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Abstract: This paper is concerned with the following modified Kirchhoff type problem

−

(
a + b

∫
R3
|∇u|2

)
∆u − u∆(u2) − λu = |u|p−2u, x ∈ R3,

where a, b > 0 are constants and λ ∈ R. When p = 16
3 , we prove that the existence of normalized

solution with a prescribed L2-norm for the above equation by applying constrained minimization
method. Moreover, when p ∈

(
10
3 ,

16
3

)
, we prove the existence of mountain pass type normalized

solution for the above modified Kirchhoff equation by using the perturbation method. And the
asymptotic behavior of normalized solution as b → 0 is analyzed. These conclusions extend some
known ones in previous papers.
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1. Introduction

In this paper, we are dedicated to studying the following modified Kirchhoff type problem

−

(
a + b

∫
R3
|∇u|2

)
∆u − u∆(u2) − λu = |u|p−2u, x ∈ R3, (1.1)

where a, b > 0 are constants and λ ∈ R. Equation (1.1) appears in a famous physical context. Indeed,
if we set λ = 0, delete the quasilinear term u∆

(
u2

)
and replace R3 and |u|p−2u by a bounded domain
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Ω ⊂ Rn and f (x, u) respectively in (1.1), then we obtain the following Kirchhoff Dirichlet problem: −
(
a + b

∫
Ω
|∇u|2

)
∆u = f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.2)

Equation (1.2) is related to the stationary analogue of the equation

utt −

(
a + b

∫
Ω

|∇u|2
)
∆u = f (x, u). (1.3)

Equation (1.3) was proposed by Kirchhoff in [1] as a generalization of the following well-known
D’Alembert wave equation

ρ
∂2u
∂t2 −

(
ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2) ∂2u
∂x2 = f (x, u),

which describes free vibrations of elastic strings. Some early classical studies of Kirchhoff equations
can be found in Bernstein [2] and Pohožaev [3]. Much attention was received after Lions [4]
introducing an abstract functional framework to this problem. For more relevant mathematical and
physical background, we refer readers to papers [5–9], and the references therein.

Kirchhoff’s model allows for the changes in length of the string produced by transverse vibrations.
In (1.2), u denotes the displacement, f (x, u) denotes the external force and b denotes the initial tension
while a is related to the intrinsic properties of the string, such as Young’s modulus. We point out that
such nonlocal problems also appear in other fields as biological systems, where u describes a process
which depends on the average of itself, such as population density, see [10, 11] and the references
therein.

In mathematics, equation (1.1) is not a pointwise identity because of the appearance of the term(∫
R3 |∇u|2

)
∆u. Based on such a characteristic, people call it a nonlocal problem. Moreover, problem

(1.1) involves the quasilinear term u∆(u2), whose natural energy functional is not well defined in
H1(R3) and variational methods cannot be used directly. These cause some mathematical difficulties,
and in the meantime make the study of such a problem more interesting.

In the past years, the following quasilinear Schrödinger equation

i∂tϕ + ∆ϕ + ϕ∆
(
|ϕ|2

)
+ |ϕ|p−2ϕ = 0, (t, x) ∈ R+ × RN (1.4)

has attracted considerable attention, where i denotes the imaginary unit and ϕ : R+ × RN → C, p ∈
(2, 2 · 2∗), 2∗ = 2N

N−2 if N ≥ 3 and 2∗ = +∞ if N = 1, 2. Equation (1.4) appears in various physical
fields, such as in dissipative quantum mechanics, in plasma physics and in fluid mechanics, see more
information in [12,13]. One usually searches for standing waves solutions of (1.4), i.e. solutions of the
form ϕ(t, x) = e−iλtu(x), where λ ∈ R is a parameter and u : RN → R is a function to be founded, then
(1.4) is reduced to be the following stationary equation

−∆u − u∆(u2) − λu = |u|p−2u, x ∈ RN ,

which has been intensively studied about its existence and multiplicity results by using minimizations,
change of variables, Nehari method and perturbation method. See [14–18, 20] and their references
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therein. Moreover, for the above stationary equation, when cut out the quasilinear term u∆
(
u2

)
,

substitute
(

1
|x| ∗ u2

)
u for |u|p−2u and take λ = −1,N = 3, then we obtain the following Choquard-Pekar

equation

−∆u + u =

(
1
|x|
∗ u2

)
u, x ∈ R3.

The Choquard-Pekar equation is also known as the Schrödinger-Newton equation in models coupling
the Schrödinger equation of quantum physics together with nonrelativistic Newtonian gravity. For the
Choquard-type equation and related problems, we refer to [21–24] and references therein.

In the recent years, Feng et al. [25] studied the following modified Kirchhoff type equation

−

(
a + b

∫
RN
|∇u|2

)
∆u − u∆(u2) + V(x)u = h(x, u), x ∈ RN , (1.5)

where a > 0, b ≥ 0, h ∈ C
(
RN × R,R

)
and V ∈ C

(
RN ,R

)
. Under suitable assumptions on V(x)

and h(x, u), some existence results for positive solutions, negative solutions and sequence of high
energy solutions were obtained via a perturbation method. Subsequently, in 2015, Wu [26] studied the
existence of infinitely many small energy solutions for equation (1.5) by applying Clark’s Theorem
to a perturbation functional. And in the same year, He [27] proved the existence of infinitely many
solutions for equation (1.5) by using the dual method and the non-smooth critical point theory. This
year, Wang and Jia [28] has proved the existence of a positive ground state solution for equation (1.5)
by relying on a monotonicity trick and a new version of global compactness lemma.

More recently, the physicists are often interested in “normalized solutions”, i.e. solutions with
prescribed L2 -norm. Thus it is interesting for us to study whether (1.1) has a normalized solution.
When p = 16

3 , equation (1.1) naturally becomes the following form

−

(
a + b

∫
R3
|∇u|2

)
∆u − u∆(u2) − λu = |u|

10
3 u, x ∈ R3. (1.6)

Then, for any fixed c > 0, a solution of equation (1.6) with
(∫
R3 u2

) 1
2

= c can be viewed as a critical
point of the following functional

I(u) =
a
2

∫
R3
|∇u|2 +

b
4

(∫
R3
|∇u|2

)2

+

∫
R3

u2|∇u|2 −
3

16

∫
R3
|u|

16
3

constrained on the L2 -sphere in H :

S c = {u ∈ H : ‖u‖2 = c, c > 0} ,

where ‖u‖2 :=
(∫
R3 |u|2

) 1
2 and H :=

{
u ∈ H1

(
R3

)
:
∫
R3 u2|∇u|2 < +∞

}
. In this case, the parameter λ is not

fixed any longer but appears as an associated Lagrange multiplier. We call (uc, λc) ∈ S c × R a couple
of solution to equation (1.6) if uc is a critical point of I(u) constrained on S c and λc is the associated
Lagrange parameter.

As a matter of convenience, we set
ic := inf

u∈S c
I(u).
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Depending on (4.5) in [15], we know that there exists a positive constant C such that∫
R3
|u|

16
3 ≤ C

(∫
R3
|u|2

) 2
3
∫
R3

u2|∇u|2

for any u ∈ H. And then we can set

A := inf
u∈H\{0}

(∫
R3 u2

) 2
3
∫
R3 u2|∇u|2∫

R3 |u|
16
3

≥
1
C
> 0. (1.7)

Our first two main results are as follows:

Theorem 1.1. Let c∗ =
(

16A
3

) 3
4 . Then

(1) ic =

{
0, 0 < c ≤ c∗,
−∞, c > c∗;

(2) ic has no minimizer for all c > 0;
(3) I(u) has no critical point on the constraint S c for all 0 < c ≤ c∗.

Since Liu et al. [16] have been proved that problem (1.6) has at least one nontrivial solution when
p = 16

3 , it is reasonable to conjecture that I(u) has at least one critical point constrained on S c for some
c > c∗. For this, we give an affirmative answer in this paper. As far as we know, there are very few
papers on this respect. To state our main result, we set

Bc :=
{

u ∈ S c :
∫
R3

u2|∇u|2 <
3

16

∫
R3
|u|

16
3

}
, (1.8)

then it follows from Theorem 1.1-(1) that Bc , ∅ for each c > c∗. Define

Dc := {u ∈ Bc : G(u) = 0} ,

where

G(u) := a
∫
R3
|∇u|2 + b

(∫
R3
|∇u|2

)2

+ 5
∫
R3
|u|2|∇u|2 −

15
16

∫
R3
|u|

16
3 .

Theorem 1.2. Assume that c > c∗, where c∗ is given in Theorem (1.1). Then there exists a couple of
solution (uc, λc) ∈ Dc × R

− for equation (1.6) with I (uc) = infu∈Dc I(u).

