Citation: Erhan Set, M. Emin Özdemir, Sevdenur Demirbaş. Chebyshev type inequalities involving extended generalized fractional integral operators[J]. AIMS Mathematics, 2020, 5(4): 3573-3583. doi: 10.3934/math.2020232
[1] | Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz . On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities. AIMS Mathematics, 2022, 7(6): 10256-10275. doi: 10.3934/math.2022571 |
[2] | Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648 |
[3] | Erhan Deniz, Ahmet Ocak Akdemir, Ebru Yüksel . New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals. AIMS Mathematics, 2020, 5(2): 956-965. doi: 10.3934/math.2020066 |
[4] | Fuat Usta, Hüseyin Budak, Mehmet Zeki Sarıkaya . Some new Chebyshev type inequalities utilizing generalized fractional integral operators. AIMS Mathematics, 2020, 5(2): 1147-1161. doi: 10.3934/math.2020079 |
[5] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[6] | Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed . On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications. AIMS Mathematics, 2021, 6(9): 9154-9176. doi: 10.3934/math.2021532 |
[7] | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja . Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function. AIMS Mathematics, 2021, 6(8): 8001-8029. doi: 10.3934/math.2021465 |
[8] | Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions. AIMS Mathematics, 2024, 9(5): 11228-11246. doi: 10.3934/math.2024551 |
[9] | Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232 |
[10] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
In 1882, Chebyshev proved on interesting and useful integral inequality as follows:
1b−a∫baf(x)g(x)dx≥(1b−a∫baf(x)dx)(1b−a∫bag(x)dx) | (1.1) |
where f and g are two integrable and synchronous functions on [a,b]. Here two functions f and g are called synchronous on [a,b], if
(f(x)−f(y))(g(x)−g(y))≥0(x,y∈[a,b]). |
The inequality (1.1) that is well known as Chebyshev inequality has many applications in diverse research subjects such as numerical quadrature, transform theory, probability, existence of solutions of differential equations and statistical problems. Therefore, many researchers have given considerable attention to this inequality, (see [3,10,11,12,18,19,20,21,22].
On the other hand, one of the methods used to generalize inequalities is fractional calculus. In this context, firstly, in 2009, Chebyshev inequality involving Riemann-Liouville fractional integrals is presented as the following:
Theorem 1.1. ([2]) Let f and g be two synchronous function on [0,∞). Then for all t>0,α>0, we have:
Jα(f,g)(t)≥Γ(α+1)tαJαf(t)Jαg(t) | (1.2) |
where Jαf(t) denotes Riemann-Liouville fractional integral operator of a function f(t) and Γ is the Gamma function such that these are defined as follows (see e.g. [17]).
Let f∈L[a,b]. The Riemann-Liouville fractional integrals Jαa+f and Jαb−f of order α>0 are defined by
Jαa+f(x)=1Γ(α)∫xa(x−t)α−1f(t)dt,x>0Jαb−f(x)=1Γ(α)∫bx(t−x)α−1f(t)dt,x<b |
respectively. Also the gamma function is defined by
Γ(x)=∫∞0e−ttα−1dt. |
Here is J0a+f(x)=J0L−f(x)=f(x). In the case of α=1, the this fractional integral reduces to the classical integral.
After this study of Belarbi and Dahmani, generalizations of Chebyshev inequality were obtained for the different types of fractional integral operator with similar technique. (see, e.g. [2,5,6,7,14,23,24,25,28].
Recently, the new generalizations of the Riemann-Liouville fractional integral operator, have been described with the help of various extensions of the Mittag-Leffler function. Now lets give some of these operators which we will need in the second section.
Definition 1.1. ([13]) Let α,β,ρ,λ∈C, Re(α)>0 and Re(β)>0. Let f∈L[a,b] and x∈[a,b]. Then the fractional integral operator ϵ(α,β,ρ,λ) defined by Prabhakar is as the following:
ϵ(α,β,ρ,λ)f(x)=∫xa(x−t)β−1Eρα,βλ(x−t)αf(t)dt |
where
Eρα,β=∞∑n=0(ρ)nznΓ(αn+β)n! |
and Γ is the Gamma function.
