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Abstract: In this paper, we study the following Kirchhoft-type equation:

M( f (Vul* + u2)dx) (=Au + u) + uV(x)u = K(x)f(u) in R,
Rz

where M € C(R*,R") is a general function, V > 0 and its zero set may have several disjoint connected
components, 4 > 0 is a parameter, K is permitted to be unbounded above, and f has exponential critical
growth. By using the truncation technique and developing some approaches to deal with Kirchhoff-
type equations with critical growth in the whole space, we get the existence and concentration behavior
of solutions. The results are new even for the case M = 1.
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1. Introduction

The Kirchhoff-type problem appears as a model of several physical phenomena. For example, it is
related to the stationary analog of the equation:

@
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dx)% =0, (1.1)

where u is the lateral displacement at x and ¢, E is the Young modulus, p is the mass density, 4 is the
cross-section area, L is the length, and Py is the initial axial tension. For more background, see [1,20]
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and the references therein. In this paper, we study the following Kirchhoff-type equation with steep
potential well and exponential critical nonlinearity:

M( (IVul* + uz)dx) (=Au + u) + uV(x)u = K(x)f(u) in R?, (1.2)
Rz

where M € C(R*,R*), V € C(R?,R*) with Q = int(V~!(0)) having k connected components, u > 0 is
a parameter. Because of the presence of the nonlocal term M ( fRz(Wul2 + uz)dx), Eq (1.2) is no longer
a pointwise identity, which causes additional mathematical difficulties. The motivation of the present
paper arises from results for Schrodinger equations with steep potential well. In [6], Bartsch and Wang
studied the following equation with steep potential well:

—Au+ (1 +uV(x)u =u" in RY, (1.3)

where N > 3and2 < p < 2" = % Under appropriate conditions on V, the authors obtained the
existence of positive ground state solutions for large u and the concentration behavior of solutions as
u — +oo. If pisclose to 2* — 1, the authors also obtained multiple positive solutions. In [13], Ding and
Tanaka constructed multi-bump positive solutions to Schrodinger equations with steep potential well.
In [23], Sato and Tanaka obtained multiple positive and sign-changing solutions. For the critical case,

Clapp and Ding [11] considered the following equation with steep potential well:
—Au+pV(@)u=Au+u*"" in RV, (1.4)

When N > 4, 1 > 01is small and > 0 is large, the authors obtained the existence and multiplicity of
positive solutions. In [17, 18], Guo and Tang constructed multi-bump solutions of (1.4) in the case that
the potential is definite and indefinite. For other related results, see [4,5,12,24-26] and the references
therein.

There are relatively few results about Kirchhoff-type equations with steep potential well. In [19],
Jia studied the ground-state solutions of the following equation with sign-changing potential well:

- (a +b f |Vu|2dx) Au+ AV(X)u = [uf’u in R, (1.5)
R3

where 3 < p < 6. When V > 0 and 2 < p < 6, Zhang and Du [27] used the truncation technique
to obtain the existence of solutions of (1.5). For the critical case, we [29] obtained the existence,
multiplicity and concentration behavior of solutions to the following equation:

- (a +b f |Vu|2dx) Au+ pV(x)u = Af(u) + (")’ in R, (1.6)
R3

To the best of our knowledge, there are no results about the existence and concentration behavior
of Kirchhoff-type equations with steep potential wells and exponential critical growth nonlinearity in
dimension two, especially when the zero set of the steep potential well admits more than one isolated
connected component. This is the main motivation of the present paper. Here we say the nonlinearity
f has exponential subcritical growth if for any @ > 0,

lim f(we ™™ =0 (1.7)
u—+0o
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and the nonlinearity f has exponential critical growth if there exists @, > 0 such that

lim f(u) _ {0, Ya > ay,

u—+00 e(luz

+ 00, Ya < ay. (1.8)
In this paper, we study (1.2) and prove the existence of solutions trapped on one connected component
of the potential well.

To study the existence and concentration behavior of solutions, the main difficulty lies in the
exponential critical growth of nonlinearity. The Trudinger—Moser inequality plays an important
role in dealing with critical nonlinearity. When using this inequality, it is crucial to control the
uniform H'-norm of the sequence. Compared with the classical Schrédinger equation, the nonlocal
term of the Kirchhoff type equation prevents us from using the upper bound on energy and the
Ambrosetti-Rabinowitz type condition to deduce the desired H' norm estimate. If we use the Pohozaev
identity, we must impose additional restrictions on V and K. In [3,22], the authors studied nonlinear
scalar field equations in dimension two. We notice that the compactness lemma of Strauss in [7]
plays an important role and cannot be used in a non-radial setting. In [10, 16], the authors studied
Kirchhoff-type equations with exponential critical growth in a bounded domain. To deal with the
critical nonlinearity, a compactness lemma (Lemma 2.1 in [14]) was used. However, this lemma cannot
be applied to study a non-radial problem in the whole space. In this paper, we give a compactness
lemma restricted to a bounded domain (Lemma 2.5 in Section 2), which is motivated by Lemma 2.1
in [14]. Because this lemma cannot be applied to deal with the non-radial problem in the whole space
and the coefficient of the nonlinearity may be unbounded above, we study the problem by penalizing
the nonlinearity.

When N = 2, to deal with the exponential critical nonlinearity, we need to estimate an upper bound
on the energy. In [3], the authors used the following condition:

(f”") There exist 4 > 0 and g > 2 such that
fu) > A", Yu>0.