In order to prove Theorem 1.2, we set

mc = inf
u∈Dc

I(u) (1.9)

and need to prove that mc is attained. But there are two difficulties. First, it is not easy to prove
that minimizers of mc are critical points of I(u) constrained on S c since there may be two Lagrange
multipliers. For this problem, we will use the Pohozaev identity and the famous Gagliardo-Nirenberg
inequality. Second, it is difficult to show that Dc is weakly closed thanks to lack of compactness for the
minimizing sequences. To overcome this difficulty, we construct a Schwartz symmetric minimizing
sequence of mc and prove the strict monotonicity of the function c 7→ mc to avoid possible vanishing
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and dichotomy of the sequence.
In the last part of this paper, we are devoted to studying existence and asymptotic behavior of

normalized solution for equation (1.1). For p ∈
(

10
3 ,

16
3

)
, the corresponding functional of equation (1.1)

is defined as

Jb(u) =
a
2

∫
R3
|∇u|2 +

b
4

(∫
R3
|∇u|2

)2

+

∫
R3

u2|∇u|2 −
1
p

∫
R3
|u|p

restricted on the constraint
Ek =

{
u ∈ H

(
R3

)
: ‖u‖22 = k

}
, k > 0,

where H
(
R3

)
is also defined as H :=

{
u ∈ H1

(
R3

)
:
∫
R3 u2|∇u|2 < +∞

}
. Moreover, for convenience, we

set
mk = inf

u∈Ek
Jb(u).

To get critical point of Jb, we need to use minimax and deformation type arguments, which are more
or less standard for smooth variational formulations. However, the variational functional Jb here is not
well defined in H1

(
R3

)
let alone being smooth. If a small subspace of H1

(
R3

)
is used, then one loses

compactness. To overcome this difficulty of lack of differentiability of Jb, we will apply a perturbation
method. Thus we should consider the perturbed functional

Jµ,b(u) :=
µ

4

∫
R3
|∇u|4dx + Jb(u),

where µ ∈ (0, 1] is a parameter. For any given c > 0, we denote

Tk =
{
u ∈ X : ‖u‖22 = k

}
,

where X = W1,4
(
R3

)
∩ H1

(
R3

)
.

One may observe that Jµ,b(u) is well-defined and C1 in X (see [19]). The idea is to first look for
critical points of Jµ,b for µ > 0 small by using minimax and deformation arguments. After that, we
consider convergence of critical point as µ→ 0. Here we will employ the techniques developed in [19]
to obtain a certain strong convergence to critical point of the original functional Jb.

Before presenting our last two main results, we need to introduce the following known results:

Lemma 1.3. ( [15], Theorem 1.5; [29], Theorem 1.5) Assume that p ∈
(

10
3 ,

16
3

)
. Then there exists a

k(p) > 0, given by
k(p) := inf{k > 0 : mk < 0},

such that
(1) If k ∈ (0, k (p)), mk = 0 and mk has no minimizer;
(2) If k = k(p), mk = 0 and mk admits a minimizer;
(3) If k ∈ (k(p),∞), mk < 0 and mk admits a minimizer.

Now we give the last two main results as follows:

Theorem 1.4. Assume that p ∈
(

10
3 ,

16
3

)
. Then there exist a k0 ∈ (0, k (p)), a Schwarz symmetric

function vk and a Lagrange multiplier λk < 0 such that for any k ∈ (k0,∞), (vk, λk) ∈ Ek×R
− is a couple

of weak solution for equation (1.1), and Jb (vk) > 0 is a mountain pass level.
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Theorem 1.5. Assume that p ∈
(

10
3 ,

16
3

)
and (vb, λb) ∈ Tk × R is a couple of critical point of Jµ,b. Then

for any sequence {bm} satisfying bm → 0+ as m→ +∞, there is a subsequence of {bm}, still denoted by
{bm}, such that vbm ⇀ v0 in H1

(
R3

)
, vbm∇vbm ⇀ v0∇v0 in L2

(
R3

)
and λbm → λ0 in R as m → ∞, where

(v0, λ0) ∈ Ek × R
− is a couple of weak solution to the following equation

−a∆v − v∆
(
v2

)
− λv = |v|p−2v, in R3.

This paper is organized as follows. In Section 2, we give the proof of Theorems 1.1 and 1.2. In
Section 3, we first present some preliminary results, and then give the proof of Theorems 1.4 and 1.5.
Notation. Throughout this paper, we let ut(x) := t

3
2 u(tx) for t > 0. Denote by C,Ck (k = 1, 2, . . .)

various positive constants whose exact value is inessential. And denote by → (⇀) the strong (weak)
convergence. Moreover, for any 1 ≤ s < ∞, Ls

(
R3

)
is the usual Lebesgue space endowed with the

norm
‖u‖ss :=

∫
R3
|u|s

and W1,s
(
R3

)
is the usual Sobolev space endowed with the norm

‖u‖W1,s := ‖∇u‖s + ‖u‖s.

For convenience, we denote by X the space W1,4
(
R3

)
∩ H1

(
R3

)
equipped with its natural norm

‖ · ‖X := ‖ · ‖W1,4+ ‖ · ‖H1 . Recall that a sequence {un} ⊂ H1
(
R3

)
is said to be a Palais-Smale sequence

for I if I (un) is bounded and I′ (un) → 0 as n → ∞. We say I satisfies the Palais-Smale condition if
any Palais-Smale sequence contains a convergent subsequence.

2. Proof of Theorems 1.1 and 1.2

In order to prove our theorems, we need to give some preliminary results.

Lemma 2.1. For c∗ =
(

16A
3

) 3
4 , we have

ic =

{
0, 0 < c ≤ c∗,
−∞, c > c∗,

where ic := infu∈S c I(u) is defined as in Theorem 1.1.

Proof. (1). By (1.7), one has ∫
R3
|u|

16
3 ≤

1
A
‖u‖

4
3
2

∫
R3
|u|2|∇u|2, ∀u ∈ H.

Therefore, for any c > 0 and any u ∈ S c, since c∗ =
(

16
3 A

) 3
4 , we get

3
16

∫
R3
|u|

16
3 ≤

(
c
c∗

) 4
3
∫
R3
|u|2|∇u|2. (2.1)
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And then, for any 0 < c ≤ c∗ and any u ∈ S c, it follows from (2.1) that

3
16

∫
R3
|u|

16
3 ≤

∫
R3
|u|2|∇u|2,

which means

I(u) ≥
a
2

∫
R3
|∇u|2 +

b
4

(∫
R3
|∇u|2

)2

> 0.

Thus, we deduce ic ≥ 0 by the arbitrary of u.
On the other hand, since ut(x) := t

3
2 u(tx) for t > 0, to facilitate the estimation of I

(
ut), we firstly

compute:∫
R3

∣∣∣∇ut
∣∣∣2 = t2

∫
R3
|∇u|2,

∫
R3

∣∣∣ut
∣∣∣2 ∣∣∣∇ut

∣∣∣2 = t5
∫
R3

u2 |∇u|2 ,
∫
R3

∣∣∣ut
∣∣∣ 16

3 = t5
∫
R3
|u|

16
3 .

Then we get

I
(
ut) =

at2

2

∫
R3
|∇u|2 +

bt4

4

(∫
R3
|∇u|2

)2

+ t5
(∫
R3
|u|2|∇u|2 −

3
16

∫
R3
|u|

16
3

)
→ 0

as t → 0+. Therefore, ic ≤ 0.
So ic = 0 for each 0 < c ≤ c∗.

(2). For any c > c∗ =
(

16
3 A

) 3
4 , we obtain A < 3

16c
4
3 . By the definition of A there exists u ∈ H\{0} such

that

‖u‖
4
3
2

∫
R3
|u|2|∇u|2 <

3
16

c
4
3

∫
R3
|u|

16
3 .

Setting v := c
‖u‖2

u, we see that v ∈ S c satisfies

∫
R3
|v|2|∇v|2 =

(
c
‖u‖2

)4 ∫
R3
|u|2|∇u|2

<
3

16

(
c
‖u‖2

) 16
3
∫
R3
|u|

16
3

=
3

16

∫
R3
|v|

16
3 .

Then for any t > 0, one has

I
(
vt) =

at2

2

∫
R3
|∇v|2 +

bt4

4

(∫
R3
|∇v|2

)2

− t5
(

3
16

∫
R3
|v|

16
3 −

∫
R3
|v|2|∇v|2

)
→ −∞

as t → +∞, which implies that ic = −∞ for any c > c∗. �

By the proof of Lemma 2.1, it is easy to show the following result.
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Corollary 1. For u ∈ S c, we get {
Bc = ∅, 0 < c ≤ c∗,
Bc , ∅, c > c∗,

where Bc is defined as in (1.8). Moreover, for any 0 < c ≤ c∗, we obtain I(u) > 0.

Lemma 2.2. ic has no minimizer for all c > 0.

Proof. The proof follows directly from Lemma 2.1 and Corollary 1. �

Lemma 2.3. I(u) has no critical point constrained on S c for each c ∈ (0, c∗].

Proof. By contradiction, we suppose that there exist some c ∈ (0, c∗] and some uc ∈ S c such that(
I|sc

)′
(uc) = 0, then there exists a Lagrange multiplier λc ∈ R such that I′ (uc) − λcuc = 0. Hence by

Lemma 5.1 in [30], we know that uc satisfies the following Pohozaev identity:

a
2

∫
R3
|∇uc|

2 +
b
2

(∫
R3
|∇uc|

2
)2

+

∫
R3
|uc|

2|∇uc|
2 −

3
2
λc

∫
R3
|uc|

2
−

9
16

∫
R3
|uc|

16
3 = 0.

