studied in several
papers for different classes of functions, see e.g., [23—-28]. For instance, Dragomir [25], proved that, if
f : la,b] — R is a function of bounded variation, then

1 b L[ f(a)+ f(b) a+b
‘be f<x>dx_§[T+2f(T)

‘ < %Vf,
where V,’j denotes the total variation of f on [a, b].

Notice that it is always interesting to extend the above important inequalities to other classes of
functions. Such extensions will be useful for example in numerical integrations and many other
applications. Motivated by this fact, we introduce in this paper the class of y¥-convex functions
f :[0,00) = R, where ¢ € C([0, 1]) is a function satisfying certain conditions. This class includes
several types of convex functions from the literature: m-convex functions, (m;, m;)-convex functions,
(a, m)-convex functions and (a, m;, m,)-convex functions. Moreover, after studying some properties of
this introduced class of functions, we establish a double Hermite-Hadamard-type inequality involving
y-convex functions and a Simpson-type inequality for functions f € C!([0, o)), where |f’| is y-convex.
Our obtained results are new and recover several results from the literature.

Th rest of the paper is as follows. In Section 2, we introduce the class of ¢-convex functions and
we study some properties of such functions. We also provide several examples of functions that belong
to the introduced class. In Section 3, we establish Hermite-Hadamard-type inequalities involving -
convex functions. In Section 4, a Simpson-type inequality is proved for functions f € C!([0, o)),
where |f’| is Y-convex.
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2. y-convex functions

In this section, we introduce the class of ¥-convex functions. We first introduce the set

V={yeC(0,1D) : ¢y = 0,¥(0) # (1)} .
Definition 2.1. Let ¢ € Y. A function f : [0, 00) — R is said to be y-convex, if

() — ¥ (0) YD) — ()
0 (1 - 0)———= )————= 2.1
J WO)x +y(1)(1 = 0)y) < y( )t//(l)—lﬁ(O)f(X)+l//( )w(l)—w(O)f(y) 2.1)

forallt €[0,1] and x,y > 0.

We will show below that the introduced class of functions includes several classes of functions from
the literature. Let us first start with some simple examples of -convex functions.

Example 2.1. Let us consider the function  : [0, 1] — R defined by
w()=at, 0<t<l,

where 0 < a < 1 is a constant. Clearly, the function ¢ € ¥ and y(0) = 0 < a = Y(1). On the other

hand, for all t € [0, 1], we have
ORTIORE
Y1) = ¢(0)

Y1) — ()

1 D ———]
/" )lﬁ(l) - y(0)

Let f : [0,00) — R be the function defined by

¥(0)

and
a(l —1).

f(x)=Ax* + Bx, x>0,

where A > 0 and B € R are constants. For allt € [0, 1] and x,y > 0, we have
Y(6) — y(0) (1) — (1)
0)————— )—=
YO =@ Y o
=a(l =) f(y) — fla(l = 1)y)
= a(1 - 1) (A + By) - A(a(1 - 1))’ - B(a(1 - 1))
=aA(l —)y*(at+1—-a) >0,

JO) = f W@O)ex + (1)1 = 1)y)

which shows that f is y-convex.

Example 2.2. We consider the function ¢ : [0, 1] — R defined by
y()=r, 0<r<l.
Clearly, the function y € Y. On the other hand, for all t € [0, 1], we have

v -y _

0 _
YO w0
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and w(1) = y(t)
HD———" = - £
=
Let f : [0,00) — R be the function defined by
fx)=x-x*+x, x>0.

Forallt € [0,1] and x,y > 0, we have

(@) — ¥ (0) Y(l) — ¥(1)

0 1)—— - 0 DH(1 -
WO =0y @ D= G0 = f WO+ (DA = 0y)

=(1-0 -y +y) [0 =P + (1 —Dy]* = [(1 - t)y]
=ty(1 = 0)P(y),

where P,(y) is the second order polynomial function (with respect to y) given by
P.(y) =B -1ty -2y + 1.
Observe that for all t € [0, 1], the the discriminant of P, is given by
A=4(t-2)<0,

which implies (since 3 — t > 0) that P,(y) > 0. Consequently, for all t € [0, 1] and x,y > 0,

w(t) - () w(1) = u()
v —ve) 2D =D
T I e )

which shows that f is y-convex.

