In this paper we derive explicit formulas of tail conditional expectation ($ \text{TCE} $) and tail variance ($ \text{TV} $) for the class of location-scale mixtures of elliptical distributions, which includes the generalized hyper-elliptical ($ \text{GHE} $) distribution. We also develop portfolio risk decomposition with $ \text{TCE} $ for multivariate location-scale mixtures of elliptical distributions. To illustrate our findings, we focus on the generalized hyperbolic ($ \text{GH} $) family which is a popular subclass of the $ \text{GHE} $ for stocks modelling.
Citation: Pingyun Li, Chuancun Yin. Tail risk measures with application for mixtures of elliptical distributions[J]. AIMS Mathematics, 2022, 7(5): 8802-8821. doi: 10.3934/math.2022491
In this paper we derive explicit formulas of tail conditional expectation ($ \text{TCE} $) and tail variance ($ \text{TV} $) for the class of location-scale mixtures of elliptical distributions, which includes the generalized hyper-elliptical ($ \text{GHE} $) distribution. We also develop portfolio risk decomposition with $ \text{TCE} $ for multivariate location-scale mixtures of elliptical distributions. To illustrate our findings, we focus on the generalized hyperbolic ($ \text{GH} $) family which is a popular subclass of the $ \text{GHE} $ for stocks modelling.
[1] | P. Artzner, F. Delbaen, J. M. Eber, D. Heath, Coherent measures of risk, Math. Financ., 9 (1999), 203–228. https://doi.org/10.1111/1467-9965.00068 doi: 10.1111/1467-9965.00068 |
[2] | J. Cai, H. Li, Conditional tail expectations for multivariate phase-type distributions, J. Appl. Probab., 42 (2005), 810–825. https://doi.org/10.1239/jap/1127322029 doi: 10.1239/jap/1127322029 |
[3] | S. Cambanis, S. Huang, G. Simons, On the theory of elliptically contoured distributions, J. Multivariate Anal., 11 (1981), 368–385. https://doi.org/10.1016/0047-259X(81)90082-8 doi: 10.1016/0047-259X(81)90082-8 |
[4] | A. Chiragiev, Z. Landsman, Multivariate pareto portfolios: TCE-based capital allocation and divided differences, Scand. Actuar. J., 2007 (2007), 261–280. https://doi.org/10.1080/03461230701554007 doi: 10.1080/03461230701554007 |
[5] | H. Cossette, M. Mailhot, E. Marceau, TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts, Insur. Math. Econ., 50 (2012), 247–256. https://doi.org/10.1016/j.insmatheco.2011.11.006 doi: 10.1016/j.insmatheco.2011.11.006 |
[6] | J. Dhaene, L. Henrard, Z. Landsman, A. Vandendorpe, S. Vanduffel, Some results on the CTE-based capital allocation rule, Insur. Math. Econ., 42 (2008), 855–863. https://doi.org/10.2139/ssrn.905211 doi: 10.2139/ssrn.905211 |
[7] | K. T. Fang, S. Kotz, K. W. Ng, Symmetric multivariate and related distributions, New York: CRC Press, 1990. https://doi.org/10.1201/9781351077040 |
[8] | E. Furman, Z. Landsman, Tail variance premium with applications for elliptical portfolio of risks, Astin Bull., 36 (2006), 433–462. https://doi.org/10.2143/AST.36.2.2017929 doi: 10.2143/AST.36.2.2017929 |
[9] | M. J. Goovaerts, V. D. B. Eddy, R. J. A. Laeven, Managing economic and virtual economic capital within financial conglomerates, N. Am. Actuar. J., 9 (2005), 77–89. https://doi.org/10.1080/10920277.2005.10596212 doi: 10.1080/10920277.2005.10596212 |
[10] | C. W. J. Granger, Time series concepts for conditional distributions, Oxford B. Econ. Stat., 65 (2003), 689–701. https://doi.org/10.1046/j.0305-9049.2003.00094.x doi: 10.1046/j.0305-9049.2003.00094.x |
[11] | K. Ignatieva, Z. Landsman, Estimating the tails of loss severity via conditional risk measures for the family of symmetric generalised hyperbolic distributions, Insur. Math. Econ., 65 (2015), 172–186. https://doi.org/10.1016/j.insmatheco.2015.09.007 doi: 10.1016/j.insmatheco.2015.09.007 |
[12] | K. Ignatieva, Z. Landsman, Conditional tail risk measures for the skewed generalised hyperbolic family, Insur. Math. Econ., 86 (2019), 98–114. https://doi.org/10.1016/j.insmatheco.2019.02.008 doi: 10.1016/j.insmatheco.2019.02.008 |
[13] | K. Ignatieva, Z. Landsman, A class of generalised hyper-elliptical distributions and their applications in computing conditional tail risk measures, Insur. Math. Econ., 101 (2021), 437–465. https://doi.org/10.1016/j.insmatheco.2021.08.011 doi: 10.1016/j.insmatheco.2021.08.011 |
[14] | J. H. T. Kim, Conditional tail moments of the exponential family and its related distributions, N. Am. Actuar. J., 14 (2010), 198–216. https://doi.org/10.1080/10920277.2010.10597585 doi: 10.1080/10920277.2010.10597585 |
[15] | J. H. T. Kim, S. Y. Kim, Tail risk measures and risk allocation for the class of multivariate normal mean-variance mixture distributions, Insur. Math. Econ., 86 (2019), 145–157. https://doi.org/10.1016/j.insmatheco.2019.02.010 doi: 10.1016/j.insmatheco.2019.02.010 |
[16] | Z. Landsman, E. Furman, Risk capital decomposition for a multivariate dependent gamma portfolio, Insur. Math. Econ., 37 (2005), 635–649. https://doi.org/10.1016/j.insmatheco.2005.06.006 doi: 10.1016/j.insmatheco.2005.06.006 |
[17] | Z. Landsman, E. Valdez, Tail conditional expectations for elliptical distributions, N. Am. Actuar. J., 7 (2003), 55–71. https://doi.org/10.1080/10920277.2003.10596118 doi: 10.1080/10920277.2003.10596118 |
[18] | Z. Landsman, E. Valdez, Tail conditional expectations for exponential dispersion models, Astin Bull., 35 (2005), 189–209. https://doi.org/10.1017/S0515036100014124 doi: 10.1017/S0515036100014124 |
[19] | R. Vernic, Multivariate skew-normal distributions with applications in insurance, Insur. Math. Econ., 38 (2006), 413–426. https://doi.org/10.1016/j.insmatheco.2005.11.001 doi: 10.1016/j.insmatheco.2005.11.001 |
[20] | R. Vernic, Capital allocation for Sarmanov's class of distributions, Methodol. Comput. Appl., 19 (2017), 311–330. https://doi.org/10.1007/s11009-016-9483-x doi: 10.1007/s11009-016-9483-x |