This together with I′ (uc) = λcuc implies that

a
∫
R3
|∇uc|

2 + b
(∫
R3
|∇uc|

2
)2

+ 5
∫
R3
|uc|

2|∇uc|
2 =

15
16

∫
R3
|uc|

16
3 ,

which implies that uc ∈ Bc. It is a contradiction with Corollary 1. So the lemma is proved. �

Proof of Theorem 1.1. Theorem 1.1 follows directly from Lemmas 2.1–2.3.
Next, we are absorbed in dealing with the existence of normalized solutions for I(u) restricted to

S c when c > c∗. Depending on Corollary 1 and Lemma 2.3, we try to look for normalized solutions
constrained on Bc.

Lemma 2.4. For any u ∈ Bc, there exists a unique t̃ > 0 such that I
(
ut̃
)

= maxt>0 I
(
ut) and G

(
ut̃
)

= 0,
where

G (u) = a
∫
R3
|∇u|2 + b

(∫
R3
|∇u|2

)2

+ 5
∫
R3
|u|2|∇u|2 −

15
16

∫
R3
|u|

16
3 .

Proof. For any u ∈ Bc, we consider the following path Φ : (0,+∞)→ R defined as

Φ(t) =
t2

2
a
∫
R3
|∇u|2 +

t4

4
b
(∫
R3
|∇u|2

)2

− t5
(

3
16

∫
R3
|u|

16
3 −

∫
R3
|u|2|∇u|2

)
,

namely that Φ(t) = I
(
ut). By an elementary analysis, it is easy to infer that Φ has a unique positive

critical point t̃ corresponding to its maximum, i.e. Φ′(t̃) = 0 and Φ(t̃) = maxt>0 Φ(t). Hence I
(
ut̃
)

=

maxt>0 I
(
ut) and

at̃2
∫
R3
|∇u|2 + bt̃4

(∫
R3
|∇u|2

)2

+ 5t̃5
∫
R3
|u|2|∇u|2 −

15
16

t̃5
∫
R3
|u|

16
3 = 0,

which means G
(
ut̃
)

= 0. �
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Lemma 2.5. For any c > c∗, I(u) is bounded from below and coercive on Dc. Moreover, there exist
C0,C1 > 0 such that

∫
R3 |u|

16
3 ≥ C0 and I(u) ≥ C1 for all u ∈ Dc.

Proof. For any c > c∗, it follows from Lemma 2.4 that Dc , ∅. Then for any u ∈ Dc, we obtain

I(u) = I(u) −
1
5

G(u) =
3

10
a
∫
R3
|∇u|2 +

b
20

(∫
R3
|∇u|2

)2

≥ 0. (2.2)

Then I is bounded from below and coercive on Dc.
Moreover, by the Gagliardo-Nirenberg inequality (see [31]), there exists a positive constant C such

that ∫
R3
|u|

16
3 ≤ C‖∇u‖52‖u‖

1
3
2 . (2.3)

Relying on (2.3), we deduce that there exists C > 0 depending only on c such that(
1
C

∫
R3
|u|

16
3

) 2
5

≤ ‖∇u‖22 ≤
15
16

∫
R3
|u|

16
3 ≤

15C
16
‖∇u‖52,

which implies ∫
R3
|u|

16
3 ≥

(
16

15C
2
5

) 5
3

=: C0

and

‖∇u‖22 ≥
(

16
15C

) 2
3

.

The last inequality and (2.2) deduce that

I(u) ≥
3

10
a
∫
R3
|∇u|2 +

b
20

(∫
R3
|∇u|2

)2

≥
3
10

a
(

16
15C

) 2
3

+
b
20

(
16

15C

) 4
3

=: C1

for all u ∈ Dc . �

Lemma 2.6. The function c 7→ mc is strictly decreasing on (c∗,+∞), where mc is defined as (1.9).

Proof. By Lemma 2.5, we see that mc > 0. Then for any c1, c2 ∈ (c∗,+∞) satisfying c1 < c2, it is
enough to prove that mc2 < mc1 .

By the definition of mc1 and Lemma 2.4, there exists un ∈ Dc1 such that I (un) ≤ mc1 + 1
n and

I (un) = maxt>0 I
(
ut

n
)
. Setting vn(x) :=

(
c1
c2

) 1
2 un

(
c1
c2

x
)
, then ‖vn‖2 = c2 and ‖∇vn‖2 = ‖∇un‖2. And we

have ∫
R3
|vn|

2
|∇vn|

2 =

(
c1

c2

) ∫
R3
|un|

2
|∇un|

2
≤

∫
R3
|un|

2
|∇un|

2 (2.4)

and ∫
R3
|vn|

16
3 =

(
c2

c1

) 1
3
∫
R3
|un|

16
3 >

∫
R3
|un|

16
3 ,
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i.e. vn ∈ Bc2 since un ∈ Dc1 . Then by Lemma 2.4 there exists a sequence {tn} ⊂ R
+ such that vtn

n ∈ Dc2

and I
(
vtn

n

)
= maxt>0 I

(
vt

n
)
.

Furthermore, there exists C > 0 independent of n such that tn ≥ C for all n ∈ N+. Suppose not,
we assume that tn → 0 as n → +∞. By the definition of {vn}, we see that {vn} is uniformly bounded
in H. Then we conclude from Lemma 2.5 that 0 < mc2 ≤ limn→+∞ I

(
vtn

n

)
→ 0, which is impossible.

Therefore, by Lemma 2.5 and (2.4) one has

mc2 ≤ I
(
vtn

n
)
≤ I

(
utn

n
)
−

(c2

c1

) 1
3

− 1

 t5
n

∫
R3
|un|

16
3

< max
t>0

I
(
ut

n
)
−

(c2

c1

) 1
3

− 1

 t5
nC0

≤ I (un) −

(c2

c1

) 1
3

− 1

 t5
nC0

≤ mc1 +
1
n
−

(c2

c1

) 1
3

− 1

C5C0,

where C0 is a positive constant independent of n given in Lemma 2.5. Thus we get mc2 < mc1 , which
implies that the proof is completed. �

Lemma 2.7. For any c > c∗, each minimizer of mc is a critical point of I(u) constrained on S c.

Proof. We define D̃(c) := {u ∈ S c | G(u) = 0}, and then we easily know that D̃(c) = D(c). Suppose that
u ∈ Dc is a minimizer of mc, then u is also a minimizer of m̃c. Hence by standard arguments, there exist
λ, θ ∈ R such that I′(u) − λu − θG′(u) = 0, namely that

−(1 − 2θ)a∆u − (1 − 4θ)b
(∫
R3
|∇u|2

)
∆u − (1 − 5θ) u∆

(
u2

)
− (1 − 5θ) |u|

10
3 u = λu.

(2.5)

Thus we need to prove that θ = 0.
By contradiction, we suppose that θ , 0. By (2.5), we know that u satisfies the following Pohozaev

identity

P(u) :=
1 − 2θ

2
a
∫
R3
|∇u|2 +

1 − 4θ
2

b
(∫
R3
|∇u|2

)2

+ (1 − 5θ)
∫
R3
|u|2|∇u|2

−
3
2
λ

∫
R3

u2 −
9

16
(1 − 5θ)

∫
R3
|u|

16
3 = 0.

This together with (2.5) implies that

(1 − 2θ)a
∫
R3
|∇u|2 + (1 − 4θ) b

(∫
R3
|∇u|2

)2

+ 5 (1 − 5θ)
∫
R3
|u|2|∇u|2

−
15
16

(1 − 5θ)
∫
R3
|u|

16
3 = 0,
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which means

G(u) − θ
2a

∫
R3
|∇u|2 + 4b

(∫
R3
|∇u|2

)2

+ 25
(∫
R3
|u|2|∇u|2 −

3
16

∫
R3
|u|

16
3

) = 0.

This equality combined with G(u) = 0 and θ , 0 implies that
∫
R3 |∇u|2 = 0, which contradicts Lemma

2.5. So θ = 0, and then u is a critical point of I(u) constrained on S c . �

Lemma 2.8. Suppose that {un} ⊂ H is a bounded sequence of Schwartz Symmetric functions satisfying
un ⇀ u in H, then∫

R3
|∇u|2 + 5

∫
R3
|u|2|∇u|2 ≤ lim inf

n→+∞

(∫
R3
|∇un|

2 + 5
∫
R3
|un|

2
|∇un|

2
)
.

Proof. The proof is similar to Lemma 4.3 in [15], so we omit it here. �

Proof of Theorem 1.2. Assume that {un} ⊂ Dc is a minimizing sequence of mc, it follows from
Lemma 2.5 that {un} is uniformly bounded in H. To obtain a minimizer of mc, let {vn} be the sequence
of Schwartz symmetric functions for {un}. Then by the Pólya-Szegö inequality ( [15], Lemma 4.3), one
has ∫

R3
|∇vn|

2
≤

∫
R3
|∇un|

2 ,

∫
R3
|vn|

2 =

∫
R3
|un|

2 ,

∫
R3
|vn|

16
3 =

∫
R3
|un|

16
3 ,∫

R3
|∇vn|

2 + 5
∫
R3
|vn|

2
|∇vn|

2
≤

∫
R3
|∇un|

2 + 5
∫
R3
|un|

2
|∇un|

2 .