¥(0) JO) = fW@O)x + (1)1 = 1)y) 2 0,

We now recall the following notion introduced by Toader [29].

Definition 2.2. Let m € [0, 1] and f : [0, 00) — R. The function f is said to be m-convex, if

fx+m(l = 0y) <if(x)+m(1 -1 f(y)
forallt €[0,1] and x,y > 0.

Proposition 2.1. If f : [0, 00) — R is m-convex, where 0 < m < 1, then f is y-convex for some € \P.

Proof. Let
y@)=(m-Dr+1, 0<r<1

Clearly, ¢ is a nonnegative and continuous function and ¥(0) — (1) = 1 —m # 0, which shows that
¥ € Y. We also have

v@®-y© _m-Dr

0 = =
YO w0~ mo
and v()—u(t)  (m—1)1—1)
. o
l//(l)l//(l) 0" mo1 m(1 —1).
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Consequently, we get

FWO)ix + (1)1 = 1)y) = ftx +m(1 - Dy)
< 1£() + m(1 = D f()
w(t) - (0) w(1) = ()
— ()22 ¥ ny v
YO D =u 0’ Yy o

which shows that f is y-convex. |

JO,

The following class of functions was introduced by Kadakal [20].

Definition 2.3. Let m,m, € [0, 1] and f : [0, 00) — R. The function f is said to be (m;, my)-convex, if

flmitx + my(1 = 1)y) < mytf(x) + my(1 = 1) f(y)
forallt €[0,1] and x,y > 0.

Proposition 2.2. If f : [0,00) — R is (my, my)-convex, where my,m, € [0, 1] with my # my, then f is
Y-convex for some € V.

Proof. Let
Y(t) = (my—mpt+m;, 0<r<1.

Clearly, ¢ is a nonnegative and continuous function and ¢(0) — (1) = my; — m, # 0, which shows that
Y € Y. We also have

YO - y©) _  (my—m)r _

YO " T ™
and v - ( )1 - 1)
- _ ny — nmq — _ _
w(H ST =y T D = (1 - ),

Consequently, we get

J @ O)x +y(1)(1 = 0)y) = flm1x + my(1 = 1)y)
< mytf(x) + my(1 =0 f(y)
= 9(0) (1) — ¥(0) Y(D) — (@)

1
v =0 T 0

which shows that f is y-convex. |

J),

Mihesan [30] was introduced the following concept.
Definition 2.4. Let a,m € [0, 1] and f : [0, 00) — R. The function f is said to be (@, m)-convex, if
fx +m(l = 1)y) <17 f(x) + m(1 = 1%) f(y)
forallt € [0,1] and x,y > 0.

Proposition 2.3. If f : [0,00) — R is a (a, m)-convex function, where @ € (0,1] and 0 < m < 1, then
f is y-convex for some y € \P.
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Proof. Let
yt)y=m-Dt*+1, 0<r<I.

Itis clear that € ¥, ¥(0) = 1 and ¥/(1) = m. We also have

W -y _m-br _,
W)= g©)  m-1

¥(0)

and

v -y _ D=
y(1) —y(0) m-1 '

¥(1)

Consequently, we get

F@O)x + w(D(1 = 1y) = fltx + m(1 - 1))
< £ + m(l =) )
w(0) - (0) w(1) = ()
= y(0) 2LV HAD) — vt
YO w0 Yy o

which shows that f is ¥-convex. m|

FO),

In [22], Kadakal introduced the following notion.

Definition 2.5. Let a,m;,m, € [0,1] and f : [0,00) — R. The function f is said to be (a, my, m;)-
convex, if
flmitx + my(1 = 1)y) < myt” f(x) + mp(1 = 1) f(y)

forallt €[0,1] and x,y > 0.

Proposition 2.4. If f : [0,00) — R is a (@, my, my)-convex function, where a € (0, 1] and m,m, €
[0, 1] with my # m,, then f is Y-convex for some € V.

Proof. Let
W) = (my —m)t* +my, 0<r<l1.

