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variance (TV) for the class of location-scale mixtures of elliptical distributions, which includes the
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1. Introduction and motivation

One of the main challenges faced by financial companies is to evaluate market risks in a set of
changes of the basic variables such as stock prices, interest rates or exchange rates. In this regard the
Value-at-Risk (VaR) introduced by J. P. Morgan in the mid 1990s has become a standard risk measure
of financial market risk. Despite its extensive use, the VaR is not a coherent risk measure because it fails
to satisfy subadditivity property (see [1]). The VaR can not determine the expected loss of portfolio
in q worst case, but it defines the minimum loss. Furthermore, the computation of the VaR is based
on the assumption that financial data returns follow the normal distribution. However, as shown in the
literatures, the underlying distributions of many financial data exhibit skewness, non-symmetric, heavy
tails and excess kurtosis (see [10]). They suggest in particular that large losses occur with much higher
probability than the normal distribution would suggest.

The tail conditional expectation (TCE) risk measure shares properties that are considered desirable
in all cases. For instance, due to the additivity of expectations, TCE allows venture capital to
decompose naturally among its various components.

Consider X to be a loss random variable whose cumulative distribution function (cdf) is denoted by
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FX(x). The TCE is defined as

TCEp(X) = E(X|X > xp), p ∈ (0, 1),

where xp =inf{x ∈ R : FX(x) ≥ p} = VaRp(X). The TCE has been discussed in many literatures (see
e.g., [11, 12, 15, 17]).

The tail conditional expectation risk measure shares properties that are considered desirable in a
variety of situations. For instance, due to the additivity of expectations, TCE allows for a natural
decomposition of risk capital among its various constituents. The conception of capital allocation
principle has long been introduced, in which the capital allocated to each risk unit can be expressed as
its contribution to the tail conditional expectation of total risk. Risk allocation can not only help to
evaluate and compare the performance of individual risk units, but also help to understand the risk
contribution of each unit towards the total risk of the portfolio. Landsman and Valdez [17] derived the
portfolio risk decomposition with TCE for the multivariate elliptical distribution. In [18], authors
derived the portfolio risk decomposition with TCE for the exponential dispersion model, and
Kim [14] for the exponential family class. The allocation for the class of exponential marginal was
developed in [20]. The portfolio risk decomposition with TCE was further considered in [19] for the
skew-normal distribution. Furman and Landsman [16] for the multivariate Gamma distribution. Cai
and Li [2] for the phase-type distribution. Goovaerts et al. [9] and Chiragiev and Landsman [4] have
provided the TCE-capital allocation for the multivariate Pareto distribution while Cossette et al. [5]
have considered multivariate compound distribution. Ignatieva and Landsman [12] for generalized
hyperbolic distribution. Recently, Kim and Kim [15] and Ignatieva and Landsman [12] investigated
the TCE allocation for the family of multivariate normal mean-variance mixture distributions and
skewed generalized hyperbolic, respectively. The univariate TCE and risk allocation formula for the
generalized hyper-elliptical class were available in [13].

Furman and Landsman [8] observed that in many cases the TCE does not provide adequate
information about the risks on the right tail. This point can be confirmed by the fact that the TCE does
not include the information that the risk deviates from the upper tail expectation. Furman and
Landsman [8] introduced the tail variance measure. The tail variance is defined as

TVp(X) = Var(X|X > xp) = E
(
(X − TCEp(X))2|X > xp

)
,

and it has been discussed in many literatures (see e.g., [8, 15]).
In this paper we consider a class of multivariate location-scale mixtures of elliptical (LSME)

distributions which is known to be extremely flexible and contains many special cases as its
members. Examples include the generalized hyper-elliptical distribution and generalized hyperbolic
distribution.

The rest of the paper is organized as follows. Section 2 reviews the definition and properties of the
multivariate LSME class, and introduces the generalized hyper-elliptical distribution as a
representative subclass. Section 3 presents a theorem and proves the proposed TCE formula for the
LSME and in Section 4, the development is extended to the portfolio risk decomposition with TCE
for the multivariate LSME. In Section 5, we develop TV formula for univariate LSME. Section 6
deals with the special case of generalized hyperbolic distribution. Numercial illustration is presented
in Section 7. Finally, concluding remarks are presented in Section 8.
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2. Mixture of elliptical distributions

In this section, we introduce the class of location-scale mixtures of elliptical distributions and some
of its properties.

Let Ψn be a class of functions ψ(t) : [0,∞) → R such that function ψ(
∑n

i=1 t2
i ) is an n-dimensional

characteristic function.
A random vector Y is said to have a multivariate elliptical distribution, denoted by Y ∼ En(µ,Σ, ψ),

if its characteristic function can be expressed as

ϕY(t) = exp(itTµ)ψ(
1
2

tTΣt), (2.1)

for column-vector vector µ, n × n positive definite scale matrix Σ, and for function ψ(t) ∈ Ψn, which is
called the characteristic generator.

In general, a multivariate elliptical distribution may not have a probability density function (pdf),
but if its pdf exists then the form will be

fY(y) =
cn
√
|Σ|

gn[
1
2

(y − µ)TΣ−1(y − µ)], (2.2)

for function gn(·), which is called the density generator. The condition∫ ∞

0
u

n
2−1gn(u)du < ∞ (2.3)

guarantees gn(u) to be the density generator ( [7]). In addition, the normalizing constant cn is

cn =
Γ( n

2 )

(2π)
n
2

(∫ ∞

0
u

n
2−1gn(u)du

)−1

.