(2.6)

By (2.6), we infer that the sequence {vn} is also uniformly bounded in H. And we obtain

G (vn) ≤ G (un) = 0. (2.7)

Since {vn} is uniformly bounded, up to a subsequence, there exists v ∈ H such that vn ⇀ v, in H,
vn → v, in Lp

(
R3

)
, ∀p ∈ (2, 2 · 2∗) .

(2.8)

Moreover, by (2.6) and Lemma 2.5, one obtains∫
R3
|v|

16
3 = lim

n→+∞

∫
R3
|vn|

16
3 = lim

n→+∞

∫
R3
|un|

16
3 ≥ C0 > 0, (2.9)

where C0 > 0 is a constant given in Lemma 2.5. (2.9) implies that v , 0. Setting β := ‖v‖2, then
β ∈ (0, c]. By Lemma 2.8 and (2.7)–(2.9), we deduce

G(v) ≤ lim inf
n→+∞

G (vn) ≤ 0,
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i.e. v ∈ Bβ. So it follows from Corollary 1 that β ∈ (c∗, c] . By Lemma 2.4, there exists a unique
t ∈ (0, 1] such that vt ∈ Dβ. Then by Lemma 2.6 we have

mβ ≤ I
(
vt) = I

(
vt) − 1

5
G

(
vt) =

3a
10

t2
∫
R3
|∇v|2 +

b
20

t4
(∫
R3
|∇v|2

)2

≤ lim inf
n→+∞

 3
10

a
∫
R3
|∇vn|

2 +
b

20

(∫
R3
|∇vn|

2
)2

≤ lim inf
n→+∞

 3
10

a
∫
R3
|∇un|

2 +
b

20

(∫
R3
|∇un|

2
)2

= lim inf
n→+∞

(
I (un) −

1
5

G (un)
)

= mc ≤ mβ,

where the equality holds only for β = c and t = 1. Therefore, β = c and I(v) = mc. And then we get
a minimizer v ∈ Dc of mc. By Lemma 2.7, we know that v is a critical point of I(v) constrained on S c.
Thus, there exists λc ∈ R such that I′(v) − λcv = 0, namely that

λcc2 = 〈I′(v), v〉

= a
∫
R3
|∇v|2 + b

(∫
R3
|∇v|2

)2

+ 4
∫
R3
|v|2|∇v|2 −

∫
R3
|v|

16
3 .

This together with G(v) = 0 deduces that

λcc2 ≤
15
16

∫
R3
|v|

16
3 −

∫
R3
|v|

16
3 < 0,

i.e. λc < 0. So (v, λc) ∈ S c × R
− is a couple of solution to problem (1.6).

3. Proof of Theorems 1.4 and 1.5

In this section, we need some notations and useful preliminary results. For the sake of convenience,
we set

A(u) =

∫
R3
|∇u|4, B(u) =

∫
R3
|∇u|2, C(u) =

∫
R3
|u|2|∇u|2,

D(u) =

∫
R3
|u|2, E(u) =

∫
R3
|u|p.

Correspondingly, setting ut(x) = t
3
2 u(tx) for t > 0, by calculation we can easily get

A(ut) = t7A(u), B(ut) = t2B(u), C(ut) = t5C(u),

D(ut) = D(u), E(ut) = t
3
2 (p−2)

E(u)

and

Jµ,b(ut) =
µ

4
t7A(u) +

a
2

t2B(u) +
b
4

t4 (B (u))2 + t5C(u) −
t

3
2 (p−2)

p
E(u).
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Lemma 3.1. Assume that p ∈
(

10
3 , 6

)
. Then for l > 0, setting

Cl :=
{

u ∈ Tk :
∫
R3

(
1 + |u|2

)
|∇u|2 = l

}
,

there exists a l0 > 0 sufficiently small such that for all l ∈ (0, l0] and all µ > 0,

Jµ,b(u) ≥
1
2

min
{a

2
, 1

}
l > 0 and Qµ,b(u) ≥

1
2

min {a, 5} l > 0

for all u ∈ Cl, where

Qµ,b(u) :=
d
dt

Jµ,b
(
ut)∣∣∣∣∣

t=1

=
7
4
µA(u) + aB(u) + b (B (u))2 + 5C(u) −

3(p − 2)
2p

E(u).

Proof. When p ∈
(

10
3 , 6

)
, by the Gagliardo-Nirenberg inequality, there exists a L1 = L1(p) > 0, such

that for all u ∈ X ∫
R3
|u|p ≤ L1

(∫
R3
|∇u|2

) 3(p−2)
4

(∫
R3
|u|2

) 6−p
4

≤ L1

(∫
R3

(
1 + |u|2

)
|∇u|2

) 3(p−2)
4

(∫
R3
|u|2

) 6−p
4

.

Thus, when k ∈ (0, k(p)), for a constant L2 = L2(p) > 0 independent of k > 0 and for all u ∈ Tk, we
obtain

Jµ,b(u) ≥ min
{a

2
, 1

} ∫
R3

(
1 + |u|2

)
|∇u|2 − L2

(∫
R3

(
1 + |u|2

)
|∇u|2

) 3(p−2)
4

. (3.1)

Note that 3(p−2)
4 > 1 as p ∈

(
10
3 , 6

)
. Therefore, by (3.1), we infer that there exists l0 > 0 small enough

such that for all l ∈ (0, l0]

Jµ,b(u) ≥
1
2

min
{a

2
, 1

}
l > 0, for all u ∈ Cl.

Next, by the similar way, we get there exists a constant L3 = L3(p) > 0 such that for all u ∈ Tk

Qµ,b(u) ≥ min {a, 5}
∫
R3

(
1 + |u|2

)
|∇u|2 − L3

(∫
R3

(
1 + |u|2

)
|∇u|2

) 3(p−2)
4

,

which means there exists l0 > 0 small enough such that for all l ∈ (0, l0]

Qµ,b(u) ≥
1
2

min {a, 5} l > 0, for all u ∈ Cl.

This proof is completed. �
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Lemma 3.2. Assume that p ∈
(

10
3 ,

16
3

)
. Then there exist k0 ∈ (0, k (p)) and µ0 > 0 small enough such

that for any fixed k ∈ [k0,∞) and µ ∈ (0, µ0) the functional Jµ,b has a mountain pass geometry on the
constraint Tk, that is, there exist (u0, u1) ∈ Tk × Tk both Schwarz symmetric, such that

ηµ,b(k) = inf
g∈Γk

max
t∈[0,1]

Jµ,b(g(t)) > max
{
Jµ,b (u0) , Jµ,b (u1)

}
,

where
Γk = {g ∈ C ([0, 1],Tk) : g(0) = u0, g(1) = u1} .

Proof. Firstly, to choose u0 ∈ Tk, we consider, for any arbitrary Schwartz symmetric function, the
scaling

vθ(x) := θ3/2v(θx),∀θ > 0,

which deduces that

vθ ∈ Tk,∀θ > 0, lim
θ→0

Jµ,b
(
vθ

)
= 0 and lim

θ→0

∫
R3

(
1 +

∣∣∣vθ∣∣∣2) ∣∣∣∇vθ
∣∣∣2 = 0.

Hence setting u0 = vθ0 for a fixed θ0 > 0 sufficiently small, we get

Jµ,b (u0) ≤
1
4

min
{a

2
, 1

}
l0 and

∫
R3

(
1 + |u0|

2
)
|∇u0|

2 < l0.

Secondly, to choose u1 we distinguish the cases k > k(p) and k ≤ k(p).
Case 1: When k > k(p), we follow from Lemma 1.3-(3) that Jb has a global minimizer uk ∈ H1

(
R3

)
satisfying Jb (uk) = mk < 0. Without restriction we can assume that uk is Schwarz symmetric. And
then combining Lemma 4.6 in [15] and Lemma 5.10 in [17], we see that uk ∈ X has an exponential
decrease at infinity. Thus setting u1 = uk and taking l0 > 0 smaller if necessary, we infer that

Jb (u1) < 0 and
∫
R3

(
1 + |u1|

2
)
|∇u1|

2 > l0,

where the value l0 > 0 is defined in Lemma 3.1. Now taking µ0 > 0 small enough, by continuity we
get Jµ,b (u1) < 0 for all µ ∈ (0, µ0).

Case 2: When k ≤ k(p), we know that for k = k(p) Jb has a global minimizer uk(p), which is Schwarz
symmetric and satisfies Jb

(
uk(p)

)
= 0. We set

l1 =

∫
R3

(
1 +

∣∣∣uk(p)

∣∣∣2) ∣∣∣∇uk(p)

∣∣∣2 .
Restricting l0 > 0 in Lemma 3.1 if necessary we can assume that 2l0 < l1. By continuity there exists a
t0 < 1 such that for any t ∈ (t0, 1)

Jb

(√
tuk(p)

)
<

1
2

min
{a

2
, 1

}
l0

and ∫
RN

(
1 +

∣∣∣√tuk(p)

∣∣∣2) ∣∣∣∣∇ (√
tuk(p)

)∣∣∣∣2 ≥ 3
2

l0,

where
√

tuk(p) ∈ Tk with k = tk(p). Now we set k0 = t0k(p), and then for each k ∈ (k0, k(p)) and
t ∈ (t0, 1), we can choose u1 =

√
tuk(p) such that u1 ∈ Tk. Finally taking µ0 > 0 small enough we have

by continuity that Jµ,b (u1) < 1
2 min

{
a
2 , 1

}
l0 for all µ ∈ (0, µ0). �
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Lemma 3.3. Assume that p ∈
(

10
3 ,

16
3

)
. For any fixed k, µ > 0, if there exists a sequence {un} ⊂ Tk such

that
{
Jµ,b (un)

}
⊂ R is bounded, then {un} is bounded in X.

