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1. Introduction

Fractional calculus emerged as a generalization of conventional calculus. The classical differential
and integral operators proposed by Leibniz more than three centuries ago have been extended to the
fractional scenario in various different forms. In the way, various applications have been proposed to
within mathematics, like Cauchy problems with Caputo Hadamard fractional derivatives [1], the
synchronization for a class of fractional-order hyperchaotic systems [2] the inequality estimates for
the boundedness of multilinear singular and fractional integral operators [3], the analysis of
unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space
fractional Bloch-Torrey equations on irregular convex domains [4] and the design of numerically
efficient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system [5],
among various other interesting problems [6].

It is worth pointing out that each fractional operator is fully characterized by its own special
kernel, and they can be used in a range of particular problems. In this respect, the analysis on the
uniqueness of solutions for fractional ordinary and partial differential equations may be performed by
employing fractional integral inequalities, which obviously depend on the type of operator. The
literature provides accounts of many applications potential applications, like the periodic orbit
analysis for the delayed Filippov systems [7] the bifurcation of limit cycles at infinity in piecewise
polynomial systems [8] and the number and stability of limit cycles for planar piecewise linear
systems of node-saddle type [9]. Indeed, integral inequalities play a major role in the field of
differential equations and applied mathematics. More well-known applications of integral inequalities
are found in applied sciences, such as statistical problems, transform theory, numerical quadrature,
and probability [10, 11].

In the last few years, many researchers have established various types of integral inequalities by
employing different approaches. For example, there are reports on some new inequalities for
(k, s)-fractional integrals [12], certain weighted integral inequalities involving the fractional
hypergeometric operators [13] and some generalized integral inequalities for Hadamard fractional
integrals [14]. Moreover, those results provide direct applications to other areas of mathematics, such
as conformable fractional integral inequalities [15], including those of the Hermite-Hadamard
type [16]. Moreover, there are reports in the literature on integral inequalities for a fractional operator
of a function with respect to another function with nonsingular kernel [17] and
Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals [18].

The so-called Chebyshev inequality is one important type of inequality which is related to the
synchronous functions [19]. This inequality has been extensively studied in the literature. Indeed,
these inequalities appear in the study of conformable κ-fractional integral operators [20] in the
investigation of inequalities of the Grüss-type for conformable fractional integrals [21, 22], in
Simpson’s type integral inequalities for κ-fractional integrals [23], in generalized fractional
conformable integrals [24], in the study of some fractional integral inequalities for the Katugampola
integral operator [25], in the theory of Riemann-Liouville fractional operators [26], and in the context
of generalized conformable fractional operators [27, 28]. Here, it is worth pointing out that the
classical Chebyshev inequality reads as follows [19]:(

1
d2 − d1

∫ d2

d1

ψ1(k)dk
) (

1
d2 − d1

∫ d2

d1

ψ2(k)dk
)
≤

1
d2 − d1

∫ d2

d1

ψ1(k)ψ2(k)dk. (1.1)
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Here, ψ1 and ψ2 are supposed to be synchronous and integrable functions on the interval [d1, d2] ⊆ R.
Recall that two functions are synchronous on [d1, d2] if

(ψ1(k) − ψ1(l))(ψ2(k) − ψ2(l)) ≥ 0, ∀k, l ∈ [d1, d2]. (1.2)

It is worthwhile mentioning that Chebyshev’s inequality (1.1) has been extended for functions
whose derivatives belong to Lp spaces [29, 30] and a variant of Chebyshev’s inequality was applied to
obtain some inequalities for expectation and variance for cumulative distribution functions [31]. It is
also important to mention that a new class of fractional derivatives and integrals (fractional
conformable derivatives and integrals) were recently proposed in the literature [32, 33]. Later on, the
fractional conformable integral operators were introduce [34], and various generalizations of the
classical inequalities [35], including the Hadamard, Hermite-Hadamard and Opial inequalities [36],
Grüss inequality [37], and the Ostrowski and Chebyshev inequalities [20]. Recently, some new
fractional extensions of Chebyshev’s inequality were derived using the generalized Katugampola
integrals through the Polya-Szegö inequality [38].

In the present manuscript, we will present new Raina-type fractional integral operators, and we
will devote our investigation to derive extensions of Chebyshev’s inequality which consider the
presents of those operators. As one of the most important results in this work, we will prove a version
of Chebyshev’s inequality for more than two functions. In the way, some Chebyshev-type inequalities
will be proved for functions whose derivatives are bounded from below or from above. In addition, an
estimate of the Chebyshev functional are proved using the new Raina-type fractional integral
operators. Before closing this work we will establish similar inequalities for the Prabhakar-Salim
fractional integrals. Overall, the present work proposes more general results than those in various
existing reports available in the literature. To show this fact, we will notice that some known results
from our general Chebyshev inequalities are obtained as particular cases.

2. Preliminaries

The present section is devoted to recall various definitions and results from the literature on
fractional calculus, and to derive new properties which will be required in the sequel. Most of the
standard definitions will be taken from [39, 40].

Definition 2.1. Let ı > 0 be a real number and suppose that ψ : [d1, d2] → R is a function such that
ψ ∈ L1 [d1, d2]. Then the standard left and right Riemann-Liouville fractional integral operators of
order ı are defined, respectively, by(

Iıd1+
ψ
)

(k) =
1
Γ(ı)

∫ k

d1

(k − ℓ)ı−1 ψ(ℓ)dℓ, (k > d1), (2.1)

(
Iıd2−

ψ
)

(k) =
1
Γ(ı)

∫ d2

k
(ℓ − k)ı−1 ψ(ℓ)dℓ, (k < d2). (2.2)

In turn, if we agree that n = ⌊ı⌋+ 1, then the left and right Riemann-Liouville fractional derivatives are
given by

Dı
d1+
ψ(ℓ) =

dn

dknI
n−ı
d1+
ψ(ℓ), (2.3)
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Dı
d2−
ψ(ℓ) =

dn

dknI
n−ı
d2−
ψ(ℓ). (2.4)

Definition 2.2 (Raina [41]). Let σ = (σ(i))∞i=1 be a bounded real sequence. The modified Mittag-Leffler
function with parameters ϱ, ρ > 0 and σ at k ∈ C is given by

F σ
ρ,ϱ(k) =

∞∑
i=0

σ(i)
Γ (ρi + ϱ)

ki. (2.5)

The following definition introduces the Raina fractional operators. It is important to notice that
the those operators are obtained from (2.1) and (2.2) by replacing the Mittag-Leffler kernel with the
modified Mittag-Leffler function with parameters ϱ, ρ > 0 and σ. Meantime, the Raina fractional
model is proposed in [41] as one important models of fractional calculus and this is defined by integral
similar to but with a modified Mittag-Leffler function in the kernel. This is defined by the following
definition.