When 4 > 0 is large, the upper bound on the energy can be controlled. In [14], the authors considered
the following Dirichlet problem:

—Au = f(x,u) in Q, u=0on 0L,
and introduced the following more natural condition:

(f"") There exists 8 > — such that

3apd?

fim L&W%

Uu—+00 edouz

where d is the radius of the largest open ball in Q.

By using the Moser sequence of functions, the authors deduced the desired upper bound. Related
results can be found in [22,28] for nonlinear scalar field equations and in [10, 16,28] for Kirchhoff type
equations. Motivated by the above results, we use a direct argument to get the desired upper bound on
the energy.

Now we state our results. We assume the following conditions:
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(M) M € C(R",R"), infr+ M := My > 0, and M(¢) is strictly increasing for t € R*.
(M,) There exist 6, &y > 0 such that 2= jg decreasing for ¢ > 0.
(M3) There exists g, > 0 such that M) - ﬁllM(t)t — g\t is increasing for t € R*, where M@) =
Iy M(s)ds.
(V) V e C(R%,RY).
(V,) Q = int(V~'(0)) is non-empty with smooth boundary and Q = V~1(0).
(V3) Q consists of k connected components: Q = UfZIQi and 5, N ﬁj = foralli+ j.
(V4) There exists Vy > 0 such that |{x eR?: V(x) < Vo}| < 0.
(K)) K € C(R?,R*) and ko := infr2 K > 0.
(K>) There exist k;, @ > 0 such that K(x) < k,e*™ for x € R.
(fi) f € C(R",R") and there exists / > 1 such that lim,_,o, % < 400,
(f>) There exists ay > 0 such that

lim

u—+oo pi? _ |

fa {0, Va > ap,

+ 00, Ya < ap.

(f3) There exists 8 > 0 such that

5 tim L0

u——+00 eﬂouz

< +00

(f4) There exists o > 2(6 + 1) such that f o ) is increasing for u € R* \ {0}.

(fs) There exist ug, Ly > 0 such that F' (u) < Lof(u) for u > uy, where F(u) = fou f(s)ds.

Theorem 1.1. Assume that (M,)—(M3), (V1)—(V,), (K\)—(K>) and (f)—(fs) hold. Let iy € {1,2,...,k}.
4n

Ifg > o r(z‘:f)erzz where r is the radius of an open ball contained in €;,, then there exists o > 0 such

that for p > uo, Eq (1.2) has a positive solution u,. Moreover, there exist ry, ¢y, ¢; > 0 independent of

> 0 large such that Q! c B,,(0) and

1, (x) < cre” VIR |y > . (1.9)

Besides, for any sequence p, — +0o, there exists ug € Hé (;,) such that w,, — uoin H 'R») asn — oo,
where uy € Hy(Q;,) is a positive solution to the limiting problem:

M( f (IVul* + uz)dx)(—Au +u) = K(x)f(u) in Q. (1.10)
Q,

i

Remark 1.1. Iflim,_ . L% = A € (0, +0), then there exists R > 0 such that

el’ M

A A
2u_]e“°” < f(u) < %u‘lea"”z, Yu>R.

Moreover;

F(u) . fo f(S)dS+ 3A£3 -1 a/os :O

U——+00 f(u) U—r+00 Eu—leaou

from which we get f satisfies (f5s). If A = oo, one can prove it by the L' Hospital rule and the definition
ofe— N
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0ot Mz
Remark 1.2. Let fi(u) = M, where u > 0. Then there exists u; > 0 such that fi(u;) = uo'.

agu’ 1
Define f(u) = u”! for u € [0,u;] and f(u) = fi(u) for u > u,. Obviously, f satisfies (f1)—(f3). We note
that

205 - (0 + Do + o +2].

(ﬁ(u))’ _ Ber

MO'—] a,Ou3+(r

{tl,(fﬂ) is increasing for u > u,. Moreover, f satisfies (f;). By Remark 1.1, we get f

If o < 6, then
satisfies (fs).

The outline of this paper is as follows: In Section 2, we study the truncated problem; in Section 3,
we turn to the original problem and prove Theorem 1.1.

2. Preliminary lemmas
We give some definitions. Denote C as universal positive constant (possibly different). Define

1
[lulls := (fRz Iu(x)lfdx)s, where s € [1,00). Define H'(R?) the Hilbert space with the norm |jul|; :=

(IIVu||§ + ||u||§)§. It is well known that the embedding H'(R?) — L'(R?) is continuous for all ¢ > 2. Let
u > 0. Define

X, = {u e H'(R?) : f V(x)u*dx < oo}
R2

the Hilbert space equipped with the norm

lull, = (IIVMII§+f(1+,uV(x))u2dx) :
R2

Obviously, the embedding X, — H'(R?) is continuous. We give the following Trudinger—Moser
inequality:

Lemma 2.1. ( [15,21,22]) Ifu € H'(R?) and a > 0, then

an®
Lz(e 1)dx<oo.