Proof. By the Gagliardo-Nirenberg-Sobolev inequality, for any u ∈ X there holds∫
R3
|u|s ≤ C‖u‖

12−s
5

2

(∫
R3
|u|2|∇u|2

) 3(s−2)
10

, (3.2)

where s ∈ (2, 12) and C > 0 is a constant independent of u. Thus we have

Jµ,b (un) ≥
µ

4
‖∇un‖

4
4 + min{

a
2
, 1}

∫
R3

(
1 + |un|

2
)
|∇un|

2

−C
(∫
R3

(
1 + |un|

2
)
|∇un|

2
) 3(p−2)

10

.

(3.3)

When p ∈
(

10
3 ,

16
3

)
, we get 3(p−2)

10 < 1. Then by (3.3) and the boundedness of
{
Jµ,b (un)

}
, we infer that{∫

R3

(
1 + |un|

2
)
|∇un|

2
}

and
{
‖∇un‖

4
4

}
are bounded for fixed µ > 0. Moreover, due to (3.2), we obtain{

‖un‖
4
4

}
is also bounded. Thus {un} is bounded in X . �

Next, we shall prove that ηµ,b(k) is indeed a critical value for Jµ,b restricted on Tk. To this end, we
first show that there exists a bounded Palais-Smale sequence at the mountain pass level ηµ,b(k). To
find such a Palais-Smale sequence, we adopt the approach developed by Jeanjean [32], already applied
in [33]. Set

η̃µ,b(k) := inf
g̃∈Γ̃k

max
0≤t≤1

J̃µ,b(̃g(t)),

where
Γ̃k := {̃g ∈ C ([0, 1],Tk × R) : g̃(0) = (u0, 0), g̃(1) = (u1, 0)}

and
J̃µ,b : Tk × R→ R, (u, θ)→ Jµ,b (κ (u, θ))

for κ (u, θ) := e
3
2 θu

(
eθx

)
. Clearly, for any g ∈ Γk, we have g̃ := (g, 0) ∈ Γ̃k. Based on this fact, we get

that the maps

ϕ : Γk → Γ̃k, g 7→ ϕ(g) := (g, 0) and ψ : Γ̃k → Γk, g̃ 7→ ψ(̃g) := κ ◦ g̃

satisfy
J̃µ,b(ϕ(g)) = Jµ,b(g) and Jµ,b(ψ(̃g)) = J̃µ,b(̃g),

which means η̃µ,b(k) = ηµ,b(k).
The lemma below has been established by the Ekeland variational principle ( [32], Lemma 2.3).

Hereinafter we denote byW the set X ×R equipped with the norm ‖ · ‖2
W

= ‖ · ‖2X + | · |2R and denote by
W∗ its dual space.

Lemma 3.4. Let ε > 0. Suppose that g̃0 ∈ Γ̃k satisfies

max
0≤t≤1

J̃µ,b (̃g0(t)) ≤ η̃µ,b(k) + ε.
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Then there exists a pair of (u0, θ0) ∈ Tk × R such that:
(1) J̃µ,b (u0, θ0) ∈

[̃
ηµ,b(k) − ε, η̃µ,b(k) + ε

]
;

(2) min
0≤t≤1
‖(u0, θ0) − g̃0(t)‖W ≤

√
ε;

(3)
∥∥∥∥( J̃µ,b

∣∣∣
Tk×R

)′
(u0, θ0)

∥∥∥∥
W∗
≤ 2
√
ε, namely that∣∣∣∣〈J̃′µ,b (u0, θ0) , z

〉
W∗×W

∣∣∣∣ ≤ 2
√
ε‖z‖W

holds for all z ∈ T̃(u0,θ0) := {(z1, z2) ∈ W, 〈u0, z1〉L2 = 0} .

Lemma 3.5. Assume that p ∈
(

10
3 ,

16
3

)
. Then for any fixed k ∈ [k0,∞), where k0 is given in Lemma 3.2,

there exist a sequence {vn} ⊂ Tk and a sequence {ξn} ⊂ X of Schwarz symmetric functions satisfying
Jµ,b (vn)→ ηµ,b(k) > 0,
‖J′µ,b

∣∣∣∣
Tk

(vn) ‖X∗ → 0,

Qµ,b (vn)→ 0,
‖vn − ξn‖X → 0,

(3.4)

as n→ ∞, where X∗ denotes the dual space of X.

Proof. By the definition of ηµ,b(k), we see that for each n ∈ N+, there exists gn ∈ Γk such that

max
0≤t≤1

Jµ,b (gn(t)) ≤ ηµ,b(k) +
1
n
.

Denote by g∗n the Schwarz symmetrization of gn ∈ Γk. Then by the Pólya-Szegö inequality ‖∇u∗‖qq ≤
‖∇u‖qq,∀q ∈ [1,∞), and using Lemma 4.3 in [15], one has

max
0≤t≤1

Jµ,b
(
g∗n(t)

)
≤ max

0≤t≤1
Jµ,b (gn(t)) .

Since η̃µ,b(k) = ηµ,b(k) and g̃n =
(
g∗n, 0

)
∈ Γ̃k, we deduce

max
0≤t≤1

J̃µ,b (̃gn(t)) ≤ η̃µ,b(k) +
1
n
.

Thus relying on Lemma 3.4, we obtain a sequence {(un, θn)} ⊂ Tk × R such that
(i) J̃µ,b (un, θn) ∈

[
ηµ,b(k) − 1

n , ηµ,b(k) + 1
n

]
;

(ii) min
0≤t≤1

∥∥∥(un, θn) −
(
g∗n(t), 0

)∥∥∥
W
≤

√
1
n ;

(iii)
∥∥∥∥( J̃µ,b

∣∣∣
Tk×R

)′
(un, θn)

∥∥∥∥
W∗
≤ 2

√
1
n , i.e.

∣∣∣∣〈J̃′µ,b (un, θn) , z
〉
W∗×W

∣∣∣∣ ≤ 2

√
1
n
‖z‖W

holds for all z ∈ T̃(un,θn) := {(z1, z2) ∈ W, 〈un, z1〉L2 = 0}.
We claim that for each n ∈ N+, there exists tn ∈ [0, 1] such that vn = κ (un, θn) and ξn := g∗n (tn)

satisfy (3.4). Firstly, depending on (i), we deduce that Jµ,b (vn) → ηµ,b(k) as n → ∞, since Jµ,b (vn) =
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Jµ,b (κ (un, θn)) = J̃µ,b (un, θn) . Furthermore, by Lemma 3.1, we get ηµ,b(k) > 0. Secondly, for any
(φ, r) ∈ W, notice that〈

J̃′µ,b(u, θ), (φ, r)
〉
W∗×W

=
7
4
µre7θ

∫
R3
|∇u|4 + µe7θ

∫
R3
|∇u|2∇u∇φ + are2θ

∫
R3
|∇u|2 + ae2θ

∫
R3
∇u∇φ

+ bre4θ
(∫
R3
|∇u|2

)2

+ be4θ
(∫
R3
|∇u|2

) ∫
R3
∇u∇φ + 5re5θ

∫
R3
|u|2|∇u|2

+ 2e5θ
∫
R3
|∇u|2uφ + 2e5θ

∫
R3
|u|2∇u∇φ −

3(p − 2)
2p

re
3(p−2)

2 θ

∫
R3
|u|p

− e
3(p−2)

2 θ

∫
R3
|u|p−2uφ,

then we deduce

Qµ,b (vn) =
7
4
µA(vn) + aB(vn) + b (B (vn))2 + 5C(vn) −

3(p − 2)
2p

E(vn)

=
7
4
µe7θn

∫
R3
|∇un|

4 + ae2θn

∫
R3
|∇un|

2 + be4θn

(∫
R3
|∇un|

2
)2

+ 5e5θn

∫
R3
|un|

2|∇un|
2 −

3(p − 2)
2p

e
3(p−2)

2 θn

∫
R3
|un|

p

=
〈
J̃′µ,b (un, θn) , (0, 1)

〉
W∗×W

.

Hence, by (iii), we easily obtain Qµ,b (vn)→ 0 as n→ ∞ for (0, 1) ∈ T̃(un,θn).
Thirdly, we will prove that ∥∥∥∥ J′µ,b

∣∣∣
Tk

(vn)
∥∥∥∥

X∗
→ 0

as n→ ∞. We claim that for n ∈ N sufficiently large,∣∣∣∣〈J′µ,b (vn) , ω
〉

X∗×X

∣∣∣∣ ≤ 8
√

n
‖ω‖2X, ∀ω ∈ Tvn ,

where Tvn = {ω ∈ X, 〈vn, ω〉L2 = 0} . To this end, for ω ∈ Tvn , setting ω̃ = κ (ω,−θn), by simple
calculation we get 〈

J′µ,b (vn) , ω
〉

X∗×X
=

〈
J̃′µ,b (un, θn) , (ω̃, 0)

〉
W∗×W

.