Similarly, the elliptical distribution can also be introduced by the density generator and then written
Y ∼ En(µ,Σ, gn).

From (2.1), it follows that, if Y ∼ En(µ,Σ, gn) and A is m × n matrix of rank m ≤ n and b is
m-dimensional column-vector, then

AY + b ∼ Em(Aµ + b, AΣAT , gm).

The following condition: ∫ ∞

0
g1(u)du < ∞

guarantees the existence of the mean. If, in addition, |ψ′(0)| < ∞, the covariance matrix exists and is
equal to

Cov(Y) = −ψ′(0)Σ,

(see [3]).
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From (2.2) and (2.3), g1(x) can be a density generator of univariate elliptical distribution of the
random variable Y ∼ E1(µ, σ2, g1) whose pdf can be expressed as

fY(y) =
c
σ

g1

(
1
2

(y − µ
σ

)2
)
,

where c is the normalizing constant. In this paper, we assume

Var(Z) = σ2
Z < ∞, (2.4)

where Z =
Y−µ
σ

is the spherical random variable. The cdf of the random variable Z can be written as
the following integration form:

FZ(z) = c
∫ z

−∞

g1(
1
2

u2)du.

We can obtain the mean and variance of Z:

µZ = 0

and

σ2
Z = 2c

∫ ∞

0
u2g1(

1
2

u2)du = −ψ
′

(0).

Landsman and Valdez [17] showed that

fZ∗(z) =
1
σ2

Z

G(
1
2

z2) (2.5)

is the density of another spherical random variable Z∗ associated with Z, where

G(z) =

∫ ∞

z
g1(u)du.

The random vector X ∼LSMEn(µ,Σ,γ, gn; Π) has an n-dimensional LSME distribution with location
parameter µ, positive definite scale matrix Σ, if

X = m(Θ) + Θ
1
2Σ

1
2 Y, (2.6)

in distribution, where
(1) Y ∼ En(0, In, gn), the n-dimensional multivariate elliptical variable;
(2) Non-negative scalar random variable Θ is independent of Y, whose pdf and cdf are π(θ) and Π(θ)
respectively;
(3) m(Θ) = µ + Θγ, where µ = (µ1, . . . , µn)T and γ = (γ1, . . . , γn)T are constant vectors in Rn.

The pdf of the LSME can be written as the following integration form:

fX(x) =
cn
√
|Σ|

∫ ∞

0

1
√
θ

gn

(
1
2θ

(x − µ − θγ)TΣ−1(x − µ − θγ)
)
π(θ)dθ, x ∈ Rn.
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We find that the conditional distribution of X|θ is elliptical, that is

X|Θ = θ ∼ En (m(θ), θΣ, gn) . (2.7)

We can obtain the mean and covariance of X:

E(X) = E[E(X|Θ)] = E (m(Θ)) = µ + E(Θ)γ

and

Cov(X) =E [Var(X|Θ)] + Var [E(X|Θ)] = E(ΘΣ) + Var (m(Θ))

=E(Θ)Σ + Var(Θ)γγT.

The characteristic function of X|Θ = θ exists and equals to

ϕX(t|Θ = θ) = exp(itTµ) exp(iθ tTγ)ψ(
1
2
θ tTΣt).

Then the characteristic function of the LSME-distributed random vector X can be written as

ϕX(t) = exp(itTµ)E
[
exp(iθ tTγ)ψ(

1
2
θ tTΣt)

]
= exp(itTµ)

∫ ∞

0
exp(iθ tTγ)ψ(

1
2
θ tTΣt)π(θ)dθ. (2.8)

Under the condition (2.2) and from (2.5), we can conclude G(z) is the density generator of the
associated elliptical variable Z∗, then

X∗ = m(Θ) +
√

ΘσZ∗ (2.9)

is said to have a univariate LSME distributions, denoted by X∗ ∼ LSME1(µ, σ2, γ,Θ,G; Π).

Proposition 1. If X ∼ LSMEn(µ,Σ,γ, gn; Π) and Y = BX + b where B is m × n (m ≤ n) matrix and b
is m-dimensional column-vector, then it holds that Y ∼ LSMEm(Bµ + b, BΣBT , Bγ, gm; Π).

Proof. Using the characteristic function (2.8), we write

ϕY(t) = E(eitT (BX+b))
= exp(itT b)ϕX(BT t)

= exp(itT b) exp
(
i(BT t)Tµ

) ∫ ∞

0
exp

(
iθ(BT t)Tγ

)
ψ

(
1
2
θ(BT t)TΣ(BT t)

)
π(θ)dθ

= exp
(
itT (Bµ + b)

) ∫ ∞

0
exp(iθ tT Bγ)ψ(

1
2
θ tT BΣBT t)π(θ)dθ, (2.10)

i.e., Y ∼ LSMEm(Bµ + b, BΣBT , Bγ, gm; Π).
Example 2.1 (Generalized hyper-elliptical distribution). The GHE distribution is constructed by
mixing a generalized inverse Gaussian distribution with elliptical distribution. A positive random
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variable Θ is said to have a generalized inverse Gaussian distribution, denoted by Θ ∼ GIG(λ, a, b), if
its pdf is given by

π(θ; λ, a, b) =
a−λ(
√

ab)λ

2Kλ(
√

ab)
θλ−1 exp

(
−

1
2

(aθ−1 + bθ)
)
, θ > 0, (2.11)

where parameters follow 
a ≥ 0 and b > 0, if λ > 0,
a > 0 and b ≥ 0, if λ < 0,
a > 0 and b > 0, if λ = 0

and Kλ(·) denotes the modified Bessel function of the second kind with index λ ∈ R. A random vector
X ∼ GHEn(µ,Σ,γ, gn, λ, a, b) has an n-dimensional GHE distribution, if there exists a random vector
Y follows (2.6) such that

X = m(Θ) + Θ
1
2Σ

1
2 Y, (2.12)

where Θ ∼ GIG(λ, a, b).