Definition 2.3 (Agarwal [42]). Suppose that ϱ, ρ > 0, and let w ∈ R. For any function ψ ∈ L1[d1, d2],
the left and right Raina fractional integral operators of ψ are defined by the following integral
transforms, respectively:(

Jσ
ρ,ϱ,d1+;wψ

)
(k) =

∫ k

d1

(k − ℓ)ϱ−1
F σ
ρ,ϱ [w(k − ℓ)ρ]ψ(ℓ)dℓ, (k > d1) , (2.6)

(
Jσ
ρ,ϱ,d2−;wψ

)
(k) =

∫ d2

k
(ℓ − k)ϱ−1

F σ
ρ,ϱ [w(ℓ − k)ρ]ψ(ℓ)dℓ, (k < d2) . (2.7)

Various known particular scenarios are obtained depending on specific expressions of ρ, ϱ and σ.
For example, if ρ = 1, ϱ = 0 and σ(i) = ((ı)i(β)i/(γ)i) for i ∈ N ∪ {0} in the formula (2.5), then we get
the classical hypergeometric function, which is given by

F σ
ρ,ϱ(k) = F(ı, β; γ; k) =

∞∑
i=0

(ı)i(β)i

(γ)ii!
ki. (2.8)

Here, ı, β and γ are arbitrary complex or real parameters with the property that γ , 0,−1,−2, . . ., and
(d1)i is the Pochhammer symbol defined by

(d1)i =
Γ(d1 + i)
Γ(d1)

= d1(d1 + 1) · · · (d1 + i − 1), i ∈ N ∪ {0}. (2.9)

On the other hand, if σ(i) = (1, 1, 1, . . .) with ρ = ı > 0 and ϱ = 1 in (2.5), then we get the standard
Mittag-Leffler function, which is given by

Eı(k) =
∞∑

i=0

1
Γ(ıi + 1)

ki. (2.10)

Extensions of the Mittag-Leffler function are obtained from (2.5) when σ(i) = (η)i
i! , ρ = ı and ϱ = β,

see [43], and when σ(i) = (γ)qi

(δ)pi
, ρ = ı, and ϱ = β, see [44].

Let σ = (σ(i))∞i=1 be a bounded real sequence and w ∈ R, then the following lemma holds.
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Lemma 2.4. The integral operators Jσ
ρ,ϱ,d1+;wψ and Jσ

ρ,ϱ,d2−;wψ are bounded on L1[d1, d2], if M :=
F
|σ|
ρ,ϱ+1 [|w|(d2 − d1)ρ] < ∞. In fact, for ψ ∈ L1 [d1, d2], we have

max
{∥∥∥Jσ

ρ,ϱ,d1+;wψ
∥∥∥

1
,
∥∥∥Jσ

ρ,ϱ,d2−;wψ
∥∥∥

1

}
≤ M ∥ψ∥1 , (2.11)

where ∥·∥p is the usual norm in Lp. □

Let us define G := F σ
ρ,ϱ+1 [w(d2 − d1)ρ] < ∞. Taking σ(i) ≥ 0, where i ∈ N∪{0} and w ≥ 0, in above

lemma, we get the following result:

max
{∥∥∥Jσ

ρ,ϱ,d1+;wψ
∥∥∥

1
,
∥∥∥Jσ

ρ,ϱ,d2−;wψ
∥∥∥

1

}
≤ G ∥ψ∥1 . (2.12)

Raina’s fractional operators are important due to their level of generality. More precisely, by specifying
the coefficient σ(i), we can obtain many useful fractional integral operators. For example, if ϱ = ı,
σ(0) = 1, σ(i) = 0 for each i ∈ N and w = 0 in Definition 2.3, then we readily retrieve the left and
right Riemann-Liouville fractional integrals. On the other hand, if σ(i) = (η)i

i! , ρ = ı, ϱ = β and d1 = 0
in Definition 2.3, we obtain the well-known Prabhakar fractional integral in [43], which is given by

PIı,β,η,w0+ ψ(k) =
∫ k

0
(k − ℓ)β−1Eη

ı,β[w(k − ℓ)ı]ψ(ℓ)dℓ. (2.13)

Finally, when σ(i) = (γ)qi

(δ)pi
, ρ = ı and ϱ = β, we obtain the well-known Salim fractional integral [44]:

RIγ,δ,qı,β,w,p,d1+
ψ(k) =

∫ k

d1

(k − ℓ)β−1Eγ,δ,p
ı,β,q [w(k − ℓ)ı]ψ(ℓ)dℓ, (2.14)

where p, q > 0 and q < ı + p.
The new Raina fractional integral operators are introduced next.

Definition 2.5. Let d1 and d2 be real numbers satisfying 0 ≤ d1 < d2, and let ψ ∈ L1[d1, d2] be any
function. The generalized left and right Raina fractional integral operator on ψ(ℓ) associated to the
parameters ϱ, ρ > 0, w ∈ R, ϑ ∈ (0, 1], ϖ ≥ 0, and σ any bounded arbitrary sequence of real (or
complex) numbers, are respectively defined by the following integral transforms:(

ϑ
ϖJ

σ
ρ,ϱ,d1+;wψ

)
(k) =

∫ k

d1

(
kϑ+ϖ − ℓϑ+ϖ

ϑ +ϖ

)ϱ−1

ℓϑ+ϖ−1

× F σ
ρ,ϱ

[
w(kϑ+ϖ − ℓϑ+ϖ)ρ

]
ψ(ℓ)dℓ, (k > d1) ,

(2.15)

and (
ϑ
ϖJ

σ
ρ,ϱ,d2−;wψ

)
(k) =

∫ d2

k

(
ℓϑ+ϖ − kϑ+ϖ

ϑ +ϖ

)ϱ−1

ℓϑ+ϖ−1

× F σ
ρ,ϱ

[
w(ℓϑ+ϖ − kϑ+ϖ)ρ

]
ψ(ℓ)dℓ, (k < d2) .