Moreover, for any fixed T > 0, there exists a constant C > 0 such that

sup fR 2 (e -1)dx < C.

ueH' (R2):|Vul 3+rllull3<1

Since we look for positive solutions, we assume that f(u) = O for u < 0. For any d > 0, define
Q4 := {x e R? : dist(x, Q) < d}. By (V3), we can choose d > 0 small such that Q? N Q?d = ( for all

i #j. Letipe{l,2,...,k}. Define
1, xeq,
x(x) =

0, xeR*\ Q.
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By (V4), we know that Q?O is bounded. Let 7 € (0, 1). For any x € R? \ Qz) , define
f(x,u) = min{K(x) f(u), ku™},
where 1™ = max{u,0} and « € (O, min {80, %, My(1 - T)}). Define

g(x, u) = Y (OK(x)f(u) + (1 — x(x)) f(x, u). (2.1)

Then
G(x,u) = fo g(x, )ds = Y()K(X)F(u) + (1 = () F (x, u),

where F(x,u) = fou f (x, s)ds. By (f4) and the structure of f , we derive that for all (x, u) € R®> xR,
Kx)f(wu —ocK(x)F(u) >0, f(x, wu — 2F (x,u) > 0. (2.2)
Instead of studying (1.2), we consider the following truncated problem:
M (|lull?, ) (—Au + u) + pV(ou = g(x,u) in R, (2.3)

The functional associated with (2.3) is
s 1o 2 H 2
Ly =M () +5 | Veoulde— | Gxudx, u€X,. (2.4)
2 2 R2 R2

Obviously, IA# € C'(X,,R), and the critical points of IA,, are weak solutions of (2.3).

Lemma 2.2. Let I(t) = IAﬂ(tu), where t > 0 and u € X, with |suppu N QZ) | > 0. Then there exists a
unique ty > 0 such that l'(ty) = 0, '(t) > 0 for t € (0, 1y), and l'(¢t) < O for t > t,.

Proof. Obviously, [(0) = 0. Let @ > @y and g > 2. By (X)) and (f})-(f>), for any € > 0, there exists
C, > 0 such that

lg(x, u)| < (& + K)|u| + Cslulq_l(e"“2 - 1), ¥(x,u) e RZxR. (2.5)
Then
e+k , Cg o )
IG(x, u)| < > |u|” + ;Iulq(e —-1), V(x,u) e R" xR. (2.6)

By (2.6) and Lemma 2.1, we can choose p > 0 small such that for [|u|, < p,

f G(x,u)dx
R2

1

e+k, , Cg o ?
S lully + ;Ilullgq [fRz(e - 1)dx]

e+

2

K
<———llull3 + Cllull3,. 2.7)
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By (M,), we get M(s) > Mys for s € R™. Together with (2.7), the choice of « and the Sobolev
embedding theorem, we derive that /(f) > O for ¢t > 0 small. Let sy > 0. By (M)-(M,), there exists
C; > 0 such that

M(so) e

M(s) < Cy + —;—5", seR", (2.8)
So

Let p > 20 + 1. By (f1)-(f>), there exist ¢y, ¢; > 0 such that
fw) = cu’ —cou, YueR. (2.9)

By (2.8)-(2.9), we get I(t) < O for t > 0 large. Thus, max,s( /(¢) is attained at t, > 0 and /’(#y) = 0. Let

-
eolluly + p f V(x)u*dx — f S mu
R? R2\Q! t

- [(M(ﬂnuni,o ~ e0) Iy + M@ ulZ)IVul - 7

y(1) =

K(x) f(tu)u
de .

iy

Then y(#y) = 0. Moreover, from the structure of g, we derive that for ¢ > 0,

ot
aollullg +,uf V(x)u*dx — f de > 0,
R2 R2\QZ t

K(x)f(tu)u

t20+ 1

(M@ull3,) = &0) llull3 + M |ull3,)lIVull3 - f d dx < 0.

Q
0

(MR, o0 B+ M IV ,
By (M;), we know o is decreasing for t+ > 0. By (fi), we know
fRz\Qd i (x’f”)“dx is increasing for 7 > 0 and de de is strictly increasing for ¢ > 0. Then y(¢) > 0
io io

for t < ty and y(¢) < O for t > ty. Moreover, I'(t) > 0 for ¢ € (0, #y) and I'(¢) < O for t > t,. O

We consider the Moser sequence of functions

1

(logn)%, 0<|x -,
n
- 1 log =
Var (logn)%’ n= T
0, |x| > 1.
It is well known that [|V@,|l? = 1 and [|@,|l; = 41;gn + O(IO:;n)' Choose xy € Q;, and r > 0 such that

B,(x9) C €, where r is the radius of an open ball contained in €;,. Define the functions w,(x) =
@0, (Z2). Then, ||an||§ = 1. Define the functional I, as follows:

r

A

Io(u) = %M( fg \Vul* + uzdx] - fg K(x)F(u)dx, u e Hy(Q;).

AIMS Mathematics Volume 9, Issue 8, 21433-21454.
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Lemma 2.3. max;.q fﬂ(twn) = maXso lp(tw,) < %M (%) for n large.