Definition 1.2. ([26]) Let z,β,γ,ω∈C, Re(α)>max{0,Re(κ)−1}, min{Re(β),Re(κ)}>0. Let f∈L[a,b] and x∈[a,b]. Then the fractional integral operator ϵω;γ,κa+;α,βφ defined by Srivastava and Saxena is as the following:
(ϵω;γ,κa+;α,βφ)(x)=∫xa(x−t)β−1Eγ,κα,β[ω(x−t)α]φ(t)dt (x>a) |
where
Eγ,κα,β(z)=∞∑n=0(γ)κnΓ(αn+β)znn! |
and Γ is the Gamma function.
Definition 1.3. ([16]) Let α,β,γ,δ∈C, min{Re(α),Re(β),Re(γ),Re(δ)}>0, p,q>0 and q≤Re(α)+p. Let f∈L[a,b] and x∈[a,b]. Then the fractional integral operator ϵγ,δ,qα,β,p,ω,a+ defined by Salim and Faraj is as the following:
ϵγ,δ,qα,β,p,ω,a+(x)=∫xa(x−t)β−1Eγ,δ,qα,β,p(ω(x−t)α)φ(t)dt |
where
Eγ,δ,qα,β,p(z)=∞∑n=0γqnΓ(αn+β)zn(δ)pn |
and Γ is the Gamma function.
Definition 1.4 ([15]) Let p≥0, q>0, ω,δ,λ,σ,c,ρ∈C, Re(c)>0, Re(ρ)>0 and Re(σ)>0. Let f∈L[a,b] and x∈[a,b]. Then the fractional integral operator (ϵω,δ,q,ca+,ρ,σf) defined by Rahman et al. is as the following:
(ϵω,δ,q,ca+,ρ,σf)(x)=∫xa(x−τ)σ−1Eδ,q,cp,σ(ω(x−τ)ρ;p)f(τ)dτ |
where
Eδ,q,cρ,σ(z;p)=∞∑n=0Bp(δ+nq,c−δ)B(δ,c−δ)(c)nqΓ(ρn+σ)znn! |
and Bp(x,y) is an extension of Beta function defined in [15]
Bp(x,y)=∫10tx−1(1−t)y−1e−pt(1−t)dt x,y,p>0 | (1.3) |
where Re(p)>0, Re(x)>0 and Re(y)>0. Also, here B is familiar Beta function as follows:
B(a,b)=Γ(a)Γ(b)Γ(a+b)=∫10ta−1(1−t)b−1dt, a,b>0. | (1.4) |
Definition 1.5. ([1]) Let ω,α,β,σ,δ,c∈C, Re(α),Re(β),Re(σ),Re(δ),Re(c)>0 with p≥0, q>0 and 0<r≤q+Re(α). Let f∈L1[a,b] and x∈[a,b]. Then the generalized fractional integral operator ϵω,δ,q,r,ca+,α,β,σf is defined by
(ϵω,δ,q,r,ca+,α,β,σf)(x;p)=∫xa(x−t)β−1Eδ,q,r,cα,β,σ(ω(x−t)α;p)f(t)dt | (1.5) |
where
Eδ,q,r,cα,β,σ(z;p)=∞∑n=0Bp(δ+nq,c−δ)B(δ,c−δ)(c)nqΓ(αn+β)zn(σ)nr |
and Bp and B is as (1.3) and (1.4) respectively. For further information about this operator, (see [1,8,9,27]).