3. Tail conditional expectation for univariate case

The univariate LSME variable is given by n = 1 in the multivariate definition. That is, the univariate
LSME variable X ∼ LSME1(µ, σ2, γ, g1; Π) satisfies

X = m(Θ) +
√

ΘσZ,

where Z ∼ E1(0, 1, g1) is the standard elliptical variable, and non-negative scalar random variable Θ

with pdf π(θ) is independent of Z. From (2.7), we have

X|θ ∼ E1

(
m(θ), θσ2, g1

)
. (3.1)

Assuming that both the conditional distribution and the mixed distribution are continuous, the pdf of X
produced by the mixed distribution can be written as

fX(x) =

∫
Ωθ

f (x|θ)π(θ)dθ, (3.2)

where f (x|θ) is the pdf of X|θ and Ωθ is the support of π(θ). Now let xp be the quantile of the LSME
variable X. Then the TCE of X can be expressed as

E(X|X > xp)

=
1

1 − p

∫ ∞

xp

x fX(x)dx

=
1

1 − p

∫
Ωθ

∫ ∞

xp

x f (x|θ)dx π(θ)dθ
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=
1

1 − p

∫
Ωθ

EX|θ(X|X > xp)FX|θ(xp)π(θ)dθ. (3.3)

The TCE formula for a univariate elliptical distribution is introduced by [17], and equals to

TCEp(X|θ) =EX|θ(X|X > xp)

=m(θ) +

1
√
θσ

fZ∗
(
κ(xp; θ)

)
FZ

(
κ(xp; θ)

) σ2
Zθσ

2

=m(θ) +

1
√
θσ

fZ∗
(
κ(xp; θ)

)
FZ

(
κ(xp; θ)

) Var(X|θ), (3.4)

where

κ(x; θ) =
x − m(θ)
√
θσ

.

We now give a general TCE formula for the univariate LSME distributions.

Theorem 1. Let X ∼ LSME1(µ, σ2, γ, g1; Π) and π′(θ) = (c′)−1θπ(θ) be a mixing pdf with c′ = E(Θ) <
∞ . Then the TCE of X can be computed by:

E(X|X > xp)

= µ +
γc′

1 − p
FLSME,1(xp; µ, σ2, γ, g1; Π′) +

c′σ2σ2
Z

1 − p
fLSME,1(xp; µ, σ2, γ,G; Π′), (3.5)

where Π′ is the cdf corresponding to the pdf π′.

Proof. From (3.3) and (3.4), we have

E(X|X > xp) =
1

1 − p

∫ ∞

0

m(θ) +

1
√
θσ

fZ∗
(
κ(xp; θ)

)
FZ

(
κ(xp; θ)

) Var(X|θ)

 FX|θ(xp)π(θ)dθ

=
1

1 − p

∫ ∞

xp

∫ ∞

0

m(θ)
√
θσ

fZ (κ(x; θ)) π(θ)dθdx

+
σ2σ2

Z

1 − p

∫ ∞

0

fZ∗
(
κ(xp; θ)

)
√
θσ

θπ(θ)dθ

=
1

1 − p

∫ ∞

xp

µ f (x)dx +
γ

1 − p

∫ ∞

xp

∫ ∞

0
f (x|θ)θπ(θ)dθdx

+
σ2σ2

Z

1 − p

∫ ∞

0

fZ∗
(
κ(xp; θ)

)
√
θσ

θπ(θ)dθ. (3.6)

From the definition of LSME distributions and (3.2), we have∫ ∞

0
f (x|θ)θπ(θ)dθ = c′

∫ ∞

0
f (x|θ)π′(θ)dθ = c′ fLSME,1(x; µ, σ2, γ, g1; Π′).
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As a result, (3.6) can be further simplified

E(X|X > xp)

= µ +
γc′

1 − p

∫ ∞

xp

∫ ∞

0
f (x|θ)π′(θ)dθdx +

c′σ2σ2
Z

1 − p

∫ ∞

0

fZ∗
(
κ(xp; θ)

)
√
θσ

π′(θ)dθ

= µ +
γc′

1 − p

∫ ∞

xp

fLSME,1(x; µ, σ2, γ, g1; Π′)dx +
c′σ2σ2

Z

1 − p

∫ ∞

0

fZ∗
(
κ(xp; θ)

)
√
θσ

π′(θ)dθ

= µ +
γc′

1 − p
FLSME,1(xp; µ, σ2, γ, g1; Π′) +

c′σ2σ2
Z

1 − p
fLSME,1(xp; µ, σ2, γ,G; Π′).