(2.16)

It is obvious from Definition 2.5 that ϑϖJ
σ
ρ,ϱ,d1+;wψ and ϑ

ϖJ
σ
ρ,ϱ,d2−;wψ are linear operators, and we claim

that they are bounded integral operators on L1[d1, d2], if

M1 :=
dϑ+ϖ−1

2

(ϑ +ϖ)ρ−1F
|σ|
ρ,ϱ+1

[
|w|

(
dϑ+ϖ2 − dϑ+ϖ1

)ρ]
< ∞. (2.17)
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Indeed, for ψ ∈ L1 [d1, d2], we readily obtain that

max
{∥∥∥ϑϖJσ

ρ,ϱ,d1+;wψ
∥∥∥

1
,
∥∥∥ϑϖJσ

ρ,ϱ,d2−;wψ
∥∥∥

1

}
≤ M1 ∥ψ∥1 . (2.18)

The relevance of the present study lies in the fact that generalized forms of existing inequalities will
be provided [45]. To that end, it is important to notice that different expressions of the sequence σ. As
example, if ρ = 1, w = 1, σ(0) = 1, and σ(i) = 0 for each i ∈ N, we readily obtain the left and right
generalized fractional conformable integral operators [24, 27], which are respectively defined by

(
ϑ
ϖI

ϱ
d1+
ψ
)

(k) =
1
Γ(ϱ)

∫ k

d1

(
kϑ+ϖ − ℓϑ+ϖ

ϑ +ϖ

)ϱ−1

ℓϑ+ϖ−1ψ(ℓ)dℓ, (k > d1) , (2.19)

(
ϑ
ϖI

ϱ
d2−
ψ
)

(k) =
1
Γ(ϱ)

∫ d2

k

(
ℓϑ+ϖ − kϑ+ϖ

ϑ +ϖ

)ϱ−1

ℓϑ+ϖ−1ψ(ℓ)dℓ, (k < d2) . (2.20)

If, in addition, ϖ = 0, then we readily obtain the Katugampola conformable left and right fractional
integral operators, which are respectively defined by

(
ϑI

ϱ
d1+
ψ
)

(k) =
1
Γ(ϱ)

∫ k

d1

(
kϑ − ℓϑ

ϑ

)ϱ−1

ℓϑ−1ψ(ℓ)dℓ, (k > d1, d1 > 0) , (2.21)

(
ϑI

ϱ
d2−
ψ
)

(k) =
1
Γ(ϱ)

∫ d2

k

(
ℓϑ − kϑ

ϑ

)ϱ−1

ℓϑ−1ψ(ℓ)dℓ, (k < d2, d2 > 0) . (2.22)

With the parametric choice ϑ = 1, it is easy to verify that left and right Riemann-Liouville fractional
integrals are obtained from (2.15) and (2.16), respectively. Similarly, if ϑ = 1, ϖ = 0, σ(i) = (η)i

i! , ρ = ı
and ϱ = β, we readily obtain the Prabhakar fractional integral (2.13). Also, if we let σ(i) = (γ)qi

(δ)pi
, ρ = ı

and ϱ = β, then we readily retrieve the Salim fractional integral (2.14).

3. Main results

For the remainder of this work, we suppose in general that {σ(n)}n∈N0 is a sequence of non-negative
real numbers and w ≥ 0.

Theorem 3.1. Let ϱ, ρ > 0, ϑ ∈ (0, 1] and ϖ ≥ 0, and suppose that ψ1 and ψ2 are two synchronous
functions defined on [0,∞). For all ℓ > 0, we have

ϑ
ϖJ

σ
ρ,ϱ,0+;w(ψ1ψ2)(ℓ) ≥

(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

×ϑϖ J
σ
ρ,ϱ,0+;w(ψ1)(ℓ)ϑϖJ

σ
ρ,ϱ,0+;w(ψ2)(ℓ).

(3.1)

Proof. Since the functions ψ1 and ψ2 are synchronous on [0,∞), then for all r, s ≥ 0, it follows that
(ψ1(r) − ψ1(s))(ψ2(r) − ψ2(s)) ≥ 0. As a consequence,

ψ1(r)ψ2(r) + ψ1(s)ψ2(s) ≥ ψ1(r)ψ2(s) + ψ1(s)ψ2(r). (3.2)
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Multiplying now both sides of (3.2) by
(
ℓϑ+ϖ−rϑ+ϖ

ϑ+ϖ

)ϱ−1
rϑ+ϖ−1F σ

ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
and letting r ∈ (0, ℓ),

we may obtain readily that(
ℓϑ+ϖ − rϑ+ϖ

ϑ +ϖ

)ϱ−1

rϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
ψ1(r)ψ2(r)

+

(
ℓϑ+ϖ − rϑ+ϖ

ϑ +ϖ

)ϱ−1

rϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
ψ1(s)ψ2(s)

≥

(
ℓϑ+ϖ − rϑ+ϖ

ϑ +ϖ

)ϱ−1

rϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
ψ1(r)ψ2(s)

+

(
ℓϑ+ϖ − rϑ+ϖ

ϑ +ϖ

)ϱ−1

rϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
ψ1(s)ψ2(r).

(3.3)

Integrating over r ∈ (0, ℓ) yields∫ ℓ

0

(
ℓϑ+ϖ − rϑ+ϖ

ϑ +ϖ

)ϱ−1

rϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
ψ1(r)ψ2(r)dr

+

∫ ℓ

0

(
ℓϑ+ϖ − rϑ+ϖ

ϑ +ϖ

)ϱ−1

rϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
ψ1(s)ψ2(s)dr

≥

∫ ℓ

0

(
ℓϑ+ϖ − rϑ+ϖ

ϑ +ϖ

)ϱ−1

rϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
ψ1(r)ψ2(s)dr

+

∫ ℓ

0

(
ℓϑ+ϖ − rϑ+ϖ

ϑ +ϖ

)ϱ−1

rϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − rϑ+ϖ)ρ

]
ψ1(s)ψ2(r)dr.

(3.4)

From here, it is easy to check that

ϑ
ϖJ

σ
ρ,ϱ,0+;w(ψ1ψ2)(ℓ) + ψ1(s)ψ2(s)

(
ℓϑ+ϖ

)ϱ
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
≥ ψ2(s)ϑϖJ

σ
ρ,ϱ,0+;w(ψ1)(ℓ) + ψ1(s)ϑϖJ

σ
ρ,ϱ,0+;w(ψ2)(ℓ).