Since
∫
R3 unω̃ =

∫
R3 vnω, we get (ω̃, 0) ∈ T̃(un,θn) ⇔ ω ∈ Tvn . Moreover, by (ii), one has

|θn| = |θn − 0| ≤ min
0≤t≤1

∥∥∥(un, θn) −
(
g∗n(t), 0

)∥∥∥
W
≤

1
√

n
. (3.5)

And by simple calculations, we can easily get

‖(ω̃, 0)‖2
W

= ‖ω̃‖2X ≤ 4‖ω‖2X,
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which together with (iii) implies that〈
J′µ,b (vn) , ω

〉
X∗×X

=
〈
J̃′µ,b (un, θn) , (ω̃, 0)

〉
W∗×W

≤
2
√

n
‖(ω̃, 0)‖2

W

≤
8
√

n
‖ω‖2X.

(3.6)

Thus by (3.6) we deduce∥∥∥∥ J′µ,b
∣∣∣
Tk

(vn)
∥∥∥∥

X∗
= sup

ω∈Tvn ,‖ω‖X≤1

∣∣∣∣〈J′µ,b (vn) , ω
〉

X∗×X

∣∣∣∣ ≤ 8
√

n
→ 0

as n→ ∞.
In the end, for each n ∈ N+, it follows from (ii) that there exists tn ∈ [0, 1] such that∥∥∥(un, θn) −

(
g∗n(tn), 0

)∥∥∥
W
→ 0. This implies that∥∥∥un − g∗n(tn)

∥∥∥
X
→ 0.

Thus from (3.5) and

‖vn − ξn‖X =
∥∥∥κ (un, θn) − g∗n(tn)

∥∥∥
X
≤ ‖κ (un, θn) − un‖X +

∥∥∥un − g∗n(tn)
∥∥∥

X
,

we conclude that ‖vn − ξn‖X → 0 as n→ ∞. This proof is completed. �

Next, we will show the compactness of the Palais-Smale sequence {vn} obtained in Lemma 3.5. To
this aim, we need to first give two useful lemmas.

Lemma 3.6. Let p ∈
(

10
3 ,

16
3

)
, λ ∈ R. If v ∈ H

(
R3

)
is a weak solution of equation (1.1), then Qb(v) = 0,

where Qb(v) := Qµ,b(v)
∣∣∣
µ=0

. Moreover, if λ ≥ 0, one has v = 0.

Proof. If v ∈ H
(
R3

)
is a weak solution of problem (1.1), then v satisfies the following Pohozaev

identity
a
2

∫
R3
|∇v|2 +

b
2

(∫
R3
|∇v|2

)2

+

∫
R3
|v|2|∇v|2 −

3
p

∫
R3
|v|p =

3
2
λ

∫
R3
|v|2.

Multiplying (1.1) by v and integrating on R3, we derive the following identity

a
∫
R3
|∇v|2 + b

(∫
R3
|∇v|2

)2

+ 4
∫
R3
|v|2|∇v|2 −

∫
R3
|v|p = λ

∫
R3
|v|2.

Hence one has immediately

Qb(v) = a
∫
R3
|∇v|2 + b

(∫
R3
|∇v|2

)2

+ 5
∫
R3
|v|2|∇v|2 −

3(p − 2)
2p

∫
R3
|v|p = 0.

Also with simple calculations, we get

0 ≤ a
∫
R3
|∇v|2 + b

(∫
R3
|∇v|2

)2

+ 4
∫
R3
|v|2|∇v|2 ≤

3(p − 2)
p − 6

λ

∫
R3
|v|2.

Based on the above facts, we can easily get the following two conclusions:
(1) If λ > 0, we get v = 0 immediately;
(2) If λ = 0, we have B(v) = 0 and C(v) = 0. Then by Qb(v) = 0, we infer v = 0. �
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Lemma 3.7. ( [34], Lemma 3) Let F be a C1 functional on X. Then if {xn} ⊂ Tk is bounded in X, we
obtain

F′|Tk
(xn)→ 0 in X∗

(
R3

)
⇐⇒ F′ (xn) − 〈F′ (xn) , xn〉 xn → 0 in X∗

(
R3

)
as n→ ∞.

Proposition 1. Assume that p ∈
(

10
3 ,

16
3

)
. Let {vn} ⊂ Tk be the Palais-Smale sequence as obtained in

Lemma 3.5. Then there exist vµ ∈ X\{0} and λµ ∈ R such that, passing to a subsequence,
1) vn ⇀ vµ > 0, in X;
2) J′µ,b (vn) − λµvn → 0, in X∗;

3) J′µ,b
(
vµ

)
− λµvµ = 0, in X∗.

Moreover, if λµ < 0, we get

lim
n→∞

∥∥∥vn − vµ
∥∥∥

X
= 0. (3.7)

Proof. By Lemma 3.3 we see that {vn} is bounded in X. This implies the boundedness of the Schwarz
symmetric sequences {ξn} obtained in Lemma 3.5. Thus by Proposition 1.7.1 in [35], we conclude that
passing to a subsequence, there exists vµ ∈ X, which is non-negative and Schwarz symmetric, such that

ξn ⇀ vµ ≥ 0, in X;

ξn → vµ, in Lq
(
R3

)
, ∀q ∈ (2, 2∗) .

By interpolation, we obtain

ξn → vµ, in Lq
(
R3

)
, ∀q ∈ (2, 2 · 2∗) .

Since
∥∥∥vn − vµ

∥∥∥
q
≤ ‖vn − ξn‖q +

∥∥∥ξn − vµ
∥∥∥

q
, one has

vn → vµ, in Lq
(
R3

)
, ∀q ∈ (2, 2 · 2∗) . (3.8)

At this moment we firstly show that vµ , 0. By contradiction, assume that vµ = 0. Then by (3.8) we
get ‖vn‖p → 0, and using Qµ,b (vn)→ 0 we deduce that

A (vn)→ 0, B (vn)→ 0 and C (vn)→ 0.

This leads to Jµ,b (vn) → 0, which contradicts the fact that Jµ,b (vn) → ηµ,b(k) > 0. Thus Point 1) is
established.

Since {vn} ⊂ X is bounded, by Lemma 3.7 we obtain

J′µ,b
∣∣∣
Tk

(vn)→ 0 in X∗ ⇐⇒ J′µ,b (vn) −
〈
J′µ,b (vn) , vn

〉
vn → 0 in X∗.

Thus for any ω ∈ X, 〈
J′µ,b (vn) −

〈
J′µ,b (vn) , vn

〉
vn, ω

〉
= µ

∫
R3
|∇vn|

2
∇vn∇ω +

(
a + b

∫
R3
|∇vn|

2
) ∫
R3
∇vn∇ω

+ 2
∫
R3

(
vnω |∇vn|

2 + |vn|
2
∇vn∇ω

)
−

∫
R3
|vn|

p−2 vnω

− λn

∫
R3

vnω→ 0,

(3.9)
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where
λn =

1
‖vn‖

2
2

[
µA (vn) + aB (vn) + b (B (vn))2 + 4C (vn) − E (vn)

]
.

So
〈
J′µ (vn) , vn

〉
− λn ‖vn‖

2
2 → 0. Furthermore, we easily obtain {λn} is bounded since

〈
J′µ (vn) , vn

〉
is

bounded. Thus there exists λµ ∈ R, such that up to a subsequence, λn → λµ. This and (3.9) imply Point
2).

To prove Point 3), we follow from Point 2) that it is enough to show that for any ω ∈ X,〈
J′µ,b (vn) − λµvn, ω

〉
→

〈
J′µ,b

(
vµ

)
− λµvµ, ω

〉
. (3.10)

Since vn ⇀ vµ in X, then we obtain ∫
R3
∇vn∇ω→

∫
RN
∇vµ∇ω,∫

R3
|vn|

p−2 vnω→

∫
R3

∣∣∣vµ∣∣∣p−2
vµω,∫

R3
vnω→

∫
R3

vµω.

Notice that 〈
J′µ,b (vn) − λµvn, ω

〉
= µ

∫
R3
|∇vn|

2
∇vn∇ω +

(
a + b

∫
R3
|∇vn|

2
) ∫
R3
∇vn∇ω − λµ

∫
R3

vnω

+ 2
∫
R3

(
vnω |∇vn|

2 + |vn|
2
∇vn∇ω

)
−

∫
R3
|vn|

p−2 vnω,

so we only need to prove that ∫
R3
|∇vn|

2
∇vn∇ω→

∫
R3

∣∣∣∇vµ
∣∣∣2 ∇vµ∇ω; (3.11)∫

R3

(
vnω |∇vn|

2 + |vn|
2
∇vn∇ω

)
→

∫
R3

(
vµω

∣∣∣∇vµ
∣∣∣2 +

∣∣∣vµ∣∣∣2 ∇vµ∇ω
)
. (3.12)

We easily obtain
{
|∇vn|

2
∇vn

}
is bounded in L4/3

(
R3

)
since {∇vn} is bounded in L4

(
R3

)
. Thus

|∇vn|
2
∇vn ⇀

∣∣∣∇vµ
∣∣∣2 ∇vµ in L4/3

(
R3

)
, and then we get (3.11) by weak convergence for any

∇ω ∈ L4
(
R3

)
. Similarly, by the Young inequality, one has(

|vn| |∇vn|
2
)4/3
≤ 1

3 |vn|
4 + 2

3 |∇vn|
4 ,(

|vn|
2
|∇vn|

)4/3
≤ 2

3 |vn|
4 + 1

3 |∇vn|
4 .