Corollary 1. Let X ∼ GHE1(µ, σ2, γ, g1, λ, a, b). Assume the conditions in Theorem 1 are satisfied,
then the TCE of GHE can be computed by:

TCEp(X) =µ +
γ

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGHE,1(xp; µ, σ2, γ, g1, λ + 1, a, b)

+
σ2σ2

Z

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGHE,1(xp; µ, σ2, γ,G, λ + 1, a, b). (3.7)

Proof. From the GIG density in (2.11), we conclude

θπ(θ; λ, a, b) =

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
π(θ; λ + 1, a, b),

by setting

c′ =

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
,

then

π′(θ) = (c′)−1θπ(θ) = π(θ; λ + 1, a, b),

which also is the GIG density. Using (3.5) we can directly obtain (3.7).

4. Portfolio risk decomposition with TCE for multivariate LSME

Consider a risk vector Y = (Y1, . . . ,Yn)T and S = Y1 + . . . + Yn. We denote sp as the p-quantile of
S , then

E(S |S > sp) =

n∑
i=1

E(Yi|S > sp),

where E(Yi|S > sp) is the contribution of the i-th risk to the aggregated risks.
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Let Y = (Y1, . . . ,Yn) ∼ En(µ,Σ, gn) and S = Y1 + . . . + Yn, then ( [6])

E(Yi|S = s) =

∫ ∞

−∞

yi f (yi|s)dyi

= E(Yi) +
Cov(Yi, S )

Var(S )
(s − E(S )) .

The contribution of risk Yi, 1 ≤ i ≤ n, to the total TCE can be expressed as

E(Yi|S > sp) =

∫ ∞

sp

E(Yi|S = s)dFS (s|S > sp)

=

∫ ∞

sp

E(Yi|S = s)
fS (s)

1 − FS (sp)
ds

=
1

1 − p

∫ ∞

sp

E(Yi|S = s) fS (s)ds.

We now exploit this formulation to the multivariate LSME to obtain its portfolio risk decomposition
with TCE.

Let us assume X = (X1, . . . , Xn)T ∼ LSMEn(µ,Σ,γ, gn; Π). Denote the (i, j) element of Σ by σi j,
define

S = X1 + . . . + Xn.

Then, E(Xi|S = s) can be further expanded by conditioning on θ as follows:

E(Xi|S = s) =

∫ ∞

−∞

xi f (xi|s)dxi =

∫ ∞
−∞

xi f (xis)dxi

fS (s)

=
1

fS (s)

∫ ∞

−∞

xi

∫ ∞

0
f (xi, s|θ)dπ(θ)dxi

=
1

fS (s)

∫ ∞

−∞

xi

∫ ∞

0
f (xi|s, θ) f (s|θ)π(θ)dθdxi

=
1

fS (s)

∫ ∞

0

[∫ ∞

−∞

xi f (xi|s, θ)dxi

]
f (s|θ)π(θ)dθ. (4.1)

To deal with the inner integral, we define a matrix Bi of size 2 × n:

Bi =

[
0 0 . . . 0 1 0 . . . 0
1 1 . . . . . . . . . . . . . . . 1

]
. (4.2)

The first row vector has 1 in the ith position. If we keep the general form

m(θ) = (m1(θ), . . . ,mn(θ))T ,

we have
BiX|θ = (Xi, S |θ)T = Bim(θ) + θ

1
2 BiΣ

1
2 Y,

AIMS Mathematics Volume 7, Issue 5, 8802–8821.
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here (Xi, S |θ)T stands for a random column vector of size 2 × 1, with each element being Xi|θ and S |θ,
respectively. Thus, the joint distribution of (Xi, S ) under the condition of Θ = θ is a bivariate elliptical
distribution

(Xi, S |θ)T ∼ E2

(
Bim(θ), θBiΣBT

i , g2

)
,

where the mean vector and convariance matrix of (Xi, S |θ) are given by

E(BiX|θ) = Bim(θ) = (E(Xi|θ), E(S |θ))T =

[
mi(θ)∑n

j=1 m j(θ)

]
,

Cov(BiX|θ) = − ψ
′

(0)θBiΣBT
i

= − ψ′(0)
[

θσii θ
∑n

j=1 σi j

θ
∑n

j=1 σi j θσ2
S

]
,

where

σ2
S = 1TΣ1 =

n∑
i=1

n∑
j=1

σi j.

Therefore, if we impose another condition on S , we see that f (xi|s, θ) is an elliptical density. In
particular ∫ ∞

−∞

xi f (xi|s, θ)dxi =E(Xi|S = s, Θ = θ)

=E(Xi|θ) +
Cov(Xi, S |θ)

Var(S |θ)
(s − E(S |θ))

=mi(θ) +
−ψ′(0)

∑n
j=1 σi j

−ψ′(0)σ2
S

s −
n∑

j=1

m j(θ)


=mi(θ) +

∑d
j=1 σi j

σ2
S

s −
n∑

j=1

m j(θ)

 .
Consequently

E(Xi|S = s) =
1

fS (s)

∫ ∞

0

[∫ ∞

−∞

xi f (xi|s, θ)dxi

]
f (s|θ)π(θ)dθ

=
1

fS (s)

∫ ∞

0

mi(θ) +

∑n
j=1 σi j

σ2
S

s −
n∑

j=1

m j(θ)




×
1
√
θσS

fZ

( s −
∑n

j=1 m j(θ)
√
θσS

)
π(θ)dθ. (4.3)

Eventually

E(Xi|S > sp) =
1

1 − p

∫ ∞

sp

E(Xi|S = s) fS (s)ds
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=
1

1 − p

∫ ∞

sp

∫ ∞

0

mi(θ) +

∑n
j=1 σi j

σ2
S

s −
n∑

j=1

m j(θ)




×
1
√
θσS

fZ

( s −
∑n

j=1 m j(θ)
√
θσS

)
π(θ)dθds. (4.4)

This expression, though complex, can produce a closed-form quantity to properly select π(θ) and
m j(θ).