(3.5)

Multiplying this last inequality by
(
ℓϑ+ϖ−sϑ+ϖ

ϑ+ϖ

)ϱ−1
sϑ+ϖ−1F σ

ρ,ϱ

[
w(ℓϑ+ϖ − sϑ+ϖ)ρ

]
on both sides, letting s ∈

(0, ℓ). Integrate then over all s ∈ (0, ℓ), we obtain that

ϑ
ϖJ

σ
ρ,ϱ,0+;w(ψ1ψ2)(ℓ)

∫ ℓ

0

(
ℓϑ+ϖ − sϑ+ϖ

ϑ +ϖ

)ϱ−1

sϑ+ϖ−1F σ
ρ,ϱ

[
w(ℓϑ+ϖ − sϑ+ϖ)ρ

]
ds

+
(ℓϑ+ϖ)ϱ

(ϑ +ϖ)ϱ
F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

] ∫ ℓ

0

(ℓϑ+ϖ − sϑ+ϖ

ϑ +ϖ

)ϱ−1

sϑ+ϖ−1

×F σ
ρ,ϱ

[
w(ℓϑ+ϖ − sϑ+ϖ)ρ

]
ψ1(s)ψ2(s)

]
ds

≥

2∑
j=1

ϑ
ϖJ

σ
ρ,ϱ,0+;w(ψ j)(ℓ)

∫ ℓ

0

(ℓϑ+ϖ − sϑ+ϖ

ϑ +ϖ

)ϱ−1

sϑ+ϖ−1

× F σ
ρ,ϱ

[
w(ℓϑ+ϖ − sϑ+ϖ)ρ

]
ψ j(s)

]
ds.

(3.6)

Rewriting this expression and simplifying, we readily reach the conclusion. □
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Corollary 3.2. Let ϱ, ρ > 0, ϑ ∈ (0, 1] and ϖ ≥ 0, and suppose that ψ1 and ψ2 are two synchronous
functions defined on [d1,∞) where d1 > 0. For all ℓ > d1, we have

ϑ
ϖJ

σ
ρ,ϱ,d1+;w(ψ1ψ2)(ℓ) ≥

(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

× ϑ
ϖJ

σ
ρ,ϱ,d1+;w(ψ1)(ℓ)ϑϖJ

σ
ρ,ϱ,d1+;w(ψ2)(ℓ).

(3.7)

Proof. The proof is similar to that of the previous result. □

Some particular consequences can be derived from Theorem 3.1 for the right Raina conformable
fractional integral operator. For example, if ϱ = ı, σ(0) = 1, σ(i) = 0 for each i ∈ N, w = 1, ϖ = 0 and
ϑ = 1 in Theorem 3.1, we obtain that

Iı0+(ψ1ψ2)(ℓ) ≥
Γ(ı + 1)
ℓı
Iı0+(ψ1)(ℓ)Iı0+(ψ2)(ℓ), (3.8)

which is an inequality investigated in [46, Theorem 3.1]. If, in addition, ϱ = ı, σ(0) = 1 and w = 0, it
follows that

Iıd1+
(ψ1ψ2)(ℓ) ≥

Γ(ı + 1)
ℓı
Iıd1+

(ψ1)(ℓ)Iıd1+
(ψ2)(ℓ). (3.9)

On the other hand, ϱ = ı, σ(0) = 1, σ(i) = 0 for each i ∈ N and w = 1 yield

ϑ
ϖI

ı
0+(ψ1ψ2)(ℓ) ≥

Γ(ı + 1)(ϑ +ϖ)ı

(ℓϑ+ϖ)ı
ϑ
ϖI

ı
0+(ψ1)(ℓ)ϑϖI

ı
0+(ψ2)(ℓ), (3.10)

which was established in [24, Theorem 2.1]. Finally, if we let ϖ = 0, then we retrieve the Chebyshev
inequality for the Katugampola fractional integral, which reads

ϑIı0+(ψ1ψ2)(ℓ) ≥
Γ(ı + 1)(ϑ)ı

ℓϑı
ϑIı0+(ψ1)(ℓ)ϑIı0+(ψ2)(ℓ). (3.11)

In this point of our discussion, it is useful to note that the Chebyshev inequality for the Katugampola
fractional integral operator reported in [25] is wrong. Actually, the error results from the integral
calculation of the term ϑIı0(1). In fact, the correct expression for this term results from

ϑIı0(1) =
ϑ1−ı

Γ(ı)

∫ x

0

τϑ−1

(xϑ − τϑ)1−ıdτ =
ϑ1−ı

ϑΓ(ı)

∫ xϑ

0
uı−1du =

ϑ−ı

Γ(ı + 1)
xϑı. (3.12)

As we pointed out in our work using suitable parameter values of the Raina conformable fractional
integral operator and the conclusion of Theorem 3.1, we can express that result in terms of the
Prabhakar and Salim fractional integrals. More concretely, if ϑ = 1, ϖ = 0, σ(i) = (η)i

i! , ρ = ı and
ϱ = β in Theorem 3.1, we derive the following inequality for the Prabhakar fractional integral:

PIı,β,η,w0+ (ψ1ψ2)(ℓ) ≥
ℓ−β

Eη
ı,β+1(ℓ)

PIı,β,η,w0+ (ψ1)(ℓ) PIı,β,η,w0+ (ψ2)(ℓ). (3.13)

On the other hand, if we agree that ϑ = 1, ϖ = 0, σ(i) = (γ)qi

(δ)pi
, ρ = ı and ϱ = β in Theorem 3.1, we get

the corresponding inequality for the Salim fractional integral, which reads

RIγ,δ,qı,β,w,p,0+(ψ1ψ2)(ℓ) ≥
ℓ−β

Eγ,δ,q,
ı,β+1,p(ℓ)

RIγ,δ,qı,β,w,p,0+ψ1(ℓ) RIγ,δ,qı,β,w,p,0+ψ2(ℓ). (3.14)
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Moreover, taking ϖ = 0 and ϑ = 1 in Theorem 3.1, then we obtain [28, Theorem 2] for the classical
Raina fractional integral.

Theorem 3.3. Let ϱ, ρ > 0, ϑ ∈ (0, 1] and ϖ ≥ 0, and suppose that {ψi}
n
i=1 are increasing positive

functions defined on [0,∞). Then, for any ℓ > 0, we have

ϑ
ϖJ

σ
ρ,ϱ,0+;w

 n∏
i=1

ψi

 (ℓ)

≥

 (ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

n−1 n∏
i=1

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψi) (ℓ).