These yield that both
{
|vn| |∇vn|

2
}

and
{
|vn|

2
|∇vn|

}
are bounded in L4/3

(
R3

)
, since {vn} is bounded in X.

Thus (3.12) holds by a similar argument. At this point, (3.10) holds and we have proved Point 3).
Finally, we follow from Points 2) and 3) that〈

J′µ,b (vn) − λµvn, vn

〉
→

〈
J′µ,b

(
vµ

)
− λµvµ, vµ

〉
= 0.
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Using (3.8) we obtain that

µ ‖∇vn‖
4
4 + a ‖∇vn‖

2
2 + b ‖∇vn‖

4
2 − λµ ‖vn‖

2
2 + 4

∫
R3
|vn|

2
|∇vn|

2

→µ
∥∥∥∇vµ

∥∥∥4

4
+ a

∥∥∥∇vµ
∥∥∥2

2
+ b

∥∥∥∇vµ
∥∥∥4

2
− λµ

∥∥∥vµ
∥∥∥2

2
+ 4

∫
R3

∣∣∣vµ∣∣∣2 ∣∣∣∇vµ
∣∣∣2 .

If λµ < 0, this together with vn ⇀ vµ in X implies that (3.7) holds. This proof is completed. �

Corollary 2. Assume that p ∈
(

10
3 ,

16
3

)
. Then for any k ∈ [k0,∞), where k0 is given in Lemma 3.2,

there exists µ0 > 0 such that for each µ ∈ (0, µ0), the functional Jµ,b has a critical point vµ, which is
Schwarz symmetric and satisfies Jµ,b

(
vµ

)
≤ ηµ,b(k) on Tk̄ with 0 < k̄ ≤ k, i.e., there exists λµ ∈ R such

that J′µ,b
(
vµ

)
− λµvµ = 0. Moreover, if λµ < 0, then one has Jµ,b

(
vµ

)
= ηµ,b(k).

Proof. It follows directly from Lemma 3.5 and Proposition 1. �

Finally, the proof of Theorems 1.4 and 1.5 is based on the following convergence result for the
perturbation functional Jµ,b.

Proposition 2. For any fixed k > 0 , let µm → 0 as m → ∞. Assume that {wm} ⊂ Tkm is a sequence of
Schwarz symmetric functions and {λm} ⊂ R, and they satisfy

0 < δ0 ≤ km ≤ k,
∣∣∣Jµm,b (wm)

∣∣∣ ≤ C and J′µm,b (wm) − λmwm = 0,

where δ0 > 0, C > 0 are independent of m ∈ N. Then there exist wk ∈ H1
(
R3

)
∩ L∞

(
R3

)
\{0} and

λk ∈ R such that passing to a subsequence, we get

λm → λk, in R,
J′b (wk) − λkwk = 0,

(3.13)

as m→ ∞. Moreover, if λk < 0, then

wm → wk, in H1
(
R3

)
,

wm∇wm → wk∇wk, in L2
(
R3

)
,

µm ‖∇wm‖
4
4 → 0,

(3.14)

as m→ ∞. Thus wk is a critical point of Jb on Ek′ for k′ = lim
m→∞

km.

Proof. First, since 0 < δ0 ≤ km ≤ k,
∣∣∣Jµm,b (wm)

∣∣∣ ≤ C and J′µm,b
(wm) − λmwm = 0, it follows from the

proof of Lemma 3.3 and Proposition 1 that
{∫
R3 |∇wm|

2
}
,
{∫
R3 |wm|

2
|∇wm|

2
}

and {λm} are all bounded.
Therefore, passing to a subsequence, λm → λk ∈ R, and noting that {wm} ⊂ Tk is Schwarz symmetric,
by reusing Proposition 1.7.1 in [35], we deduce, up to a subsequence, that

wm ⇀ wk, in H1
(
R3

)
,

wm → wk, in Lq
(
R3

)
,∀q ∈ (2, 2 · 2∗) ,

wm∇wm ⇀ wk∇wk, in L2
(
R3

)
,

wm → wk, a.e. in R3,

(3.15)
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for some wk ∈ X. Since {wm} satisfies J′µm,b
(wm) − λmwm = 0, one has

µm

∫
R3
|∇wm|

2
∇wm∇φ + a

∫
R3
∇wm∇φ + b

(∫
R3
|∇wm|

2
) ∫
R3
∇wm∇φ

+ 2
∫
R3

(
wmφ |∇wm|

2 + |wm|
2
∇wm∇φ

)
− λm

∫
R3

wmφ =

∫
R3
|wm|

p−2 wmφ

(3.16)

for any φ ∈ X. Then by the Sobolev inequality and the Moser iteration, referring to Theorem 3.1
in [25], we can get

‖wm‖L∞(R3) ≤ C and ‖wk‖L∞(R3) ≤ C.

Now we prove that wk satisfies that〈
J′b (wk) − λkwk, φ

〉
= 0, ∀φ ∈ H1

(
R3

)
∩ L∞

(
R3

)
.

In (3.16), choosing φ = ψ exp (−Lwm) with ψ ∈ C∞0
(
R3

)
, ψ ≥ 0 and L > 0. Then one has

0 =µm

∫
R3
|∇wm|

2
∇wm

(
∇ψ exp (−Lwm) − Lψ exp (−Lwm)∇wm

)
+

(
a + b

∫
R3
|∇wm|

2
) ∫
R3
∇wm

(
∇ψ exp (−Lwm) − Lψ exp (−Lwm)∇wm

)
+ 2

∫
R3
|wm|

2
∇wm

(
∇ψ exp (−Lwm) − Lψ exp (−Lwm)∇wm

)
+ 2

∫
R3

wmψ exp (−Lwm) |∇wm|
2
− λm

∫
R3

wmψ exp (−Lwm)

−

∫
R3
|wm|

p−2 wmψ exp (−Lwm) .

This together with µmL
∫
R3 ψ exp (−Lwm) |∇wm|

4
≥ 0 implies that

0 ≤µm

∫
R3
|∇wm|

2
∇wm∇ψ exp (−Lwm)

+

(
a + b

∫
R3
|∇wm|

2
) ∫
R3
∇wm∇ψ exp (−Lwm)

+ 2
∫
R3
|wm|

2
∇wm∇ψ exp (−Lwm)

−

∫
R3
|∇wm|

2 ψ exp (−Lwm)
[
L
(
a + b

∫
R3
|∇wm|

2 + 2w2
m

)
− 2wm

]
− λm

∫
R3

wmψ exp (−Lwm) −
∫
R3
|wm|

p−2 wmψ exp (−Lwm) .

(3.17)

Taking L > 1 such that La > 1, we get∫
R3
|∇wm − ∇wk|

2 ψ exp (−Lwm)
[
L
(
a + b

∫
R3
|∇wm|

2 + 2w2
m

)
− 2wm

]
≥ 0,
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which means∫
R3
|∇wm|

2 ψ exp (−Lwm)
[
L
(
a + b

∫
R3
|∇wm|

2 + 2w2
m

)
− 2wm

]
≥

∫
R3

(
2∇wm∇wk − |∇wk|

2
)
ψ exp (−Lwm)

[
L
(
a + b

∫
R3
|∇wm|

2 + 2w2
m

)
− 2wm

]
→

∫
R3
|∇wk|

2 ψ exp (−Lwk)
[
L
(
a + b

∫
R3
|∇wk|

2 + 2w2
k

)
− 2wk

]
.

Because µm → 0 and ‖wm‖L∞(R3) ≤ C, (3.15) implies

µm

∫
R3
|∇wm|

2
∇wm∇ψ exp (−Lwm)→ 0

as m→ ∞. By the weak convergence of wm, Hölder inequality and Lebesgue’s dominated convergence
theorem, we deduce

a
∫
R3
∇wm∇ψ exp (−Lwm)→ a

∫
R3
∇wk∇ψ exp (−Lwk) ,

b
∫
R3
|∇wm|

2
∫
R3
∇wm∇ψ exp (−Lwm)→ b

∫
R3
|∇wk|

2
∫
R3
∇wk∇ψ exp (−Lwk) ,∫

R3
|wm|

2
∇wm∇ψ exp (−Lwm)→

∫
R3
|wk|

2
∇wk∇ψ exp (−Lwk) ,∫

R3
wmψ exp (−Lwm)→

∫
R3

wkψ exp (−Lwk)

and ∫
R3
|wm|

p−2 wmψ exp (−Lwm)→
∫
R3
|wk|

p−2 wkψ exp (−Lwk) .

Hence, by (3.17), we get(
a + b

∫
R3
|∇wk|

2
) ∫
R3
∇wk∇

(
ψ exp (−Lwk)

)
+ 2

∫
R3
|wk|

2
∇wk∇

(
ψ exp (−Lwk)

)
+ 2

∫
R3

wk
(
ψ exp (−Lwk)

)
|∇wk|

2

− λk

∫
R3

wk
(
ψ exp (−Lwk)

)
−

∫
R3
|wk|

p−2 wk
(
ψ exp (−Lwk)

)
≥ 0.