It is clear that ¥ € ¥, ¥(0) = m; and ¥(1) = m,. We also have

W) — Y(0)
0 = myt®
YO T
e w(l) = )
L = my(1 — 1%).
TR0 R

Consequently, we get

J @O)x + (1)1 = 0)y) = flmitx +my(l = 1)y)
< myt® f(x) + my(1 = 1) f(y)
Y(@) — () YD) — (@)

= y(0) 22—V H¥ v
YO w0 Yy o

which shows that f is y/-convex. O

F),
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Remark 2.1. Let f : [0, 00) — R be (a, my, my)-convex, where a, m;,m; € [0, 1].

(i) If @ = 1, then f is (my, my)-convex.
(ii) If m; = 1 and m, = m, then f is (@, m)-convex.
(iii) If a = 1, my = 1 and my, = m, then f is m-convex.

We provide below some properties of ¥/-convex functions.
Proposition 2.5.

(1) Leto,u>0and y € Y. If f, g : [0, 00) = R are y-convex, then o f + ug is y-convex.
(1) Lety € Y. If f : [0, 00) — R is y-convex, then for all x > 0,

S (0)x) < ¥(0)f(x),
S ()x) < (1) f(x),
J@W(0)x) + f(¥(1)x)
NOETO R
(iii) Let y € Y and f : [0, 00) — R be y-convex.
e If f(0) >0, then forall t € [0, 1],

Y1) <y(0) + (1) - 1.
e If f(0) <O, then forall t € [0, 1],

Y 2 y(0) +y(l) - 1.

Proof. (i) Let f,g : [0,00) — R be two y-convex functions. Let h = of + ug. For all t € [0, 1] and
x,y > 0, we have

— 0 1) —
VOO g PO =IO

0 (1 - 0
S @ O)x + (1)1 - 1)y) < ¢(0) o) — w(0) w(1) — y(0)

JO»)

and

Y(®) — ¥ (0) Y(D) — (1)
0 1)(1 - 0)———— 1) ————"5().
g W(0)rx + y(1)(1 = 1)y) < ¥( )l//(l) _w(o)g(X)ﬂ//( )l!/(l) _w(o)g(y)

Multiplying the first inequality (resp. second inequality) by o > 0 (resp. u > 0), we obtain

7 O)x + w11 = Hy)
() = w(0) w(1) = (o)
<yY(Q)—————= H——"-7
< WO L= 1 + v S )
() — w(0) w(l) - u(0)
0)———= 1)— =
O w0
() - w(0) w(1) - (0)

= (0 ——2) ————h(),
YO T Yy T

which shows that % is /-convex.

g)
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(i1) Let x > 0. Taking # = 1 in (2.1), we get

S (0)x) < y(0)f(x). (2.2)
Taking ¢t = 1 in (2.1), we get

S (D)x) <y(1)f(x). (2.3)
Summing (2.2) and (2.3), we obtain

JW0)x) + f(¥(Dx) < ((0) + ¢(1)) f(x),
that is,
S (0)x) + f(Y(1)x)
Y(0) + (1)
(iii) Let z € [0, 1]. Taking x = y = 0 in (2.1), we obtain

< f(x).

o o 201y _
fO < o5 (W) - y?(0) + y*(1) — y(Hu(1)) £(0)
= (W(1) + ¥(0) — Y(1) £(0).
Hence, if f(0) > 0, the above inequality yields
W) < (1) +y(0) - 1.

Similarly, if f(0) < 0, we get
Y() = y(l) +y(0) - L.

3. Hermite-Hadamard-type inequalities

In this section, we extend the Hermite-Hadamard double inequality (1.1) to the class of y-convex
functions. We first fix some notations.
For all ¢ € ¢, let

1

Ay = %fo(w)—wm))da
1

B, = ﬁ%§%6lkmn—wmﬁ

. w(1) (w(h) - (1))

YT (D) - w(0)

_ w(0) (¢ (3) - w(0)

T () —w(0)

Theorem 3.1. Let ¢ € ¥ be such that y(0)y(1) # 0. If f : [0, 00) — R is a Y-convex function, then for
all a,b > 0 with a < b, we have

1 b . a
_?El:ﬂ”dxgmm{dwmﬁ g f((h)wf(wm)w f((D) } G-D

AIMS Mathematics Volume 9, Issue 5, 11139-11155.
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Proof. Let0 <a < b. Forallt € (0,1), we have

flta+(1-0nb) = f(w(O)t[

D -1t
woy| TN )buJ)
0,40 =y L) —u

=¥ )w(l)—lﬁ(O)f(lﬁ(O))W( )¢(1)—¢(0)f(lﬂ(1))’

which implies after integration over ¢ € (0, 1) that

f ﬂm+”_”“ﬁ<f(Mm)¢ f(wn)