(3.15)

Proof. The proof will use mathematical induction. In the case that n = 1, is it easy to check that
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ) ≥ ϑ

ϖJ
σ
ρ,ϱ,0+;w (ψ1) (ℓ), for all ℓ > 0. Now, let n ≥ 2 and suppose that the conclusion is

satisfied for n − 1 in place of n. Since {ψi}
n
i=1 are all increasing positive functions, then

∏n
i=1 ψi is also

an increasing function. We can apply now Theorem 3.1 with ψ1
⋆ =

∏n−1
i=1 ψi and ψ2

⋆ = ψn along with
the induction hypothesis to obtain

ϑ
ϖJ

σ
ρ,ϱ,0+;w

 n∏
i=1

ψi

 (ℓ) = ϑ
ϖJ

σ
ρ,ϱ,0+;w

(
ψ⋆1ψ

⋆
2
)

(ℓ)

≥
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

ϑ
ϖJ

σ
ρ,ϱ,0+;w

(
ψ1

⋆) (ℓ)ϑϖJ
σ
ρ,ϱ,0+;w

(
ψ2

⋆) (ℓ)

=
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

ϑ
ϖJ

σ
ρ,ϱ,0+;w

 n−1∏
i=1

ψi

 (ℓ)ϑϖJ
σ
ρ,ϱ,0+;w (ψn) (ℓ)

≥

 (ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

  (ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

(n−1)−1

×

n−1∏
i=1

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψi) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w (ψn) (ℓ)

=

 (ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

n−1 n∏
i=1

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψi) (ℓ).

(3.16)

The conclusion of this result follows now from mathematical induction. □

One may readily check that the inequality

Iı0+

 n∏
i=1

ψi

 (ℓ) ≥
(
Γ(ı + 1)
ℓı

)n−1 n∏
i=1

Iı0+ (ψi) (ℓ), (3.17)

results from Theorem 3.3 when ϱ = ı, σ(0) = 1,w = 1, ϑ = 1 and ϖ = 0. This inequality was obtained
in [46, Theorem 3.3]. On the other hand, if ϱ = ı, σ(0) = 1 and w = 1, then we obtain [24, Theorem
2.3]. Meanwhile, if ϖ = 0, then we reach [25, Theorem 2.3] for conformable fractional integrals. In
similar fashion, we can deduce the following inequalities related to Prabhakar and Salim fractional
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integrals, respectively:

PIı,β,η,w0+

 n∏
i=1

ψi

 (ℓ) ≥

 ℓ−β

Eη
ı,β+1(ℓ)

n−1 n∏
i=1

PIı,β,η,w0+ (ψi) (ℓ), (3.18)

and

RIγ,δ,qı,β,w,p,0+

 n∏
i=1

ψi

 (ℓ) ≥

 ℓ−β

Eγ,δ,q
ı,β+1,p(ℓ)


n−1 n∏

i=1

RIγ,δ,qı,β,w,p,0+ (ψi) (ℓ). (3.19)

Also, [24, Theorem 2.3] and [25, Theorem 2.3] can be obtained from (3.15). Moreover, if we let
ϖ = 0 and ϑ = 1 (which concern the classical Raina fractional integral), then Theorem 3.3 reduces
to [28, Theorem 4].

Theorem 3.4. Let ϱ, ρ > 0, ϑ ∈ (0, 1] andϖ ≥ 0. Assume that ψ1 and ψ2 are two functions such that ψ1

is increasing and ψ2 is differentiable. If m := infℓ≥0 ψ2
′(ℓ) exists in the real numbers and ϕ(ℓ) = ℓϑ+ϖ,

then

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1ψ2) (ℓ)

≥
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w (ψ2) (ℓ)

−
m

(
ℓϑ+ϖ

)
F σ
ρ,ϱ+2

[
w

(
ℓϑ+ϖ

)ρ]
F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

] ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)

+ mϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕψ1) (ℓ),

(3.20)

holds true in the following cases:

(1) ϑ +ϖ = 1, and for all ℓ > 0;
(2) ϑ +ϖ > 1, and for all ℓ ∈ [0, ℓ0];
(3) ϑ +ϖ < 1, and for all ℓ ≥ ℓ0,

where ℓ0 = (ϑ +ϖ)
1

1−(ϑ+ϖ) .

Proof. Define the function h(ℓ) B ψ2(ℓ) − mϕ(ℓ), where ϕ(ℓ) = ℓϑ+ϖ. One can easily verify that h is
increasing and differentiable function according to the above cases. Moreover, notice that

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1h) (ℓ) = ϑ

ϖJ
σ
ρ,ϱ,0+;w (ψ1ψ2) (ℓ) − mϑ

ϖJ
σ
ρ,ϱ,0+;w (ϕψ1) (ℓ). (3.21)
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Using then Theorem 3.1, it is possible to check that

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1h) (ℓ)

≥
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w (h) (ℓ)

=
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)

×
(
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ2) (ℓ) − mϑ

ϖJ
σ
ρ,ϱ,0+;w(ϕ)(ℓ)

)
≥

(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w (ψ2) (ℓ)

−
m

(
ℓϑ+ϖ

)
F σ
ρ,ϱ+2

[
w

(
ℓϑ+ϖ

)ρ]
F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

] ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)

+ mϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕψ1) (ℓ).

(3.22)

This completes the proof of this result. □

The conclusion of the following results is reached using the same arguments as in Theorem 3.4, and
letting h(ℓ) B ψ2(ℓ) − Mϕ(ℓ).

Corollary 3.5. Let ϱ, ρ > 0, ϑ ∈ (0, 1] and ϖ ≥ 0. Suppose that ψ1, ψ2 are two functions such that
ψ1 is decreasing and ψ2 is differentiable. If M := supℓ≥0 ψ2

′(ℓ) exists in the real numbers and if ϕ is
defined as in Theorem 3.4, then

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1ψ2) (ℓ)

≥
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w (ψ2) (ℓ)

−
M

(
ℓϑ+ϖ

)
F σ
ρ,ϱ+2

[
w

(
ℓϑ+ϖ

)ρ]
F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

] ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)

+ Mϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕψ1) (ℓ),

(3.23)

is satisfied for the following cases:

(1) ϑ +ϖ = 1, and for all ℓ > 0;
(2) ϑ +ϖ > 1, and for all ℓ ≥ ℓ0;
(3) ϑ +ϖ < 1, and for all ℓ ∈ [0, ℓ0],

where ℓ0 = (ϑ +ϖ)
1

1−(ϑ+ϖ) . □

Corollary 3.6. Let ϱ, ρ > 0, ϑ ∈ (0, 1] andϖ ≥ 0. Let ψ1 and ψ2 be functions such that ψ1 is increasing,
and ψ1 and ψ2 are differentiable. If m1 := infℓ≥0 ψ1

′(ℓ) and m2 := infℓ≥0 ψ2
′(ℓ) exist in the real numbers
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and ϕ is defined as in Theorem 3.4, then

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1ψ2) (ℓ) − m1

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕψ2) (ℓ)

− m2
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕψ1) (ℓ) + m1m2

ϑ
ϖJ

σ
ρ,ϱ,0+;w

(
ϕ2

)
(ℓ)

≥
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

(
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w (ψ2) (ℓ)

−

2∑
j=1

m j
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕ) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w

(
ψ j

)
(ℓ)

+m1m2

(
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕ) (ℓ)

)2
)
,

(3.24)

is satisfied for the following cases:

(1) ϑ +ϖ = 1, and for all ℓ > 0;
(2) ϑ +ϖ > 1, and for all ℓ ∈ [0, ℓ0];
(3) ϑ +ϖ < 1, and for all ℓ ≥ ℓ0,

where ℓ0 = (ϑ +ϖ)
1

1−(ϑ+ϖ) .