The portfolio risk decomposition with TCE is additive, that is, the sum of all portfolio risk
decomposition must amount to the TCE for S . We can verify this

n∑
i=1

E(Xi|S > sp)

=
1

1 − p

n∑
i=1

∫ ∞

sp

∫ ∞

0

mi(θ) +

∑n
j=1 σi j

σ2
S

s −
n∑

j=1

m j(θ)


 1
√
θσS

fZ

( s −
∑n

j=1 m j(θ)
√
θσS

)
π(θ)dθds

=
1

1 − p

∫ ∞

sp

∫ ∞

0

 n∑
i=1

mi(θ) +

∑n
i=1

∑n
j=1 σi j

σ2
S

s −
n∑

j=1

m j(θ)


 1
√
θσS

fZ

( s −
∑n

j=1 m j(θ)
√
θσS

)
π(θ)dθds

=
1

1 − p

∫ ∞

sp

∫ ∞

0

 n∑
i=1

mi(θ) +

s −
n∑

j=1

m j(θ)


 1
√
θσS

fZ

( s −
∑n

j=1 m j(θ)
√
θσS

)
π(θ)dθds

=
1

1 − p

∫ ∞

sp

∫ ∞

0
s

1
√
θσS

fZ

( s −
∑n

j=1 m j(θ)
√
θσS

)
π(θ)dθds

= E(S |S > sp),

as required. Now the general portfolio risk decomposition with TCE formula for the multivariate LSME
distributions class in presented is a more concrete and compact manner when m(θ) is linear in θ.

Theorem 2. Let X = (X1, X2, · · · , Xn)T ∼ LSMEn(µ,Σ,γ, gn; Π) and denote the pdf of S = 1T X by
fS (s). Let π′(θ) = (c′)−1θπ(θ) be a mixing pdf with c′ = E(Θ) < ∞. Then the portfolio risk
decomposition with TCE for the i-th marginal variable is given by

E(Xi|S > sp)

= b0,i + b1,iE(S |S > sp) +
b2,i

1 − p
c′FLSME,1(sp; 1Tµ, 1TΣ1, 1Tγ, g1; Π′), (4.5)

where Π′ is the cdf corresponding to the pdf π′, the coefficients b0,i, b1,i, and b2,i are defined as

b0,i = µi − b1,i

n∑
j=1

µ j; b1,i =

∑n
j=1 σi j

σ2
S

; b2,i = γi − b1,i

n∑
j=1

γ j,

and sp is the p-quantile of S .

Proof. Let mi(θ) = µi + θγi, and from (4.3) we have

E(Xi|S = s)
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=
1

fS (s)

∫ ∞

0

µi +

∑n
j=1 σi j

σ2
S

(s −
n∑

j=1

µ j) +

γi −

n∑
j=1

γ j

∑n
j=1 σi j

σ2
S

 θ


×
1
√
θσS

fZ

( s −
∑n

j=1 µ j − θ
∑n

j=1 γ j
√
θσS

)
π(θ)dθ

=
1

fS (s)

∫ ∞

0

[
b0,i + b1,is + b2,iθ

] 1
√
θσS

fZ

( s −
∑n

j=1 µ j − θ
∑n

j=1 γ j
√
θσS

)
π(θ)dθ

=
1

fS (s)

[
b0,i fS (s) + b1,is fS (s) + b2,ic′ fLSME,1(sp; 1Tµ, 1TΣ1, 1Tγ, g1; Π′)

]
= b0,i + b1,is + b2,ic′

fLSME,1(sp; 1Tµ, 1TΣ1, 1Tγ, g1; Π′)
fS (s)

.

By inserting this into the portfolio risk decomposition with TCE formulation (4.4), we complete the
proof as

E(Xi|S > sp) =

∫ ∞

sp

E(Xi|S = s) f (s|S > sp)ds

=

∫ ∞

sp

E(Xi|S = s)
fS (s)
1 − p

ds

=
1

1 − p

∫ ∞

sp

(b0,i + b1,is) fS (s)ds +
1

1 − p
b2,ic′

∫ ∞

sp

fLSME,1(s; 1Tµ, 1TΣ1, 1Tγ, g1; Π′)ds

= b0,i + b1,iE(S |S > sp) +
b2,i

1 − p
c′FLSME,1(sp; 1Tµ, 1TΣ1, 1Tγ, g1; Π′). (4.6)

Notice that
∑n

i=1 b0,i = 0,
∑n

i=1 b1,i = 1, and
∑n

i=1 b2,i = 0, which can be used to verify that the sum
of these portfolio risk decomposition amounts to E(S |S > sp).