Similarly, we have

Y(1) — ¥(0) HED —¥O

f(@b + (1 —1ta) < y(0)

which implies after integration over ¢ € (0, 1) that

1
f b+ (1 —t)a)a’tsf( b
0

lﬁ(O))

”‘4wn)”

Finally, using (3.2), (3.3) and

1 1 b
f f(ta+ (1 —-0b)dt = f f(tb+ (1 —ta)dt = Lf f(x)dx,
0 0 b-a/,

we obtain (3.1).

wn—mmf@wJ+M)wn—wmf@ﬂJ’

(3.2)

(3.3)

O

Remark 3.1. Let us consider the case when f : [0,00) — R is (@, my, my) convex, where a,my,m; €

(0, 1] with my # m,. From Proposition 2.4, f is y-convex, where
Y(t) = (my —mt* +my, 0<t<1.

In this case, elementary calculations give us that

Y(0) fl
-0 —y(0)d
-0 W(0) — w(O)) d
= f (my — my)t* dt
m2 —nmy
T a+1
and
y(1)

1
B, = ——— 1) - d
wWMWfM)WW

= f (l’l’lz — ml)(l - l(l) dt

nyp —m
myx

a+1

AIMS Mathematics Volume 9, Issue 5, 11139-11155.
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Hence, (3.1) reduces to

1 b . my a mo b m b mya a
—_— dx < — —1, — — 34
—afa‘ Jdx < mm{a+ lf(m1)+ a+ 1f(m2) a+ lf m1)+ a+ lf my 4
and we recover the obtained inequality in [22].
Notice that,

o if = 1, then (3.4) reduces to the right Hermite-Hadamard inequality for (m;, my)-convex
functions [20],

e ifmy = 1 and my = m, then (3.4) reduces to the right Hermite-Hadamard inequality for (a, m)-
convex functions [21],

o ifa =1 m =1and my = m, then (3.4) reduces to the right Hermite-Hadamard inequality for
m-convex functions [19].

Let us denote by Llloc([O, 00)) the set of functions f : [0, c0) — R such that

flf(x)ldx < o0
1

for every closed and bounded interval I C [0, o).
Our second main result is the following.

Theorem 3.2. Let y € ¥ be such that y(0)y(1) # 0. If f : [0,00) — R is a Y-convex function and
fe L (0, 0)), then for all a,b > 0 with a < b, we have

a+b Fy b X
f( 2 )Sb—afaf(m) _f ((1)) )

Proof. For all x,y > 0, writing

2 = w03 (¢(0>) W( 1)(w<y1>)

and using the y-convexity of f, we obtain

) - (0) M-y}
(57) <wo A s (s )+w<1>w w(z)f( ol

2 Y(1) = (0) " \¥(0) Y(1) = (0) " \u(1)

X+y
1) ‘”f( <0>) ‘”f( <1>) o0

In particular, for x = ta+ (1 — )b and y = (1 — t)a + tb, where t € (0, 1), (3.6) reduces to

f(a;b) < wa(ta+(1 —t)b)+wa(1 —t)a+tb).

loc

that is,

¥(0) Y(1)
Integrating the above inequality over 7 € (0, 1), we obtain
a+b U fta+(1-0b U (1=Da+1b

AIMS Mathematics Volume 9, Issue 5, 11139-11155.
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On the other hand, one has

! ta+a-4w) 1 f¢ (z )

dt = —\|d 3.8
l:f( o T r—al, ") “ G5

and 1o ) . ,

—Ha+t d

AT - —= |4z 3.9
Lf( (D) )tb—mﬁf@m)z G2
Thus, (3.5) follows from (3.7)—(3.9). O

Remark 3.2. Let us consider the case when f : [0,00) — R is (@, my, my) convex, where a,my,m; €
(0, 1] with my # my. Then f is Y-convex, where
() = (my —m)t* +my, 0<r<1.