Proof. Obviously, we have max;s fﬂ(twn) = max,;o lh(fw,). By Lemma 2.2, we derive that
maXq fy(twn) is attained at a 7, > 0. By (f/;(tw,,), tnwn) =0 and (K,),

M + D)@ + Lllwl3) = f K(x) f(tpwp)tywydx
Q

>kor? F(tan)t,@ndix. (2.10)
B1(0)

If lim, ., #, = 0, then lim,_,, IAﬂ(t,,a),l) = 0. So we assume that lim,_,., ¢, = [/ € (0, +0c0]. By a direct
calculation, we have

L Fo £
m ——— = lim
t—+00 t—Zeaot t—+00 2a,0t—leaot2 (1 _ a,alt—Z)
i f(0)
= lim

t—+00 2a/0t_1e(1’012 )
So by (f3), for any 6 > 0, there exists ; > 0 such that for 7 > t;,

)
f(Or> B-0)e™, FOr > B0 e,
2&0

(2.11)

Since lim,,_, &—%ﬂ(log n)% = +o00, by (2.10)-(2.11), we derive that

1 1 1 1
M| +7rPE(——+o0 L+re|——+o
4logn logn 4logn logn

20 2 202
> ko(B — 5)7‘27Tn_262”t”]0gn = ko(B - 5)1’271'6’(2"[” 2)logn_

If lim, .o t, = +o0, by (M;), we get a contradiction. So lim,_ %, = [ € (0,+c0). Moreover, | €
(o, \/ii’;] Ifl e (o, \/1:’01) then

. 1 1. (4
lim £, (tyw,) < = lim M llw,lB) < =M | = |. 2.12)
n—oo 2 n—oo 2 Qo
@p

Now we assume lim,_,., £, = /2. Let

A, = {x € B.(xp) : tyw,(x) > t5}.

By (K;) and (2.11), we have
- 0)k
f K(x)F(t,w,)dx ZM f 12w 20 .
Q 2 An

a() n n

Let s € (0, %). Then, for n large, we have

r
tiw,(x) >ts, ¥ |x— x| < —-
n

AIMS Mathematics Volume 9, Issue 8, 21433-21454.
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Moreover,

2~2
L, 7eMndx.
2(1’0

— ko
f KOOF(t,w,)dx > Bk f 2072
Q B%(O)

(2.13)
By direct calculation, we obtain

oy 2-2
f tﬂanZe(xotnwn dx
B 1 (0)
nS

2 [ t2 2
275 27t log ne¥hoen 1°¢
= 5 dx +
|X|S% t logn 1<

o<t 12 log’ |x|

2 2
ap; @l
2n2 naw 2

4n* logn f W xeTiogn 108 ¥
— +

2 2

t> logn t 1

dx.

(2.14)
log” x
Let C, = %2 Then

g t%

1 2
W xeZrlogn 108 X C, Cr 2,2
2 dx n o tnx
1 log” x
n

:logn 5C,

1 b )
> n 2x+Cpx dx.
logn J,
Here

2dx

(2.15)

" dx +
2n_

o3

1 1 (aot% ) agi? 2”2
_ 2 1 ) |x—=L g _
f n2HE qx Zf n\ " f " n 2 dx
S S

ooty

n 2

2 4n
g, 2—
—_—— (n T2 _ n “0'%)
t
(“0—” — 2) logn
Ve

+ 1 ( -2s _4”2)
n—n oo |,
2logn

By (2.13)—(2.16), we derive that there exists C’ > 0 such that

(2.16)

t2
— kor2r? n 2
f KOOF(t,,)dx > B Ok n
Q

L B=Okr? 1
(l’otrzl

_ A
(n—2s —-n {,0,%)
logn @ot? logn
2
_aot
Z(ﬂ - 6)]{07'[2}’2 n 27’” a0l -2 2—04%
5 > nr —n @
ol ((’L” —~ 2) logn
V4
2
aply _
>(,8 —Oko’r*nz= 2 C'n?

apt2 =21 logn

. 2.17)
logn

Together with (M), we have

AIMS Mathematics
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r’t 1
I (thiwy) <= M t + +0
4logn logn

2
(B — 8)kor*r 22 O
@ —2r  logn  logn '

(2.18)

By lim, o t, = /%, we obtain that for any £ > 0, there exists NV, such that aoti <4r + gforn > N,.
Let

[e? [2
r’t ) (B — &)kom*r? n 3w 2

Lile s
hit) = 3M ( 4logn

2rn+¢e  logn’

Then

@mwﬁSme@+0(

>0

) . (2.19)
logn

Obviously, there exists #, > 0 such that sup,,, 1,(t) = [,(z,). Then (I,(t,), ;) = 0, from which we get

21 2 2
( ") r (B = Okonreay «w? _,
t 1 = m L, 2.20
(( Y 4logn ogn +4logn 2n + & " ( )
By (2.19)-(2.20), we have
. 1 . rA(t)? 1
L,(t,w,) <=M (¢, 2y
u{nn) 2 ((") +410gn o logn
T 2( )2 r2
- + 1+ . 2.21
aplogn (( 28 4logn )( 410gn) 221)
By (2.20) and (M), we get lim,,_,., a(t,)> = 4. Moreover,
| (2ﬂ+s)M((t )2+’4fég)n )(1+#2gn)
4 27 108 e’ 4
@ 2 _4m N 2n (B—0)konrlag = ar +A, (2.22)
ay @ logn (o7
where A, = 0(101g . > 0, by (2.22) and (M,), we have
R 2 l’ 2
() +
4logn
(4 12+
=Mtg+f " M(s)ds
[o4)) 4
aq
. (4 1 M(E) ][4 22\ (4n !
<m|Z 0 1+M+ru) ~1Z) . (2.23)
o o1 (4”)9 4logn @

AIMS Mathematics Volume 9, Issue 8, 21433-21454.
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IfA,

2 2
((t )+ (t) ) <M (4”) (2.24)
4logn Q)

By (2.21)—(2.24), we obtain that

A7 1 1 47 nr?
I(twn)<M +=-M|—|[A, +
a7 logn 2 ) aplogn

20+ \2
S M(4—7T+A +M). (2.25)

aplogn \ay ~" 4logn

2M(;‘ )

Since 8 > ~1, by choosing &, £ small and n large, we can derive from (2.25) that I L(taw,) <
M (4&—’5) O
Lemma 2.4. (Mountain pass geometry) There exist p, n > 0 independent of u such that f#(u) > n for

lull, = p. Also, there exists a non-negative function v € X,, with ||v||, > p such that IA,l(v) <0.