(3.18)

Let ϕ ∈ C∞0
(
R3

)
satisfy ϕ ≥ 0. Choose a sequence of non-negative functions ψm ∈ C∞0

(
R3

)
such that

ψm → ϕ exp (Lwk) in H1
(
R3

)
, ψm → ϕ exp (Lwk) a.e. in R3, and ψm is uniformly bounded in L∞

(
R3

)
.

Taking ψ = ψm in (3.18) and letting m→ ∞, we get(
a + b

∫
R3
|∇wk|

2
) ∫
R3
∇wk∇ϕ + 2

∫
R3
|wk|

2
∇wk∇ϕ

+ 2
∫
R3

wkϕ |∇wk|
2
− λk

∫
R3

wkϕ −

∫
R3
|wk|

p−2 wkϕ ≥ 0.

AIMS Mathematics Volume 7, Issue 5, 8774–8801.



8797

The opposite inequality can be obtained in a similar way. Therefore, for any ϕ ∈ C∞0
(
R3

)
, we have(

a + b
∫
R3
|∇wk|

2
) ∫
R3
∇wk∇ϕ + 2

∫
R3
|wk|

2
∇wk∇ϕ

+ 2
∫
R3

wkϕ |∇wk|
2
− λk

∫
R3

wkϕ −

∫
R3
|wk|

p−2 wkϕ = 0.
(3.19)

This proves (3.13).
Now by approximation again, we follow from (3.19) that

a
∫
R3
|∇wk|

2 + b
(∫
R3
|∇wk|

2
)2

+ 4
∫
R3
|wk|

2
|∇wk|

2
− λk

∫
R3
|wk|

2

−

∫
R3
|wk|

p = 0.
(3.20)

Taking φ = wm in (3.16), then we have

µm

∫
R3
|∇wm|

4 + a
∫
R3
|∇wm|

2 + b
(∫
R3
|∇wm|

2
)2

+ 4
∫
R3
|wm|

2
|∇wm|

2
− λm

∫
R3
|wm|

2 =

∫
R3
|wm|

p ,

and then

µm

∫
R3
|∇wm|

4 + a
∫
R3
|∇wm|

2 + b
(∫
R3
|∇wm|

2
)2

+ 4
∫
R3
|wm|

2
|∇wm|

2
− λk

∫
R3
|wm|

2 =

∫
R3
|wm|

p + o(1),
(3.21)

since λm → λk and limm→∞

∫
R3 |wm|

2 = k′ ≥ δ0 > 0. Thus, if λk < 0, depending on
∫
R3 |wm|

p
→

∫
R3 |wk|

p

in (3.15), we conclude from (3.15), (3.20) and (3.21) that

µn

∫
R3
|∇wm|

4
→ 0,

∫
R3
|∇wm|

2
→

∫
R3
|∇wk|

2∫
R3
|wm|

2
|∇wm|

2
→

∫
R3
|wk|

2
|∇wk|

2 ,

∫
R3
|wm|

2
→

∫
R3
|wk|

2

as m → ∞. Since ‖wk‖L∞(R3) ≤ C, by (3.13) we get that wk ∈ H1
(
R3

)
∩ L∞

(
R3

)
\{0} is a critical point

of Jb on Ek′ . The proof is completed. �

At this point, we can prove our last two main results.
Proof of Theorem 1.4. First, we need to show that Jµ,b

(
vµ

)
≤ C. By the definition of ηµ,b(vµ) and

Corollary 2, we get
0 < Jµ,b

(
vµ

)
≤ ηµ,b(k) ≤ η1,b(k), (3.22)

where η1,b(k) is independent of µ > 0. Next, fix k > 0 and take µm → 0. By Corollary 2 there exist a
sequence of Schwarz symmetric functions wm on Tkm and λm ∈ R such that 0 < km ≤ k, Jµm,b (wm) ≤
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ηµm,b(k) and J′µm,b
(wm) − λmwm = 0. Then we get

µm

∫
R3
|∇wm|

4 + a
∫
R3
|∇wm|

2 + b
(∫
R3
|∇wm|

2
)2

+ 4
∫
R3
|wm|

2
|∇wm|

2
−

∫
R3
|wm|

p = λm

∫
R3
|wm|

2 .

(3.23)

And {(wm, λm)} satisfies the following Pohozaev identity

−µm

12

∫
R3
|∇wm|

4 +
a
6

∫
R3
|∇wm|

2 +
b
6

(∫
R3
|∇wm|

2
)2

+
1
3

∫
R3
|wm|

2
|∇wm|

2
−

1
p

∫
R3
|wm|

p =
λm

2

∫
R3
|wm|

2 .

(3.24)

Thus, combing (3.23) and (3.24), we get Qµm,b (wm) = 0.
We claim that km ≥ δ0 for some δ0 > 0. In fact if km → 0, then by (3.2) we infer wm → 0 in Lp

(
R3

)
.

This fact together with Qµm,b (wm) = 0 means that
∫
R3

(
1 + w2

m

)
|∇wm|

2
→ 0. Then by Lemma 3.1, we

easily obtain a contradiction, namely that the claim is proved.
Now applying Proposition 2 to {wm}, we conclude that there exist λk ∈ R and wk , 0 such that

wm → wk in Lp
(
R3

)
, lim infm→∞ ‖wm‖

2
2 ≥ ‖wk‖

2
2 and J′b (wk) − λkwk = 0. Furthermore, by Lemma 3.6,

we infer that λk < 0. Going back we may say that λk < 0 for m large (or µm small). Then by Corollary
2 we get km = k, wm ∈ Ek and Jµm,b (wm) = ηµm,b(k) for all m large. Using Proposition 2 again we get
wk ∈ Ek is a critical point of Jb on Ek. The proof of Theorem 1.4 is completed.

Proof of Theorem 1.5. For any b > 0, we follow from Proposition 1 that Jµ,b has a couple of
critical point (vb, λb) ∈ Tk × R. Furthermore, similar to the proof of Lemma 3.6, we get λb < 0.

We claim that for any sequence {bm} satisfying bm → 0+ as m → +∞,
{
vbm

}
is bounded in Tk. For

b > 0 small, one has
ηµ,bm(k) : = inf

g∈Γk
max
0≤t≤1

Jµ,bm(g(t))

≤ inf
g∈Γk

max
0≤t≤1

Jµ,1(g(t))

< +∞.

Notice that
{(

vbm , λbm

)}
⊆ Tk × R

− is a sequence of critical point of Jµ,b with b = bm, then similar to
(3.23) and (3.24), we get Qµ,bm

(
vbm

)
= 0. This fact implies that

Jµ,bm

(
vbm

)
−

2
3(p − 2)

Qµ,bm

(
vbm

)
=

(3p − 20) µ
12(p − 2)

A(vbm) +
(3p − 10)a
6(p − 2)

B(vbm)

+
(3p − 14)bm

12(p − 2)
(
B(vbm)

)2
+

3p − 16
3(p − 2)

C(vbm)

= ηµ,bm(k).

So
{
A(vbm)

}
,
{
B(vbm)

}
and

{
C(vbm)

}
are all bounded in R, namely that

{
vbm

}
is bounded in X.

By the boundedness of
{
vbm

}
in X, we can easily deduce that

{
λbm

}
is bounded in R. Then there exist
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a subsequence of {bm}, still denoted by {bm}, and λ0 ≤ 0 such that λbm → λ0 and
vbm ⇀ v0 in H1

(
R3

)
,

vbm → v0 in Lp
(
R3

)
,∀q ∈ (2, 2 · 2∗) ,

vbm → v0 a.e. in R3,

as m → +∞. This together with (3.11) and (3.12) implies that (v0, λ0) is a couple of critical point of
Jµ,0, namely that

µ

∫
R3
|∇v0|

4 + a
∫
R3
|∇v0|

2 + 4
∫
R3
|v0|

2
|∇v0|

2
−

∫
R3
|v0|

p = λ0

∫
R3
|v0|

2 .

We claim that λ0 < 0. By contradiction, if λ0 = 0, referring to Lemma 3.6, we get v0 = 0, which
means vbm → 0 in Lp

(
R3

)
. And depending on Qµ,bm

(
vbm

)
= 0, we infer that

∫
R3

(
1 + v2

bm

) ∣∣∣∇vbm

∣∣∣2 → 0,
which means that we get a contradiction due to Lemma 3.1. Therefore, we know that (v0, λ0) ∈ Tk×R

−

is a couple of critical point of Jµ,0.
Next, similar to (3.22), we can get 0 < Jµ,0 (v0) ≤ ηµ,0(k) ≤ η1,0(k). Thus, referring to the proof of

Theorem 1.4, we get (v0, λ0) ∈ Ek × R
− is a couple of weak solution to the following equation

−a∆v − v∆
(
v2

)
− λv = |v|p−2v, in R3.

This proof is ended.

4. Conclusions

In this work, we have achieved two main results. On the one hand, when p = 16
3 , we prove that

problem (1.6) has at least one normalized solution on Dc by making use of constrained minimization
method. On the other hand, when p ∈

(
10
3 ,

16
3

)
, we prove the existence and asymptotic behavior of

normalized solutions for equation (1.1) by using the perturbation method. Therefore, to some extent,
we have improved and extended the results of the existing literature.
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