In this case, elementary calculations give us that

w e~y (3))

E, =
v (1) — (0)
271

2(1

nmy

and
w(0) (v (3) - w(0)
Fy,=
y(1) = ¥ (0)
— m
-

Hence, (3.5) reduces to

a+b 1 (m (* [ x Q= Dmy, ([ x
f( 2 )Sb—a(ﬁfaf(m—l)d“—zw fuf(m—z)"’“)

and we recover the obtained inequality in [22].

4. Simpson-type inequalities

In this section, we establish Simpson-type inequalities for the class of functions f € C'([0, o)) such
that | f’| is y-convex. We first need the following lemma.

Lemma 4.1. Let ¢ € P be such that y(1) < y(0). If f € C([0, )), then for all a,b > 0 with a < b,

we have
1 wum+¢mm) ] 1 V(b
Z 1 4f| — 0Op)| - —— d
6pwum+f( ) O g e, O
1 .
= (Y(0)b — lﬁ(l)a)fo H() f (ty(0)b + (1 = Hy(Da) dt,
where

t—L1 if 0<r<i,
Hm:{ o 2
2 1.

AIMS Mathematics Volume 9, Issue 5, 11139-11155.
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Proof. By definition of H and using integrations by parts, we obtain
W (0)b —y(1)a) fol H@®)f (0 (0)b + (1 — t)y(1)a) dt
= W(0)b —y(Da) foi H@) f (0 (0)b + (1 — tyy(1)a) dt
+ W (0)b - y(1)a) ﬁ] H@®) f (t(0)b + (1 — t)y(1)a) dt

= [HOL@WOb + (1 = D)Ly + [HO @b + (1 = nu(Da)l.,
1
_ fo FpOb + (1 = Hu(1)a) ds

_ 1 (yOb+ya) | L ! 1 (O +y(a
= 3f( > )+ 6f(¢/(1)a) + 6f(¢(0)b) + 3f( > )
1 w(O)b .
TGO = Jy, TV
which proves (4.1). O

We have the following Simpson-type inequality.

Theorem 4.1. Let € P be a decreasing function. If f € C'([0, o)) and |f’| is y-convex, then for all
a,b > 0 witha < b, we have

1 w(Da + w(0)b 1 b
|g [f(w(l)a) + 4f(—2 ) + f(w(O)b)] " U 0b —v(ha f;)g f(x)dx

4.2)
Y(0)b —y¥(1)a 5 , 5 y
S W0 —u() [(Lw - %lﬁ(l)) Yy(DIf (@)l + (%1/1(0) - Lw) (Ol f (b)l],
where
3 1 1 5
L, = - = d - — dt.
v fo ‘f 6‘!#(0 t+£ 't 6';1/(0 t
Proof. By Lemma 4.1, we have
1 y(Da + y(0)b 1 ﬁ“’)h
- 1 4f| ————— 0p)| - ——— d
|6 [f(lﬁ( )a) + f( 3 )+f(lﬁ( ) )] SO =D Jy f(x)dx s

1
< (¥(0)b - lﬂ(l)a)j; IH@If 0 (0)b + (1 — Dyp(Da) dt.

On the other hand, due to the y-convexity of |f’|, we have

—u(l —
Y1) — Y( )I F(@)] +w(0) Y(0) — (1)

LA ASEA 2B
Y(0) —y(1) ;0(0)—;0(1)'“ )

[f" (0 (0)b + (1 = Dy (Da)l < y(1)

AIMS Mathematics Volume 9, Issue 5, 11139-11155.
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for all # € (0, 1), which implies after integration over ¢ € (0, 1) that

1
W(0)b - lﬁ(l)a)fo IHOIf (p(0)b + (1 — ny(Da)| dt

_ YO —y(l)a
U0

1 1
’[lﬁ(l)lf'(a)lfo IH(t)I(w(t)—l//(l))dt+¢(0)|f'(b)|f0 IHOI(W(0) - v(0)) dt | .

4.4)

On the other hand, by the definition of H, we have
1
f I[HOI(p(2) — (1)) dt
0
| s
=l:t—AWm—MDMHlﬁt—dwm—Mbwt

o[ [ =] [ Howars [
—-M)L - +£ s +£ 6M)+£

Notice that fo% |t - %| dt = ﬁl |t - §| dt = 2. Hence, we get
2

1 1
t— 6'@0(l)dt+£

5
t— g‘ Ww(t) dt.