Corollary 2. Let X = (X1, X2, · · · , Xn)T ∼ GHEn(µ,Σ,γ, gn, λ, a, b). The portfolio risk decomposition
with TCE for the i-th marginal variable is given by

E(Xi|S > sp)

= µi +
σ2

Z
∑n

j=1 σi j

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGHE,1(sp; 1Tµ, 1TΣ1, 1Tγ,G; λ + 1, a, b)

+
γi

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGHE,1(sp; 1Tµ, 1TΣ1, 1Tγ, g1, λ + 1, a, b). (4.7)

Proof. We can know S ∼ GHE1(sp; 1Tµ, 1TΣ1, 1Tγ, g1, λ+ 1, a, b) by using Proposition 1. Using (4.5),
we see that TCE of S is given by

E(S |S > sp)

= µi +
σ2

Z
∑n

j=1 σi j

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGHE,1(sp; 1Tµ, 1TΣ1, 1Tγ,G, λ + 1, a, b)

+
γi

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGHE,1(sp; 1Tµ, 1TΣ1, 1Tγ, g1, λ + 1, a, b).
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Therefore

E(Xi|S > sp)

= µi + b1,i
σ2

Sσ
2
Z

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGHE,1(sp; 1Tµ, 1TΣ1, 1Tγ,G, λ + 1, a, b)

+
γi

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGHE,1(sp; 1Tµ, 1TΣ1, 1Tγ, g1, λ + 1, a, b)

= µi +
σ2

Z
∑n

j=1 σi j

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGHE,1(sp; 1Tµ, 1TΣ1, 1Tγ,G, λ + 1, a, b)

+
γi

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGHE,1(sp; 1Tµ, 1TΣ1, 1Tγ, g1, λ + 1, a, b).

5. Tail variance for univariate case

The TV of the univariate elliptical distribution is introduced by [8]. From (3.1), We can write the
TV for X|θ as

TVp(X|θ) =Var(X|θ)
[
r
(
κ(xp; θ)

)
+ hZ,Z∗

(
κ(xp; θ)

) (
κ(xp; θ) − hZ,Z∗

(
κ(xp; θ)

)
σ2

Z

)]
,

where κ(x; θ) is the same as in (3.4),

r(z) =
FZ∗(z)

FZ(z)

is the distorted ratio function, and

hZ,Z∗(z) =
fZ∗(z)

FZ(z)

is the distorted hazard function.
TV can be rewritten as:

TVp(X) =Var(X|X > xp) = E
[(

X − TCEp(X)
)2
|X > xp

]
=E(X2|X > xp) −

[
TCEp(X)

]2
. (5.1)

Consequently, we need to derive the second order conditional tail moment E(X2|X > xp). We now
provide its analytic expression in the following result.

Proposition 2. Assume a random variable X ∼ LSME1(µ, σ2, γ, g1; Π). Let
π′(θ) = (c′)−1θπ(θ) and π′′(θ) = (c′′)−1θ2π(θ) be two different mixing pdfs with
c′ = E(Θ) < ∞ and c′′ = E(Θ2) < ∞ respectively. Then

E(X2|X > xp)

=
σ2σ2

Z

1 − p

[
(xp + µ)c′ fLSME,1(xp; µ, σ2, γ,G; Π′) + γc′′ fLSME,1(xp; µ, σ2, γ,G; Π′′)
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+ c′FLSME,1(xp; µ, σ2, γ,G; Π′)
]

+
γ

1 − p

[
2µc′FLSME,1(xp; µ, σ2, γ, g1; Π′)

+ γc′′FLSME,1(xp; µ, σ2, γ, g1; Π′′)
]

+ µ2, (5.2)

where Π′ and Π′′ are two cdfs corresponding to the two different pdfs π′ and π′′, respectively.

Proof. From observing

E(X2|X > xp) =
1

1 − p

∫ ∞

xp

x2 fX(x)dx

=
1

1 − p

∫ ∞

0

∫ ∞

xp

x2 fX|θ(x)π(θ)dxdθ

=
1

1 − p

∫ ∞

0
EX|θ(X2|X > xp)FX|θ(xp)π(θ)dθ.

To deal with the second order conditional tail moment in the integration, we write it as

EX|θ(X2|X > xp) = TVp(X|θ) +
[
TCEp(X|θ)

]2
. (5.3)

From [17], we know

TCEp(X|θ) = m(θ) + hZ,Z∗
(
κ(xp; θ)

) Var(X|θ)
√
θσ

,

taking Var(X|θ) = θσ2σ2
Z into consideration, then (5.3) becomes

EX|θ(X2|X > xp) =Var(X|θ)
[
r
(
κ(xp; θ)

)
+ hZ,Z∗

(
κ(xp; θ)

) (
κ(xp; θ) − hZ,Z∗

(
κ(xp; θ)

)
σ2

Z

)]
+

(
m(θ) + hZ,Z∗

(
κ(xp; θ)

) Var(X|θ)
√
θσ

)2

=Var(X|θ)r
(
κ(xp; θ)

)
+ Var(X|θ)hZ,Z∗

(
κ(xp; θ)

) xp − m(θ)
√
θσ

− Var(X|θ)
(
hZ,Z∗

(
κ(xp; θ)

))2
σ2

Z + m2(θ) + 2m(θ)hZ,Z∗
(
κ(xp; θ)

) Var(X|θ)
√
θσ

+
(
hZ,Z∗

(
κ(xp; θ)

))2 θσ2σ2
ZVar(X|θ)
θσ2

=m2(θ) + Var(X|θ)
(
r
(
κ(xp; θ)

)
+ hZ,Z∗

(
κ(xp; θ)

) xp + m(θ)
√
θσ

)
.