Proof. By (M,), we get M(s) > Mys for s € R*. Thus, by choosing £ > 0 small, we can derive
from (2.7) and the Sobolev embedding theorem that f,,(u) > n for |lull, = p. By (2.8)-(2.9), we get
lim, o I, (tv) = —c0. O

Define

= gy

where I' := {y € C([0,1],X,) : (0) = 0, 1,(y(1)) < 0}. By Lemmas 2.3-2.4 and the mountain pass
lemma in [2], there exist {u,} C X, and ny such that

lim 7,(u,) = ¢, € [, max lo(twy,)], lim I'(u,) = 0. (2.26)
n—o0 1> n—oo
Moreover,
1 4
max Io(tw,,) < M( ”) 2.27)
>0 2 o7

Now we give a compactness result.

Lemma 2.5. Suppose Q is a bounded domain in R*. Assume that h satisfies the following conditions:

() h € C(QXR,R) and lim,_o "2 = 0 uniformly in x € Q.

(hy) There exists ay > 0 such that for @ > ag, limy_ e - ") = 0 uniformly in x € Q.
eau —_

If |lunllpr (), fQ |h(x, u,)u,|dx are bounded and u,(x) — u(x) a.e. x € Q, then lim,_,« fg |h(x, u,) —
h(x,u)|dx =0

AIMS Mathematics Volume 9, Issue 8, 21433-21454.
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Proof. Let a > ay and g > 2. By (hy)-(hy), for any € > 0, there exists C, > 0 such that

Ih(x, w)| < &lul + Colul (™ = 1), V (x,u) € R xR.

f |h(x, w)[*dx <C f lul*dx + C f 2@V — dx
%
<Cf|u| dx+C(f |4~ 1>dx) U (e4a”z—l)dx] .
Q

Together with Lemma 2.1, we get h(x,u) € L*(Q). Since lltn]lp1 2y 15 bounded, we get fQ ufldx is
bounded. Let M > 0. Then

f |h(x, u,) — h(x, u)ldx
{un=M)NQ
C

< — |h(x, u)u, — h(x, wu,|dx < —. (2.28)
M Jju, =m0 M

Then

Since ||uy||g1 ) 1s bounded and u,(x) — u(x) a.e. x € Q, we get u,, — u in LP(Q) for any p > 2. Thus,
by the generalized Lebesgue- dominated convergence theorem, we derive that

lim |h(x, u,) — h(x, u)|dx

7% Hlual<MINQ

= lim Ih(x uy) — h(x, W), <a (x)dx = (2.29)
By (2.28)-(2.29), we obtain the result. O

Corollary 2.1. If; |[u|l g ), fgd |K(x)f(u,)u,|dx are bounded and u,(x) — u(x) a.e. x € Ql‘.f) , then
io io
lim,, e fm |K(x)f(u,) — K(x)f(u)|dx =0
io

Proof. Let h(x,u) = K(x)f(u), where (x,u) € Q¢ x R. By (K)) and (f;), we get h € C(Q? x R,R)
h(x,u) h(x,u)
- 2

-1

X € Ql‘.f) . Then, by Lemma 2.5, we get the result. O

and lim,_, = 0 uniformly in x € fo). By (K;) and (f>), we get lim,_, . = 0 uniformly in

eau

Lemma 2.6. Let u > 0. If {u,} C X, is a sequence such that fﬂ(un) — ¢, € (0, %M (i—z)) and f;(un) - 0,
then {u,} converges strongly in X,, up to a subsequence.

Proof. By (2.2) and the structure of g, we have

X 1
Cy+ On(l) + On(l)”un”u :I,u(un) 2(9 1)( ,(un)’ un)

1~
ZEM(HMHHHI) -

2 2
Ml )Nl

Ok )
d
20+ 1) Jarge "
i

20+ 1)

0
f uV(x)u,zldx -
R2

+
20+ 1)
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1 1
+ - K n nd . 2.30
(2(9+ D U)Ld (0) f (u)u,dx (2.30)
io
Since « < (€+;)86, by (M3), we get [|u,||, is bounded. Assume that u, — u, weakly in X,,.

We consider two cases.

Case 1. u,, — 0 weakly in X,.

By (2.30), we get de K(x)f(u,)u,dx 1is bounded. So by Corollary 2.1, we have
i

lim,,_, e de K(x)f(u,)dx = 0. Together with (K;), (fs), and the generalized Lebesgue-dominated
io

convergence theorem, we obtain that

lim f K(x)F(u,)dx = 0.
Qd

n—o0
0

By (M,), we get

M+ s)> M@ + Mys, Yt s>0.