Theorem 2.1. Let t be a positive function on [0,∞] and let f and g be two differentiable functions on [0,∞]. If f′∈Lr ([0,∞]), g′∈Ls ([0,∞]), r>1, r−1+s−1=1, then for all x>0, α>0, β>0, we have
2|(ϵω,δ,q,r,c0+,α,β,σtfg)(x;p)(ϵω,δ,q,r,c0+,α,β,σt)(x;p)−(ϵω,δ,q,r,c0+,α,β,σtf)(x;p)(ϵω,δ,q,r,c0+,α,β,σtg)(x;p)|≤||f′||r||g′||s∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)dτdρ ≤||f′||r||g′||sx(ϵω,δ,q,r,c0+,α,β,σt(x;p))2. | (2.1) |
Proof. Let f and g be two functions satisfying the conditions of Theorem 2.1 and let t be a positive function on [0,∞], Define
H(τ,ρ):=(f(τ)−f(ρ))(g(τ)−g(ρ));τ,ρ∈(0,x),x>0. | (2.2) |
Multiplying (2.2) by
(x−τ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)t(τ);τ∈(0,x) |
and integrating the resulting identity with respect to τ from 0 x, we can state that
∫x0(x−τ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)t(τ)H(τ,ρ)dτ=(ϵω,δ,q,r,c0+,α,β,σtfg)(x;p)−f(ρ)(ϵω,δ,q,r,c0+,α,β,σtg)(x;p)−g(ρ)(ϵω,δ,q,r,c0+,α,β,σtf)(x;p)+f(ρ)g(ρ)(ϵω,δ,q,r,c0+,α,β,σt)(x;p) | (2.3) |
Now, multiplying (2.3) by
(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(ρ);ρ∈(0,x) |
and integrating the resulting identity with respect to ρ over (0,x), we can write
∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)H(τ,ρ)dτdρ=(ϵω,δ,q,r,c0+,α,β,σtfg)(x;p)(ϵω,δ,q,r,c0+,α,β,σt)(x;p)−(ϵω,δ,q,r,c0+,α,β,σtf)(x;p)(ϵω,δ,q,r,c0+,α,β,σtg)(x;p)−(ϵω,δ,q,r,c0+,α,β,σtg)(x;p)(ϵω,δ,q,r,c0+,α,β,σtf)(x;p)+(ϵω,δ,q,r,c0+,α,β,σtfg)(x;p)(ϵω,δ,q,r,c0+,α,β,σt)(x;p) |
Consequently,
∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)H(τ,ρ)dτdρ=2((ϵω,δ,q,r,c0+,α,β,σtfg)(x;p)(ϵω,δ,q,r,c0+,α,β,σt)(x;p)−(ϵω,δ,q,r,c0+,α,β,σtf)(x;p)(ϵω,δ,q,r,c0+,α,β,σtg)(x;p)) | (2.4) |
On the other and, we have
H(τ,ρ):=∫ρτ∫ρτf′(y)g′(z)dydz. | (2.5) |
Using Hölder inequality for double integral, we can write
|H(τ,ρ)|≤|∫ρτ∫ρτ|f′(y)|rdydz|r−1|∫ρτ∫ρτ|g′(z)|sdydz|s−1 | (2.6) |
Since,
|∫ρτ∫ρτ|f′(y)|rdydz|r−1=|τ−ρ|r−1|∫ρτ|f′(y)|rdy|r−1 | (2.7) |
and
|∫ρτ∫ρτ|g′(z)|sdydz|s−1=|τ−ρ|s−1|∫ρτ|g′(z)|sdz|s−1 | (2.8) |
then, we can estimate H as follows:
|H(τ,ρ)|≤|τ−ρ||∫ρτ|f′(y)|rdy|r−1|∫ρτ|g′(z)|sdz|s−1 | (2.9) |
On the other hand, we have
∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)×|∫ρτ|f′(y)|rdy|r−1|∫ρτ|g′(z)|sdz|s−1dτdρ | (2.10) |
Applying again Hölder inequality to the right-hand side of (2.10), we can state that
∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤[∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)|∫ρτ|f′(y)|rdy|dτdρ]r−1×[∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)|∫ρτ|g′(z)|sdz|dτdρ]s−1. |
Now, using the fact the
|∫ρτ|f′(y)|rdy|≤||f′||rr,,|∫ρτ|g′(z)|sdz|≤||g′||ss, | (2.11) |
we obtain
∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤[||f′||rr,∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)dτdρ]r−1×[||g′||ss,∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)dτdρ]s−1. | (2.12) |
From (2.12), we get
∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤||f′||r||g′||s[∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)dτdρ]r−1×[∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)dτdρ]s−1. | (2.13) |
Since r−1+s−1=1, then we have
∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤||f′||r||g′||s[∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)|τ−ρ|t(τ)t(ρ)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)dτdρ]. | (2.14) |
By the relations (2.4) and (2.14) and using the properties of the modulus, we get the first inequality in (2.1). We have
0≤τ≤x,0≤ρ≤x. |
Hence,
0≤|τ−ρ|≤x. |
Therefore, we have
∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤||f′||r||g′||sx[∫x0∫x0(x−τ)(β−1)(x−ρ)(β−1)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cα,β,σ(ω(x−ρ)α;p)t(τ)t(ρ)dτdρ]=||f′||r||g′||s x(ϵω,δ,q,r,c0+,α,β,σt(x))2. | (2.15) |
Theorem (2.1) is thus proved.