As a result

E(X2|X > xp)

=
1

1 − p

∫ ∞

0
EX|θ(X2|X > xp)FX|θ(xp)π(θ)dθ

=
1

1 − p

∫ ∞

0
Var(X|θ)

[
xp + m(θ)
√
θσ

hZ,Z∗
(
κ(xp; θ)

)
+ r

(
κ(xp; θ)

)]
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× FX|θ(xp)π(θ)dθ +
1

1 − p

∫ ∞

0
m2(θ)FX|θ(xp)π(θ)dθ

=
1

1 − p

∫ ∞

0
Var(X|θ)

[
xp + m(θ)
√
θσ

fZ∗
(
κ(xp; θ)

)
+ FZ∗

(
κ(xp; θ)

)]
× π(θ)dθ +

1
1 − p

∫ ∞

0
FX|θ(xp)π(θ)

(
µ2 + 2µθγ + θ2γ2

)
dθ

=
σ2σ2

Z

1 − p

[
(xp + µ)c′ fLSME,1(xp; µ, σ2, γ,G; Π′) + γc′′ fLSME,1(xp; µ, σ2, γ,G; Π′′)

+ c′FLSME,1(xp; µ, σ2, γ,G; Π′)
]

+
γ

1 − p

[
2µc′FLSME,1(xp; µ, σ2, γ, g1; Π′)

+ γc′′FLSME,1(xp; µ, σ2, γ, g1; Π′′)
]

+ µ2.

Theorem 3. Under assumptions of Proposition 2, the TV of X is given by

TVp(X)

=
σ2σ2

Z

1 − p

[
(xp − µ)c′ fLSME,1(xp; µ, σ2, γ,G; Π′) + γc′′ fLSME,1(xp; µ, σ2, γ,G; Π′′)

+ c′FLSME,1(xp; µ, σ2, γ,G; Π′)
]

+
γ2

1 − p
c′′FLSME,1(xp; µ, σ2, γ, g1; Π′′)

−

(
c′

1 − p

)2 [
γFLSME,1(xp; µ, σ2, γ, g1; Π′) + σ2σ2

Z fLSME,1(xp; µ, σ2, γ,G; Π′)
]2
, (5.4)

where Π′ and Π′′ are two cdfs corresponding to the two different pdfs π′ and π′′, respectively.

Proof. From the Theorem 1, the TCE formula is

E(X|X > xp)

= µ +
γc′

1 − p
FLSME,1(xp; µ, σ2, γ, g1; Π′) +

c′σ2σ2
Z

1 − p
fLSME,1(xp; µ, σ2, γ,G; Π′).

Hence, the result can be derived by using Proposition 2 and (5.1).

Corollary 3. Let X ∼ GHE1(µ, σ2, γ, g1, λ, a, b). Assume the conditions in Theorem 3 are satisfied,
then the TV for GHE can be computed by:

TVp(X) =
σ2σ2

Z

1 − p

(xp − µ)
√

a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGHE,1(xp; µ, σ2, γ,G; λ + 1, a, b)

+ γ
a
b

Kλ+2(
√

ab)

Kλ(
√

ab)
fGHE,1(xp; µ, σ2, γ,G; λ + 2, a, b)

+

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGHE,1(xp; µ, σ2, γ,G; λ + 1, a, b)


+

γ2

1 − p
a
b

Kλ+2(
√

ab)

Kλ(
√

ab)
FGHE,1(xp; µ, σ2, γ, g1, λ + 2, a, b)
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−

 1
1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)

2 [
γFGHE,1(xp; µ, σ2, γ, g1, λ + 1, a, b)

+ σ2σ2
Z fGHE,1(xp; µ, σ2, γ,G; λ + 1, a, b)

]2
. (5.5)

Proof. From the GIG density in (2.11), we conclude

θπ(θ; λ, a, b) =

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
π(θ; λ + 1, a, b)

and

θ2π(θ; λ, a, b) =
a
b

Kλ+2(
√

ab)

Kλ(
√

ab)
π(θ; λ + 2, a, b).

By setting

c′ =

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
, c′′ =

a
b

Kλ+2(
√

ab)

Kλ(
√

ab)
,

the two pdfs can be presented as

π′(θ) = (c′)−1θπ(θ) = π(θ; λ + 1, a, b)

and

π′′(θ) = (c′′)−1θ2π(θ) = π(θ; λ + 2, a, b),

which also are two GIG pdfs. Using (5.4) we can directly obtain (5.5).