Proof. The proof is similar to that of Theorem 3.4, setting h1(ℓ) = ψ2(ℓ) − m1ϕ(ℓ) and h2(ℓ) = ψ2(ℓ) −
m2ϕ(ℓ). □

Corollary 3.7. Let ϱ, ρ > 0, ϑ ∈ (0, 1] and ϖ ≥ 0, and let ψ1, ψ2 be such that ψ1 is increasing, and ψ1

and ψ2 are differentiable. Let M1 := supℓ≥0 ψ1
′(ℓ) and M2 := supℓ≥0 ψ2

′(ℓ) be real numbers, and let ϕ
be defined as in Theorem 3.4. Then

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1ψ2) (ℓ) − M1

ϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕψ2) (ℓ)

− M2
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕψ1) (ℓ) + M1M2

ϑ
ϖJ

σ
ρ,ϱ,0+;w

(
ϕ2

)
(ℓ)

≥
(ϑ +ϖ)ϱ

F σ
ρ,ϱ+1

[
w(ℓϑ+ϖ)ρ

]
(ℓϑ+ϖ)ϱ

(
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ψ1) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w (ψ2) (ℓ)

−

2∑
j=1

M j
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕ) (ℓ)ϑϖJ

σ
ρ,ϱ,0+;w

(
ψ j

)
(ℓ)

+M1M2

(
ϑ
ϖJ

σ
ρ,ϱ,0+;w (ϕ) (ℓ)

)2
)
,

(3.25)

is satisfied for the following cases:

(1) ϑ +ϖ = 1, and for all ℓ > 0;
(2) ϑ +ϖ > 1, and for all ℓ ∈ [0, ℓ0];
(3) ϑ +ϖ < 1, and for all ℓ ≥ ℓ0,

where ℓ0 = (ϑ +ϖ)
1

1−(ϑ+ϖ) . □
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4. Some consequences

Beforehand, we would like to point out that various well-known inequalities result as particular
cases of Theorem 3.3 and Corollaries 3.5–3.7. More concretely, Chebyshev inequalities for Riemann-
Liouville, Prabhakar, Salim and other conformable fractional integral operators are obtained from that
result.

More precisely, notice that if ϱ = ı, σ(0) = 1, σ(i) = 0 for each i ∈ N, w = 1, ϑ = 1 and ϖ = 0, then
we reach the Riemann-Liouville fractional integral inequality

Iı0+ (ψ1ψ2) (ℓ) ≥
Γ(ı + 1)
ℓı
Iı0+ (ψ1) (ℓ)Iσ0+ (ψ2) (ℓ)

−
mℓ
ı + 1
Iσ0+ (ψ1) (ℓ) + mIı0+ (ℓψ1) (ℓ)

(4.1)

(it is worth to point out here that Theorem 3.4 in reference [46] is wrong due to an erroneous application
of Theorem 3.1 in the same reference). In the case that ϱ = ı, σ(0) = 1, σ(i) = 0 for all i ∈ N, we
readily obtain

ϑ
ϖI

ı
0+ (ψ1ψ2) (ℓ) ≥

Γ(ı + 1)(ϑ +ϖ)ı

(ℓϑ+ϖ)ı
ϑ
ϖI

ı
0+ (ψ1) (ℓ)ϑϖI

ı
0+ (ψ2) (ℓ)

−
m

(
ℓϑ+ϖ

)
ı + 1

ϑ
ϖI

ı
0+ (ψ1) (ℓ) + mϑ

ϖI
ı
0+ (ϕψ1) (ℓ),

(4.2)

which was derived in [24, Theorem 2.4]. In turn, if ϱ = ı, σ(0) = 1, σ(i) = 0 for each i ∈ N and ϖ = 0,
then we have the following inequality for the Katugampola fractional integral operator:

ϑIı0+ (ψ1ψ2) (ℓ) ≥
Γ(ı + 1)(ϑ)ı

ℓϑı
ϑIσ0+ (ψ1) (ℓ)ϑIσ0+ (ψ2) (ℓ)

−
m

(
ℓϑ

)
ı + 1

ϑIσ0+ (ψ1) (ℓ) + mϑIσ0+ (ϕψ1) (ℓ).

(4.3)

Finally, if we let ϑ = 1 and ϖ = 0 in Theorem 3.4, then we obtain [28, Theorem 5]:

Jσ
ρ,ϱ,0+;w (ψ1ψ2) (ℓ) ≥

1
F σ
ρ,ϱ+1 [w(ℓ)ρ] (ℓ)ϱ

Jσ
ρ,ϱ,0+;w (ψ1) (ℓ)Jσ

ρ,ϱ,0+;w (ψ2) (ℓ)

−
m (ℓ)F σ

ρ,ϱ+2
[
w (ℓ)ρ

]
F σ
ρ,ϱ+1 [w(ℓ)ρ]

Jσ
ρ,ϱ,0+;w (ψ1) (ℓ)

+ mJσ
ρ,ϱ,0+;w (ℓψ1) (ℓ).

(4.4)

As pointed out previously, it is easy to derive versions of the inequality (3.20) for the Prabhakar and
Salim fractional integrals, which read as

PIı,β,η,w0+ (ψ1ψ2) (ℓ) ≥
ℓ−β

Eη
ı,β+1(ℓ)

PIı,β,η,w0+ (ψ1) (ℓ) PIı,β,η,w0+ (ψ2) (ℓ)

−
mℓEη

ı,β+2(ℓ)

Eη
ı,β+1(ℓ)

PIı,β,η,w0+ (ψ1) (ℓ) + m PIı,β,η,w0+ (ℓψ1) (ℓ),
(4.5)
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and
RIγ,δ,qı,β,w,p,0+ (ψ1ψ2) (ℓ) ≥

ℓ−β

Eγ,δ,q
ı,β+1,p(ℓ)

RIγ,δ,qı,β,w,p,0+ (ψ1) (ℓ) PIı,β,η,w0+ (ψ2) (ℓ)

−
mℓEγ,δ,q

ı,β+2,p(ℓ)

Eγ,δ,q
ı,β+1,p(ℓ)

RIγ,δ,qı,β,w,p,0+ (ψ1) (ℓ)

+ m RIγ,δ,qı,β,w,p,0+ (ℓψ1) (ℓ).