In Theorem 2.1, if we set t(x)=1, we arrive at the following corollary :
Corollary 2.1. Let f and g be two differentiable functions on [0,∞]. If f′∈Lr([0,∞]), g′∈Ls([0,∞]), r>1, r−1+s−1=1, then for all x>0, α>0, β>0, we have:
|(ϵω,δ,q,r,c0+,α,β,σfg)(x;p)−1(ϵω,δ,q,r,c0+,α,β,σ)(1)(ϵω,δ,q,r,c0+,α,β,σf)(x;p)(ϵω,δ,q,r,c0+,α,β,σg)(x;p)|≤12(||f′||r||g′||sx(ϵω,δ,q,r,c0+,α,β,σ)(1)). | (2.16) |
Corollary 2.2. For different choices of parameters in (2.1) we can establish the corresponding fractional integral inequalities such as
(i) setting p=0, we get Chebyshev inequality for the Salim-Faraj fractional integral operator, defined in [16],
(ii) setting σ=r=1, we get Chebyshev inequality for the fractional integral operator defined by Rahman et al. in [15],
(iii) setting p=0 and σ=r=1, we get Chebyshev inequality for the Srivastava-Tomovski fractional integral operator defined in [26],
(iv) setting p=0 and σ=r=q=1, we get Chebyshev inequality for the Prabhakar fractional integral operator defined in [13].
Remark 2.1. In (2.1) setting p=ω=0, we get the inequality (3.1) in [4].
Theorem 2.2. Let t be a positive function on [0,∞] and let f and g be two differentiable functions on [0,∞]. If f′∈Lr([0,∞]), g′∈Ls([0,∞]), r>1, r−1+s−1=1, then for all x>0, α>0, β>0, λ>0, θ>0, we have
|(ϵω,δ,q,r,c0+,α,β,σt)(x;p)(ϵω,δ,q,r,c0+,λ,θ,ptfg)(x;p)+(ϵω,δ,q,r,c0+,λ,θ,pt)(x;p)(ϵω,δ,q,r,c0+,α,β,σtfg)(x;p)−(ϵω,δ,q,r,c0+,α,β,σtf)(x;p)(ϵω,δ,q,r,c0+,λ,θ,ptg)(x;p)−(ϵω,δ,q,r,c0+,λ,θ,ptf)(x;p)(ϵω,δ,q,r,c0+,α,β,σtg)(x;p)|≤||f′||r||g′||s∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)|τ−ρ|t(τ)t(ρ)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)dτdρ≤||f′||r||g′||sx(ϵω,δ,q,r,c0+,α,β,σt)(x;p)(ϵω,δ,q,r,c0+,λ,θ,pt)(x;p). | (2.17) |
Proof. Using the identity (2.3), we can state that
∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)t(τ)t(ρ)H(τ,ρ)dτdρ=(ϵω,δ,q,r,c0+,α,β,σt)(x;p)(ϵω,δ,q,r,c0+,λ,θ,ptfg)(x;p)+(ϵω,δ,q,r,c0+,λ,θ,pt)(x;p)(ϵω,δ,q,r,c0+,α,β,σtfg)(x;p)−(ϵω,δ,q,r,c0+,α,β,σtf)(x;p)(ϵω,δ,q,r,c0+,λ,θ,ptg)(x;p)−(ϵω,δ,q,r,c0+,λ,θ,ptf)(x;p)(ϵω,δ,q,r,c0+,α,β,σtg)(x;p). | (2.18) |
From the relation (2.9), we can obtain the following estimation
∫x0(x−τ)(β−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)t(τ)|H(τ,ρ)|dτ≤∫x0(x−τ)(β−1)|τ−ρ|Eδ,q,r,cα,β,σ(ω(x−τ)α;p)t(τ)×|∫ρτ|f′(y)|rdy|r−1|∫ρτ|g′(z)|sdz|s−1dτ | (2.19) |
Therefore, we have
∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)|τ−ρ|Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)t(τ)t(ρ)|∫ρτ|f′(y)|rdy|r−1|∫ρτ|g′(z)|sdz|s−1dτdρ. | (2.20) |
Applying Hölder inequality for double integral to the right-hand side of (2.20), yields
∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤[∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)|τ−ρ|Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)t(τ)t(ρ)|∫ρτ|f′(y)|rdy|dτdρ]r−1×[∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)|τ−ρ|Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)t(τ)t(ρ)|∫ρτ|g′(z)|sdz|dτdρ]s−1. | (2.21) |
By (2.11) and (2.21), we get
∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)Eδ,q,r,cα,β,σ(ω(x−τ)α;p)×Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)t(τ)t(ρ)|H(τ,ρ)|dτdρ≤||f′||r||g′||s∫x0∫x0(x−τ)(β−1)(x−ρ)(θ−1)|τ−ρ|t(τ)t(ρ)×Eδ,q,r,cα,β,σ(ω(x−τ)α;p)Eδ,q,r,cλ,θ,p(ω(x−ρ)λ;p)dτdρ. | (2.22) |
Using (2.18) and (2.22) and the properties of modulus, we get the first inequality in (2.17).