Thus,
1 A M 1 -
, ZEM(lim Vil + 7 lim ||u,,||§) + ¥ lim e
_K lim uidx
2 noeo Jpa\ga
io
ZEM(lim Vi |2 + 7 lim ||un||§).
By (M), we have
. ’ o 4rm
lim (19,13 + rlla) < = 2.31)
n—oo 0

Define ¢ € C;([0, o)) such that ¢(r) = 1 on [1, 00), ¢(r) = 0 on [0, %] and 0 < ¢¥(r) < 1 on [0, 00).
Define yg(x) := y (&), where Q¢ ¢ By (0). By (7 (,), ¥1t,) = 04(1), we derive that

f M) (V0P + 2V, Vsataig + 16307%) + 1V (e | dx
R
= f2 8x, u)uzdx + 0,(1) < Kfz urrlPdx + 0,(1).
R R
We note that
C
2 2 2 2

fR2 lut | Vel dx < |IVYRIl7 o g2 fRZ || "dx < ok

Together with (M), we obtain that

lim lim IV @) + (1 + pV ) upal | dx = 0. (2.32)

R— 00 n—oo Ix[=R
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LetA = lim,_,., M (IIMHIIi,I). Define the functional
W H 2
Ju(w) = =lully + 5 V(x)u dx — G(x,u)dx, ue€X,.
2 2 RZ RZ

Then J;(u,) = 0,(1). Let P(x,1) = g(x, 1)t and Q(t) = t(e°" — 1), where @ > ao. By (K)) and (f,), we
have

. P(x,1) : . 2
lim = 0 uniformly in x € R”. (2.33)
Q1) g
Also,
lim P(x, u,(x)) = P(x,u,(x)) a.e. x € R2. (2.34)

By (2.31), we can choose g > 1(close to 1) and @ > ay(close to @) such that qa(lqunH% + T||Ltn||§) <4r
for n large. Let ¢’ = q%l. By Lemma 2.1, we derive that for n large,

1
2 O(up)dx < |luylly [fz(eq“”% - l)dx] <C. (2.35)
R R

By (2.33)—(2.35) and Lemma 1.2 in [9], we have lim,,_, fBR(O) g(x, u,)u,dx = 0. Together with (2.32),
we derive that

lim g(x, u,)u,dx = 0. (2.36)
n—oo Jpo
Since (J,Q(Mn)’ u,) = 0,(1), by (2.36) and (M,), we get u, — 01in X,,, a contradiction with ¢, > 0.

Case 2. u, — u, # 0 weakly in X,,.

By I;’l(u,,) = 0,(1), we get J/;(un) = 0,(1). Then J/’I(uﬂ) = 0. We claim that lim,_, ””"”?11 =
lual?,. Otherwise, [lu,|l7, < lim, o llull7,. By (M), we get (f/;(uﬂ), u,lz < 0. Since u, # 0, we get
|suppu# N Ql‘.f) | > 0. By Lemma 2.2, there exists a unique 7, > 0 such that (/,(z,u,,), t,u,) = 0. Moreover,
1, € (0, 1). By the structure of g, for x € R\ ij),

8—6u2+ ! FO, upu, — F(x,u)| =0 (2.37)
2 n 2(9+1) s “'n n s Yn = . .

By (2.2), (2.37), (M3), and Fatou’s lemma, we derive that

N 1
Cu = Iu(un) 2(9 n 1)( (un) un) + On(l)

M(llll70) =

uo
2(9 + 1)

Ly
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s Ml )l

NI*—*

20+ 1)

1 A A
V(x)uidx + Lz\gd [mf(x, u,)u, — F(x,u,)|dx
io

(x)f(u,,)u# - K(x)F(u,)|dx + 0,(1). (2.38)

2(9
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By (f4), we get Lf;(;ﬁ)l is strictly increasing for u > 0. Then for any x € Ql‘.f) andu >v >0,

o 1)K(x)f(u)u — K(x)F (u)

> Kx)f(wv)y = K(x)F(v). (2.39)

20+1)

By (f1), we get f% is strictly increasing for u > 0. Together with (K;) and (f1)-(f>), we derive that for

any x € R*\ Qf  there exists a unique u, > 0 such that K(x)f(u) = ku for u = u,, K(x)f(u) < «u for
u < uy and K(x)f(u) > ku for u > u,. Then, for any x € R*\ Q! and u > v > 0,

T
2u + o 1)f(x,u)u F(x,u)
%o, L7 - F 2.40
> 20+ 1)f(x,V)v (x,v). (2.40)

By (2.38)—(2.40), (M5), Lemma 2.2, and the definition of ¢,, we have

1 .
Cu >§M(t2”u/.t”§_11) -

f
2\ 4
r2\Qf

1
+ j; [2(9 n I)K(X)f(lyu,l)tﬂu,l — K(x)F(tﬂu#)] dx

ue
MEN g + 55 [ veorugax
R

20+ 1) 20+1)

fex, ), — F(x, tﬂuu)] dx

20+ 1)

d
io
=1,(t,u,) = max 1,(tu,) > cy, (2.41)
a contradiction. So lim,,_,« ||un||§1] = ||uu||§{,. Moreover, IAl’l(u#) = 0, from which we derive that

¢ = lim F,(u,) - lim (7 (u,), uy)

20+ 1)
N 1 , N N
> 1, (u,) — 2(0—4-1)(1”(u”)’ u,) = 1,(u,) = rrtlz%x L,(tu,) > c,. (2.42)
By (2.42), we get lim,,_,, fR2 V(x)lu, — u#|2dx = 0. Then lim,, e [, — wyll, = 0. |

By (2.26)-(2.27) and Lemma 2.6, we get the following result:

Lemma 2.7. There exists u, € X, such that fﬂ(u,,) = ¢, € [n, max ly(tw,,)] and I;’l(uﬂ) = 0, where
n > 0 is independent of .