(4.6)

Similarly, appropriate choices of the parameters in the conformable Raina fractional integral we can
reduce the conclusions of Corollaries 3.5–3.7 to some known inequalities.

Theorem 4.1. Let ϱ, ρ > 0, w ∈ R, ϑ ∈ (0, 1] and ϖ ≥ 0. Suppose that h is a positive function on
[0,∞), and that ψ1 and ψ2 are differentiable functions on [0,∞). If ψ′1 ∈ Lr[0,∞), ψ′2 ∈ Ls[0,∞) with
r > 1 and 1

r +
1
s = 1, then∣∣∣ϑϖJσ

ρ,ϱ,0+;w(hψ1ψ2)(k)ϑϖJ
σ
ρ,ϱ,0+;w(h)(k) −ϑϖJ

σ
ρ,ϱ,0+;w(hψ1)(k)ϑϖJ

σ
ρ,ϱ,0+;w(hψ2)(k)

∣∣∣
≤
∥ψ′1∥r∥ψ

′
2∥sk

2

(
ϑ
ϖJ

σ
ρ,ϱ,0+;w(h)(k)

)2
.

(4.7)

Proof. Let h, ψ1 and ψ2 be as in the hypotheses of this theorem. For each τ, ν ∈ (0,k) and k > 0 we
define the function H(τ, ν) B (ψ1(τ) − ψ1(ν))(ψ2(τ) − ψ2(ν)). Multiplying this identity by(

kϑ+ϖ−τϑ+ϖ
ϑ+ϖ

)ϱ−1
τϑ+ϖ−1F σ

ρ,ϱ[w(kϑ+ϖ − τϑ+ϖ)ρ]h(τ) with τ ∈ (0,k), and integrating then over (0,k), we
obtain ∫ k

0

(
kϑ+ϖ − τϑ+ϖ

ϑ +ϖ

)ϱ−1

τϑ+ϖ−1F σ
ρ,ϱ[w(kϑ+ϖ − τϑ+ϖ)ρ]h(τ)H(τ, ν)dτ

= ϑ
ϖJ

σ
ρ,ϱ,0+;w(hψ1ψ2)(k) − ψ1(ν)ϑϖJ

σ
ρ,ϱ,0+;w(hψ2)(k)

− ψ2(ν)ϑϖJ
σ
ρ,ϱ,0+;w(hψ1)(k) + ψ1(ν)ψ2(ν)ϑϖJ

σ
ρ,ϱ,0+;w(h)(k).

(4.8)

Multiplying (4.8) by
(

kϑ+ϖ−νϑ+ϖ
ϑ+ϖ

)ϱ−1
νϑ+ϖ−1F σ

ρ,ϱ[w(kϑ+ϖ−νϑ+ϖ)ρ]h(ν) with ν ∈ (0,k), and integrating then
over (0,k) yields∫ k

0

∫ k

0

(
kϑ+ϖ − νϑ+ϖ

ϑ +ϖ

)ϱ−1 (
kϑ+ϖ − τϑ+ϖ

ϑ +ϖ

)ϱ−1

νϑ+ϖ−1τϑ+ϖ−1

× F σ
ρ,ϱ[w(kϑ+ϖ − νϑ+ϖ)ρ]F σ

ρ,ϱ[w(kϑ+ϖ − τϑ+ϖ)ρ]h(ν)h(τ)H(τ, ν)dτdν

= ϑ
ϖJ

σ
ρ,ϱ,0+;w(hψ1ψ2)(k)ϑϖJ

σ
ρ,ϱ,0+;w(h)(k)

− ϑ
ϖJ

σ
ρ,ϱ,0+;w(hψ1)(k)ϑϖJ

σ
ρ,ϱ,0+;w(hψ2)(k)

− ϑ
ϖJ

σ
ρ,ϱ,0+;w(hψ2)(k)ϑϖJ

σ
ρ,ϱ,0+;w(hψ1)(k)

+ ϑ
ϖJ

σ
ρ,ϱ,0+;w(hψ1ψ2)(k)ϑϖJ

σ
ρ,ϱ,0+;w(h)(k)

= 2
(
ϑ
ϖJ

σ
ρ,ϱ,0+;w(hψ1ψ2)(k)ϑϖJ

σ
ρ,ϱ,0+;w(h)(k)

−ϑϖJ
σ
ρ,ϱ,0+;w(hψ1)(k)ϑϖJ

σ
ρ,ϱ,0+;w(hψ2)(k)

)
.

(4.9)

On the other hand, rewriting H as a double integral and using Hölder’s inequality for double integrals
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we obtain

|H(τ, ν)| =
∣∣∣∣∣∫ ν

τ

∫ ν

τ

ψ1
′(u)ψ2

′(v)dudv
∣∣∣∣∣

≤

∣∣∣∣∣∫ ν

τ

∫ ν

τ

|ψ1
′(u)|r dudv

∣∣∣∣∣1/r ∣∣∣∣∣∫ ν

τ

∫ ν

τ

|ψ2
′(u)|s dudv

∣∣∣∣∣1/s

= |τ − ν|

∣∣∣∣∣∫ ν

τ

|ψ1
′(u)|r du

∣∣∣∣∣1/r ∣∣∣∣∣∫ ν

τ

|ψ2
′(v)|s dv

∣∣∣∣∣1/s

.

(4.10)

Suppose that 0 < |τ − ν| < k is satisfied. Using (4.10) in (4.9), applying Hölder’s inequality and using
that ψ′1 ∈ Lr[0,∞), ψ′2 ∈ Ls[0,∞) and 1

r +
1
s = 1, it follows that

2
(
ϑ
ϖJ

σ
ρ,ϱ,0+;w(hψ1ψ2)(k)ϑϖJ

σ
ρ,ϱ,0+;w(h)(k) −ϑϖJ

σ
ρ,ϱ,0+;w(hψ1)(k)ϑϖJ

σ
ρ,ϱ,0+;w(hψ2)(k)