Corollary 2.3. For different choices of parameters in (2.17) we can establish the corresponding fractional integral inequalities such as
(i) setting p=0, we get Chebyshev inequality for the Salim-Faraj fractional integral operator, defined in [16],
(ii) setting σ=r=1, we get Chebyshev inequality for the fractional integral operator defined by Rahman et al. in [15],
(iii) setting p=0 and σ=r=1, we get Chebyshev inequality for the Srivastava-Tomovski fractional integral operator defined in [26],
(iv) setting p=0 and σ=r=q=1, we get Chebyshev inequality for the Prabhakar fractional integral operator defined in [13].
Remark 2.2. Applying Theorem 2.2 for β=θ, α=λ, we obtain theorem 2.1.
Remark 2.3. In (2.17) setting p=ω=0, we get the inequality (3.17) in [4].
The authors declare there is no conflicts of interest in this paper.
[1] |
M. Andric, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395. doi: 10.1515/fca-2018-0072
![]() |
[2] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, JIPAM, 10 (2009), 1-12. |
[3] | Z. Dahmani, About some integral inequalities using Riemann-Liouville integrals, General Mathematics, 20 (2012), 63-69. |
[4] | Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44. |
[5] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493-497. |
[6] | Z. Dahmani, Some results associated with fractional integrals involving the extended Chebyshev functional, Acta Universitatis Apulansis, 27 (2011), 217-224. |
[7] | J. Daiya, J. Ram, R. K. Saxena, New fractional integral inequalities associated with Pathway operator, Acta Comment. Univ. Tartu. Math., 19 (2015), 121-126. |
[8] | S. M. Kang, G. Farid, W. Nazeer, et al. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Ineq. Appl., 2018 (2018), 119. |
[9] | S. M. Kang, G. Farid, W. Nazeer, et al. (h-m)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Ineq. Appl., 2019 (2019), 78. |
[10] | C. P. Niculescu, I. Roventa, An extention of Chebyshev's algebric inequality, Math. Reports, 15 (2013), 91-95. |
[11] |
M. E. Özdemir, E. Set, A. O. Akdemir, et al. Some new Chebyshev type inequalities for functions whose derivatives belongs to spaces, Afrika Matematika, 26 (2015), 1609-1619. doi: 10.1007/s13370-014-0312-5
![]() |
[12] | B. G. Pachpatte, A note on Chebyshev-Grüss type inequalities for diferential functions, Tamsui Oxford Journal of Mathematical Sciences, 22 (2006), 29-36. |
[13] | T. R. Prabhakar, A singular integral equation with generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15. |
[14] | S. D. Purohit, S. L. Kalla, Certain inequalities related to the Chebyshev's functional involving Erdelyi-Kober operators, Scientia Mathematical Sciences, 25 (2014), 55-63 |
[15] |
G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253. doi: 10.22436/jnsa.010.08.19
![]() |
[16] |
T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1-13. doi: 10.1142/9789814355216_0001
![]() |
[17] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, 1993. |
[18] |
M. Z. Sarıkaya, N. Aktan, H. Yıldırım, On weighted Chebyshev-Grüss like inequalities on time scales, J. Math. Ineq., 2 (2008), 185-195. doi: 10.7153/jmi-02-17
![]() |
[19] | M. Z. Sarıkaya, A. Saglam, H. Yıldırım, On generalization of Chebyshev type inequalities, Iranian J. Math. Sci. Inform., 5 (2010), 41-48. |
[20] |
M. Z. Sarıkaya, M. E. Kiriş, On Ostrowski type inequalities and Chebyshev type inequalities with applications, Filomat, 29 (2015), 123-130. doi: 10.2298/FIL1506307S