3. Proof of Theorem 1.1

Define the functional J on H}(€;,) by

J(u) = %M( fg (|Vu|2+|u|2)dx)— fg K(x)F(u)dx.

0
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Lemma 3.1. For any sequence {u,} with u, — oo as n — oo, iJCIAMn(uMn) = ¢y, € [17,max.q lo(twy,)]
and I;’ln(uﬂn) = 0, then u,, — uy in H'(R?) as n — oo, where uy € Hé(Q,-O) is a positive solution of the
equation

M[ f (Vul* + uz)dx) (=Au +u) = K(x)f(u) in ;. (3.1)
Q

io
Proof. Similar to (2.30), we derive that ||u, ||z is bounded. Assume that u,, — uo weakly in H I(R?).
By Fatou’s lemma, we get fR2 V(x)u2dx = 0. Moreover, fRZ\Q utdx = 0. Then up(x) = 0 a.e. x € R\ Q.
By uy € H'(R?), up(x) = 0 a.e. x € R? \ Q with Q having a smooth boundary and Proposition 9.18
in [8], we get uy € Hy(Q).
Let £ =lim,_,., M (||”;1,,||12L11)- Define the functional IL on X, by

. E
L) = =\l +5 f V(uldx - f G(x, u)dx.
2 2 R2 R2

Then I, (u,,) = 0,(1). For all ¢; € Hy(Q;)) with j # iy, we get

Ef(Vu0V90j+u0<pj)dx:f 8(x, up)g;dx.
Q; Q

J

Since uy € Hy(Q), we have uglo, € Hy(2)). Then

E f (IVuol* + lug)H)dx = f g(x, ug)updx. (3.2)
Qj Qj
By the structure of g, we get uolo, = 0. Then uy € Hg(QiO).

We claim that lim,_, [lu,, |12, > 0. Otherwise, u,, — 0 in H'(R*). Choose ¢ > 1(close to 1) and

a > ap(close to ag) such that qalluﬂnllzl < 4r for n large. Let t > 2. By (f})-(f2), for any € > 0, there
exists C, > 0 such that

f ) fu, ), dx < éllu, |I5 + C. f ) |uﬂn|f(efmﬁn - Ddx. (3.3)
[9)

“ QF
0 0

By Lemma 2.1, we have

lim f lu,, /(%% — 1)dx
Qd

n—0o00
iy

< lim f
n—00 Ql
< Clim ( f
e\ Jaf

0

|, Iq-' dx) { (eq“”fzm - l)dx]

q-1

q
lugy,, |7 1dx] =0. (3.4)
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Since (f/;(u,,n), u,,) = 0, by (3.3)-(3.4) and (M,), we get lim,_,« [l ll,, = 0. So lim, ¢y, <0, a

Ml |2 ) . _
%. Define the functional I, on X,, by

”ul‘n H]

contradiction. Let D = lim,,_,,

- D
I,(u) = —||u||§1,1 + Hf V(x)u*dx —f G(x,u)dx.
2 2 R2 R2

Define the functionals J and J on H}(€;,) by

J(u) = f (Vul + |u>)dx — f K(x)F(u)dx,
Q;

0

J(u) = f(IVul + |uf*)dx — fK(x)F(u)dx.

Then J'(u) = 0. By (M3), we have J(up) > 0. Let w,, = u,, — uy. Then w,, — 0 weakly in H'(R?) and
Cup = T(ug) + I, (W) + 0,(1), (I, (wy,).w,) = 0,(1). (3.5)

Similar to the argument in (2.30), we get fgd K(x)f(w,,)w,, dxis bounded. Together with Corollary 2.1
i

and the generalized Lebesgue-dominated convergence theorem, we derive that

lim | K(x)F(w, )dx = 0. (3.6)

n—oo Jod
By (3.5)-(3.6), the structure of g and M(t + s) > M(t) + Mys for all ¢, s > 0, we have

, 1 .
max Iy(tw,,) > lim ¢, > = lim M(||Vw,, |3 + 7w, |13).
>0 n—oo 2 n—oo

Together with (2.27), we get lim,,_m(IIVw,,nll2 + T||Wﬂn|| ) < By (3.5) and (M,), we have

Mo, < [ | KCOfO8, w1+ & fR L Vo) (3.7)
io io

13

Choose g > 1(close to 1) and @ > ay(close to ay) such that ga(||Vw,, |5 + Tllwﬂnllg) < 4r for n large. By

(K1), (f1)-(f>) and Lemma 2.1, we have

lim f K(x)f(w,,w,,dx = 0.
0%

n—oo

Together with (3.7), we get lim, . [[Wy,l,, = 0. So J'(up) = 0. Since lim,,_,o, ¢, > 17, we have uy # 0.
The maximum principle shows that u is positive. O

Lemma 3.2. There exists u’ > 0 such that for u > (',
||uy||L°°(R2\Q%) < CO||”,u||H1(R2\Q,-O), (3.8)

where Cy > 0 is a constant independent of u.
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Proof. Fori>?2,letr; = 2+2_i r1, where r; € (0, min{d, 1}). For y € R? \ Q , define n; € C°°(B .(y)) such
that 7;(x) = 1 for x € Bml(y) 0 < ni(x) < 1 for x € R?, and |Vr;| <
and 8; > 1. By (I/,(u,), 7 1u),*P~u,) = 0 and (M), we get