5

1 5 %
fo HOIWY(@) = (D)) dr = =z=4(1) +f0 -

‘ (o) dt. (4.5)

Similarly, we have

1
j(; IH®I((0) = ¥(1)) dt

:j(; )
| s | !
:zp(O)(j; t—g'dt+j; 't_g'dt]_j; t—g'lﬁ(t)dt—ﬁ
1 1 1
t—6|zﬁ(t)dt—£

1 5 7
tfmmW©—wmm=%wm—f
0 0

Hence, it follows from (4.4)—(4.6) that

5
t—gkwm—meh

1

1 1
wgkwm—mmm+j‘

5
r- g'l//(f)df,

that is,

t— 2‘ Yw(t)dt. 4.6)

1
W(0)b - lﬁ(l)a)fo IHOIf (p(0)b + (1 — ny(Da)| dt

< ¥O)b —y(l)a
— Y(0) —u(l)

Finally, (4.2) follows from (4.3) and the above estimate. m|

5 5
[(% - %lﬁ(l)) (DI (@] + (%W(O) - L¢) lﬁ(O)If'(b)I] :
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Remark 4.1. Assume that |f'| is (a, m)-convex, where « € (0,1] and m € [0,1). Then, by
Proposition 2.3, |f'| is w-convex, where

y)y=(m-Dt*+1, 0<r<l.
Clearly, Y is a decreasing function. On the other hand, we have

1 w(Da + w(0)b 1 0%
‘g [f(lﬁ(l)a) + 4f(f) + f('ﬁ(o)b)] T U Ob —w(Da .[/:)a f(x)dx

1 ma + b 1 b
- ‘6 [f(ma)+4f(T)+f(b)] R —— maf(x)dx

Furthermore, elementary calculations show that

L —fé t—l‘;l/(t)dt+fl't—§'t//(t)dt
L 6 : 6

> 1 ! 5 >
=(m-1) f t"t——‘dt+f t“t——‘dt + f
0 6 3 6 0

6T -9X2 ¥ +5"2x6+3a—-12 5

1 ! 5
t——|dt+ t——|dt
6‘ f' 6' ]

=(m-1 18 + (@ +2) " 36
5
=m-1Dv + %
which yields
5 5
(Lw - %lﬁ(l)) Y(l) = (% - Vl)m(1 —m) :=vom(l —m)
and

5
(%!ﬁ(o) - Lw) ¥(0) = (1 —m)v,.

We also have
YO —y(l)a b-ma

YO —y() — 1-m’

Consequently,

W(O0)b — y(1)a 5 , 5 |
?EKZRB{@W‘&Wﬂﬁ“UVWN+GgM®—LJmmvwﬂ

= (b — ma) (vaml|f’ (@)l + vilf' (b)]) .

1 ma+b 1 b
Mmmﬁ(2%w+%mme

Hence, (4.2) reduces to

< (b —ma) (vomlf'(@)| + vl f' D))

and we recover the obtained inequality in [23].
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5. Conclusions

We introduced the class of ¥-convex functions, where ¢ € C([0, 1]) is nonnegative and satisfies
¥(0) # ¢¥(1). The introduced class includes several classes of functions from the literature: m-convex
functions, (m,, m,)-convex functions, (a, m)-convex functions and («, m;, m,)-convex functions. After
studying some properties of y-convex functions, some known inequalities are extended to this set
of functions. Namely, when ¥(0)¥(1) # 0 and f is ¥-convex, we obtained an upper bound of
ﬁ fa b f(x)dx (see Theorem 3.1) and an upper bound of f (%) (see Theorem 3.2). When ¢ is
nondecreasing and |f’| is ¥-convex, we proved a Simpson-type inequality (see Theorem 4.1), which
provides an estimate of

y(0)b

1
0b)| - —— d
)+f(¢/( ) >] 05500 o, T

Y(Da + y(0)b
2

1
‘5 [f(w(l)a) + 4f(

It would be interesting to continue the study of y-convex functions in various directions. For
instance, in [31], a sandwich like theorem was established for m-convex functions. Recall that any
m-convex function is y¥-convex for some ¢ € ¥ (see Proposition 2.1). A natural question is to ask
whether it is possible to extend the sandwich like result in [31] to the class of ¥-convex functions.
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