![]() |
[21] |
E. Set, M. Z. Sarıkaya, F. Ahmad, A generalization of Chebyshev type inequalities for first differentiable mappings, Miskolc Mathematical Notes, 12 (2011), 245-253. doi: 10.18514/MMN.2011.338
![]() |
[22] | E. Set, Z. Dahmani and İ. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szegö inequality, An International Journal of Optimization and Control: Theories Applications, 8 (2018), 137-144. |
[23] |
E. Set, J. Choi, İ. Mumcu, Chebyshev type inequalities involving generalized Katugampola fractional integral operators, Tamkang J. Math., 50 (2019), 381-390. doi: 10.5556/j.tkjm.50.2019.2791
![]() |
[24] | E. Set, A. O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Miskolc Mathematical Notes, 20 (2019). |
[25] |
E. Set, İ. Mumcu, S. Demirbaş, Chebyshev type inequalities involving new conformable fractional integral operators, RACSAM, 113 (2018), 2253-2259. doi: 10.1007/s13398-018-0614-9
![]() |
[26] | H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210. |
[27] |
S. Ullah, G. Farid, K. A. Khan, et al. Generalized fractional inequalities for quasi-convex functions, Adv. Difference Equ., 2019 (2019), 1-16. doi: 10.1186/s13662-018-1939-6
![]() |
[28] | F. Usta, H. Budak, M. Z. Sarıkaya, On Chebyshev Type Inequalities for Fractional Integral Operators, AIP Conference Proceedings, 1833 (2017), 020045. |
1. | Barış ÇELİK, Erhan SET, On new integral inequalities using mixed conformable fractional integrals, 2020, 1303-5991, 63, 10.31801/cfsuasmas.698841 | |
2. | Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa, New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators, 2021, 9, 2227-7390, 122, 10.3390/math9020122 | |
3. | Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182 | |
4. | Rozana Liko, Pshtiwan Othman Mohammed, Artion Kashuri, Y. S. Hamed, Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators, 2022, 6, 2504-3110, 131, 10.3390/fractalfract6030131 | |
5. | Hari Mohan Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators, 2021, 5, 2504-3110, 160, 10.3390/fractalfract5040160 | |
6. | MAYSAA AL-QURASHI, SAIMA RASHID, YELIZ KARACA, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE, 2021, 29, 0218-348X, 2140027, 10.1142/S0218348X21400272 | |
7. | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Malik Ali Raza, Grüss type inequalities via generalized fractional operators, 2021, 44, 0170-4214, 12559, 10.1002/mma.7563 | |
8. | Bhagwat R. Yewale, Deepak B. Pachpatte, Tariq A. Aljaaidi, Wilfredo Urbina, Chebyshev-Type Inequalities Involving ( k , ψ )-Proportional Fractional Integral Operators, 2022, 2022, 2314-8888, 1, 10.1155/2022/3966177 | |
9. | Saima Rashid, Zakia Hammouch, Rehana Ashraf, Yu-Ming Chu, New Computation of Unified Bounds via a More General Fractional Operator Using Generalized Mittag–Leffler Function in the Kernel, 2021, 126, 1526-1506, 359, 10.32604/cmes.2021.011782 | |
10. | Erhan Set, Ahmet Ocak Akdemi̇r, Ali̇ Karaoğlan, New integral inequalities for synchronous functions via Atangana–Baleanu fractional integral operators, 2024, 186, 09600779, 115193, 10.1016/j.chaos.2024.115193 | |
11. | Bhagwat R. Yewale, Deepak B. Pachpatte, 2023, 9781119879671, 45, 10.1002/9781119879831.ch3 | |
12. | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab, k-Fractional inequalities associated with a generalized convexity, 2023, 8, 2473-6988, 28540, 10.3934/math.20231460 |