. Let u = min{u,, [}

Mo fR 11, Pl P52+ 208, = DIV P, PO

+ My f 10t PP D7 dx
R2
< f g, PP ndx + € f Vet IVl P65 Dl v, (3.9)
R R2
Letr > 2. By (2.5), (3.9), and Young’s inequality, we have

[IVuﬂlzlu’ P+ 2(8; — DIV Pludl Ploa P~V 1dox

f oty [*lug PE~ Vg d e
<C f Vil [P oas PP~ Pdx + C f | (e — Dl P#Vnidx. (3.10)
We note that

f ' (% — D!, A Didx = f ' (e — Dludl PPV, (3.11)
R2 R

2

By a direct calculation,

Il < 2 f Vi Pdx + (1+ 2000 z2)) f Ju, P dx. (3.12)
B, () B, ()

By (3.12) and Lemma 3.1, we can choose u’ > 0 large such that ||17]Lt#||i,l w” for u > y’. Choose
q > 1(close to 1) and a > a(close to @) such that 610/||771My||§11 < 4. Then, by Lemma 2.1, there exists
C > 0 independent of u such that

f (e — 1)idx < f (™" — 1)dx < C. (3.13)
RZ

R2

Lett=2and p > 2q¢’ withq’' = - 1 By (3.10)-(3.11), (3.13), and the Sobolev embedding theorem, we
obtain that there exists C, > 0 such that

[\Bi—1112
(it Cua, V12

<G, f IV PP + D g, P
R

<2C, f VL, P97 + (B = 1)7Vad Plag PP D 1dx
RZ

+2C, f Vil [P os, PP~V dx + C,y f P luel PP g dx
R?2 R?
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<GB [ 1nfu PP e s B P I, (3.14)
R

By direct calculation, we obtain

1 4
=2l 51, (3.15)

Vi — Fiyg r

Let 6y = 2L and ; = 6. Then, by (3.14)-(3.15), we have
CBi

1\8i-1 1\8i~1
||Mg(uﬂ)ﬂ ”LP(B,M(y)) < — ron ||Mp(uﬂ)ﬂ ”LP“O(B,i(y))- (3.16)
1 1+
Let [ — oo, we obtain
1
B\
”u,u”LPﬁi(B,Hl(y)) < (r' — ”uy“L/’ﬂi—l(Bri(y))' (3.17)
i i+1
By (3.17), we derive that
7. CB 1
el on < [ |G il i,
j=2 1T
i
8C 2 . s
= l_[[r—(é—)j] °||uy||z,v/31(3,2(y))-
j=2 7100
Leti — oo, we have
||My||L°°(B%,_1 V) = C||M,4||Lpﬁ1 (B, () < CO||M/J||H1(R2\Q,O)- (3.18)
Since y € R*\ Q{ is arbitrary, we finish the proof. O

Lemma 3.3. There exist ry, ¢y, c2, 4’ > 0 such that Qﬁ) C B,,(0) and for all u > p”,
1, (x) < cpe VO 1 > g, (3.19)

where ry, c1, c; are independent of .

Proof. By (M) and the structure of g, we obtain that for any x € R? \ Qﬁ) ,
—M(llu |20 Au, + uV()u, + (Mo — Ku, < 0.

Similar to (2.30), we can derive from Lemma 2.7 to obtain that |u,||;: is bounded. By (V,), there exist
ro, co > 0 independent of u such that Qz) C B,,(0) and

—Auy, + copu, <0, Y |x| > 1. (3.20)

By Lemma 3.2, there exists ¢; > 0 such that u,(x) < ¢, for |x| = ry, where ¢, > 0 is independent of
w> . Let vy (x) = cpe™ V=0 By choosing ¢; > 0 as small, we obtain

—Av, + couv, 20, ¥ [x| > ro. (3.21)

By (3.20)-(3.21) and the comparison principle, we obtain that u,(x) < v,(x) for |x| > r. O
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Proof of Theorem 1.1. By Lemma 2.7, there exists u,, € X,, such that f“(uﬂ) = ¢, € [17, max, o lo(tw,,)]
and IAI’I(u#) = 0. Let g > 2. By (K>) and (f})-(f>), there exists C > 0 such that

KOS ) _ .

uy,

2 [ui—l + |u#|‘1‘2(e‘”’ﬁ _ 1)] _ (3.22)

By (3.22) and Lemma 3.3, we derive that there exists ¢’* > 0 such that for u > ",

K(x)f(u,)

o

<k, Yl|x| = 2r. (3.23)

By (3.22) and Lemmas 3.1-3.2, we derive that there exists y””” > 0 such that for yu > ',

K(x)f(u,)

Uy

<k, Y x€By(0)\ Q. (3.24)

By (3.23)-(3.24), we know that u, is the nonnegative solution of (1.2). The maximum principle shows
that u, is positive. Together with Lemma 3.1, we obtain the result. O

4. Conclusions

In this paper, we study the Kirchhoff type of elliptic equation, and we assume the nonlinear terms
as K(x)f(u), where K is permitted to be unbounded above and f has exponential critical growth. By
using the truncation technique and developing some approaches to deal with Kirchhoff-type equations
with critical growth in the whole space, we get the existence and concentration behavior of solutions,
where the solution satisfies the mountain pass geometry. The results are new even for the case M = 1.
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