)
≤

∫ k

0

∫ k

0

(
kϑ+ϖ − νϑ+ϖ

ϑ +ϖ

)ϱ−1 (
kϑ+ϖ − τϑ+ϖ

ϑ +ϖ

)ϱ−1

νϑ+ϖ−1τϑ+ϖ−1

× |τ − ν| h(ν)h(τ)
∣∣∣∣∣∫ ν

τ

|ψ1
′(u)|r du

∣∣∣∣∣1/r ∣∣∣∣∣∫ ν

τ

|ψ2
′(v)|s dv

∣∣∣∣∣1/s

dτdν

≤

∫ k

0

∫ k

0

(
kϑ+ϖ − νϑ+ϖ

ϑ +ϖ

)ϱ−1 (
kϑ+ϖ − τϑ+ϖ

ϑ +ϖ

)ϱ−1

νϑ+ϖ−1τϑ+ϖ−1

× F σ
ρ,ϱ[w(kϑ+ϖ − νϑ+ϖ)ρ]F σ

ρ,ϱ[w(kϑ+ϖ − τϑ+ϖ)ρ]

× |τ − ν| h(ν)h(τ)
∣∣∣∣∣∫ ν

τ

|ψ1
′(u)|r du

∣∣∣∣∣ dτdν
]1/r

×

∫ k

0

∫ k

0

(
kϑ+ϖ − νϑ+ϖ

ϑ +ϖ

)ϱ−1 (
kϑ+ϖ − τϑ+ϖ

ϑ +ϖ

)ϱ−1

νϑ+ϖ−1τϑ+ϖ−1

× F σ
ρ,ϱ[w(kϑ+ϖ − νϑ+ϖ)ρ]F σ

ρ,ϱ[w(kϑ+ϖ − τϑ+ϖ)ρ]

× |τ − ν| h(ν)h(τ)
∣∣∣∣∣∫ ν

τ

|ψ2
′(u)|s du

∣∣∣∣∣ dτdν
]1/s

≤ ∥ψ1
′∥r∥ψ2

′∥s

∫ k

0

∫ k

0

(
kϑ+ϖ − νϑ+ϖ

ϑ +ϖ

)ϱ−1

×

(
kϑ+ϖ − τϑ+ϖ

ϑ +ϖ

)ϱ−1

νϑ+ϖ−1τϑ+ϖ−1F σ
ρ,ϱ[w(kϑ+ϖ − νϑ+ϖ)ρ]

× F σ
ρ,ϱ[w(kϑ+ϖ − τϑ+ϖ)ρ] |τ − ν| h(ν)h(τ)dτdν

]
= ∥ψ1

′∥r∥ψ2
′∥sk

(
ϑ
ϖJ

σ
ρ,ϱ,0+;w(h)(k)

)2
,

(4.11)

which completes the proof. □

Corollary 4.2. Let ϱ, ρ > 0, w ∈ R, ϑ ∈ (0, 1] and ϖ ≥ 0, and suppose that ψ1 and ψ2 are two
differentiable functions on [0,∞). If ψ′1 ∈ Lr[0,∞), ψ′2 ∈ Ls[0,∞), r > 1 and 1

r +
1
s = 1, then the
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following inequality is satisfied:∣∣∣∣∣∣∣∣ϑϖJσ
ρ,ϱ,0+;w(ψ1ψ2)(k) −

1(
F σ
ρ,ϱ+1(k)

)ϑϖJσ
ρ,ϱ,0+;w(ψ1)(k)ϑϖJ

σ
ρ,ϱ,0+;w(ψ2)(k)

∣∣∣∣∣∣∣∣
≤

1
2
∥ψ1

′∥r∥ψ2
′∥s

k2ϱ(ϑ+ϖ)+1

(ϑ +ϖ)2(ϱ−1)

(
F σ
ρ,ϱ+1

[
w(kϑ+ϖ)

])2
.

(4.12)

Proof. The proof is reached by applying Theorem 4.1 with h ≡ 1. □

Before closing this section, it is worth pointing out that some well-known particular inequalities are
readily obtained for specific values of the parameters in Theorem 4.1. For example, if ϱ = ı, σ(0) = 1,
σ(i) = 0 for each i ∈ N, w = 0, ϑ = 1 and ϖ = 0, then we obtain the following inequality for the
Riemann-Liouville fractional integral operator:

|Iı0+(ψ1ψ2)(k)Iı0+(h)(k) − Iı0+ψ1(k)Iı0+(ψ2)(k)| ≤
1
2
∥ψ1

′∥r∥ψ2
′∥sk

(
Iı0+(h)(k)

)2 . (4.13)

This inequality was derived in [26, Theorem 3.1]. If, in addition, h ≡ 1, then we reach∣∣∣∣∣ kı

Γ(ı + 1)
Iı0+(ψ1ψ2)(k) − Iı0+ψ1(k)Iı0+(ψ2)(k)

∣∣∣∣∣ ≤ 1
2
∥ψ1

′∥r∥ψ2
′∥s

k2ı+1

Γ2(ı + 1)
, (4.14)

which was obtained in [26, Corollary 3.3]. On the other hand, letting ϱ = ı, σ(0) = 1, σ(i) = 0 for each
i ∈ N and w = 1 yields∣∣∣ϑϖIı0+(hψ1ψ2)(k)ϑϖI

ı
0+(h)(k) − ϑ

ϖI
ı
0+(hψ1)(k)ϑϖI

ı
0+(hψ2)(k)

∣∣∣
≤

1
2
∥ψ1

′∥r∥ψ2
′∥sk

(
ϑ
ϖI

ı
0+(h)(k)

)2
,

(4.15)

and if ϖ = 0, we obtain an inequality corresponding to the Katugampola fractional integral.
Meanwhile, if σ(i) = (η)i

i! , ρ = ı, ϱ = β, ϑ = 1 and ϖ = 0 in Theorem 4.1, we obtain the inequality
associated to the Prabhakar fractional integral operator. Finally, when σ(i) = (γ)qi

(δ)pi
, ρ = ı, ϱ = β, ϑ = 1,

and ϖ = 0 in Theorem 4.1, then we readily obtain the an inequality in terms of the Salim fractional
integral.

5. Conclusions

In this work, we proposed a generalization of the Raina fractional integral operators, and
established a generalized form the Chebyshev inequality. Various generalizations of this inequality
were obtained, considering various scenarios. More precisely, we established generalizations of the
Chebyshev inequality for the product of an arbitrary finite number of functions, and for pairs of
functions whose derivatives are bounded from below or from above. In addition, an estimate for the
Chebyshev functional was established using the generalized Raina fractional integral operators. Some
particular forms of the Chebyshev inequality for the Prabhakar and Salim fractional integral operators
were retrieved from our main results. In that sense, the fractional integral operators presented in this
work yield more general results.
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entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.

20. F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev type for
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38. E. Set, Z. Dahmani, İ. Mumcu, New extensions of Chebyshev type inequalities using generalized
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