6. Examples

Example 6.1 (Generalized hyperbolic distribution). If µ = 0, Σ = In and density generator g(u) =

e−u in (2.2), then the elliptical vector Y is said to have a multivariate normal distribution, denoted by
Y ∼ Nn(0, In). Letting Y ∼ Nn(0, In) in (2.6), then the random vector X ∼ GHn(µ,Σ,γ, λ, a, b) is an
n-dimensional generalized hyperbolic (GH) distribution. Therefore, the pdf of the GH distribution is
(see [15])

fGHn(x,µ,Σ,γ, λ, a, b)

=c
Kλ−(n/2)

(√
(a + (x − µ)TΣ−1(x − µ))(b + γTΣ−1γ)

)
e(x−µ)TΣ−1γ

(
a + (x − µ)TΣ−1(x − µ))(b + γTΣ−1γ)

) n
4−

λ
2

,

where the normalizing constant is

c =
(ab)−

λ
2 bλ(b + γTΣ−1γ)(n/2)−λ

(2π)n/2|Σ|1/2Kλ

√
ab

.
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From Corollary 1, TCE of GH distribution is given by

TCEp(X) =µ +
γ

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGH,1(xp; µ, σ2, γ, λ + 1, a, b)

+
σ2

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGH,1(xp; µ, σ2, γ, λ + 1, a, b).

From Corollary 2, portfolio risk decomposition with TCE for the i-th marginal of GH distribution is
given by

E(Xi|S > sp)

= µi +

∑n
j=1 σi j

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGH,1(sp; 1Tµ, 1TΣ1, 1Tγ, λ + 1, a, b)

+
γi

1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGH,1(sp; 1Tµ, 1TΣ1, 1Tγ, λ + 1, a, b).

From Corollary 3, TV of GH distribution is given by

TVp(X) =
σ2

1 − p

(xp − µ)
√

a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
fGH,1(xp; µ, σ2, γ, λ + 1, a, b)

+ γ
a
b

Kλ+2(
√

ab)

Kλ(
√

ab)
fGH,1(xp; µ, σ2, γ, λ + 2, a, b)

+

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)
FGH,1(xp; µ, σ2, γ, λ + 1, a, b)


+

γ2

1 − p
a
b

Kλ+2(
√

ab)

Kλ(
√

ab)
FGH,1(xp; µ, σ2, γ, λ + 2, a, b)

−

 1
1 − p

√
a
b

Kλ+1(
√

ab)

Kλ(
√

ab)

2 [
γFGH,1(xp; µ, σ2, γ, λ + 1, a, b)

+ σ2 fGH,1(xp; µ, σ2, γ, λ + 1, a, b)
]2
.

7. Numerical illustration

In this section we discuss the TV of five stocks (Amazon, Goldman Sachs, IBM, Google, and Apple)
and aggregate portfolio covering a time frame from the 1st of January 2015 to the 1st of January 2017.
Ignatieva and Landsman [12] fitted a GH model to five stocks and aggregate portfolio, and obtained
the following parameter set based on the maximum likelihood technique.

λ = − 1.18336, a = 1.272016, ψ = 0.348483,

µ =


−0.09977
−0.04555
−0.09355
−0.03669
−0.10367


, γ =


−0.08626
−0.00803
0.07928
−0.05230
0.08534


,
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Σ =


3.387 1.407 1.103 1.828 1.354
1.407 3.014 1.288 1.209 1.434
1.103 1.288 1.870 1.061 1.155
1.828 1.209 1.061 2.171 1.220
1.354 1.434 1.155 1.220 2.891


.

For the risk analysis, we denote five stocks as X1, · · · , X5. We also consider aggregate portfolio
S where each stock has equal weight for simplicity, so that the aggregate portfolio is defined as S =

X1 + · · ·+X5. Figure 1 shows the densities for five stocks Xi, i = 1, · · · , 5 and aggregate portfolio S . The
pdf of S has the largest variance, and Amazon has the largest dispersion among five stocks. IBM has
the smallest dispersion. Figure 2 presents the TV for five stocks Xi, i = 1, · · · , 5 and aggregate portfolio
S . All the risk measures increase over the quantile with the TV. Also Figure 2 shows the differences in
the TV measure along with five stocks and aggregate portfolio. For the same quantile, the TV of Apple
is the largest one and the TV of IBM is the smallest one among the five stocks.

Figure 1. Densities for Xi, i = 1, · · · , 5 and S for GH.

Figure 2. TV for Xi, i = 1, · · · , 5 and S for GH.
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8. Conclusions

In this paper we generalize the tail risk measure and portfolio risk decomposition with TCE
formula derived by [15] for the class of multivariate normal mean-variance mixture distributions to
the larger class of multivariate elliptical location-scale mixtures distributions. A prominent member in
the normal mean-variance mixture class is the generalized hyperbolic (GH) distribution, which itself
can construct a Lévy process. The GH is a special case of normal mean-variance mixture random
variable with X ∼ Nn(0, In) and the distribution of Θ given by a generalized inverse Gaussian (GIG)
distribution with three parameters (see [12, 15] for details). Prominent member in the elliptical
location-scale mixtures class is the generalized hyper-elliptical (GHE) distribution. The GHE
distribution provides excellent fit to univariate and multivariate data, allowing to capture a long right
tail in the distribution of losses even more effectively than the GH distribution considered in [12]. And
GHE is a special case of elliptical location-scale mixtures random variable with X ∼ Nn(0, In) and the
distribution of Θ given by a generalized inverse Gaussian (GIG) distribution with three
parameters. Although the univariate TCE and portfolio risk decomposition with TCE formula for the
GHE class was available in [13], it can be derived more efficiently and seen as a special case of TCE
for the unified location-scale mixtures of elliptical distributions and risk allocation formula in
Theorems 1 and 2, respectively. And the univariate TV formula for the GHE class can be derived
efficiently and seen as a special case of TV for the unified location-scale mixtures of elliptical
distributions in Theorem 3.
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