In this paper we introduce a new six-parameters extension of the Weibull distribution. It will be called the extended generalized inverted Kumaraswamy Weibull (EGIKw-Weibull), that is commonly used to model lifetime data. Various useful properties of the new distribution are derived. A Monte Carlo simulation is employed to investigate the maximum likelihood estimator (MLE) for the parameters. Two real applications are presented.
Citation: Qasim Ramzan, Muhammad Amin, Ahmed Elhassanein, Muhammad Ikram. The extended generalized inverted Kumaraswamy Weibull distribution: Properties and applications[J]. AIMS Mathematics, 2021, 6(9): 9955-9980. doi: 10.3934/math.2021579
In this paper we introduce a new six-parameters extension of the Weibull distribution. It will be called the extended generalized inverted Kumaraswamy Weibull (EGIKw-Weibull), that is commonly used to model lifetime data. Various useful properties of the new distribution are derived. A Monte Carlo simulation is employed to investigate the maximum likelihood estimator (MLE) for the parameters. Two real applications are presented.
[1] | A. Alzaghal, F. Famoye, C. Lee, Exponentinated T-X family of distributions with some applications, Int. J. Stat. Prob., 2 (2013), 31–39. |
[2] | I. B. Abdul-moniem, M. Seham, Transmuted gompertz distribution, Comput. Appl. Math. J., 1 (2015), 88–96. |
[3] | M. A. Aldahlan, F. Jamal, C. Chesneau, I. Elbatal, M. Elgarhy, Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications, PloS one, 15 (2020), e0230004. doi: 10.1371/journal.pone.0230004 |
[4] | S. Al-marzoki, T. Al-said, Truncated Weibull lomax distribution and its statistical inference, Int. J. Math. Appl., 7 (2019), 85–92. |
[5] | A. M. Basheer, Alpha power inverse Weibull distribution with reliability application, J. Taibah Univ. Sci., 13 (2019), 423–432. doi: 10.1080/16583655.2019.1588488 |
[6] | R. E. Barlow, K. A. Doksum, Isotonic tests for convex orderings, University of California Press, 1972. |
[7] | G. M. Cordeiro, F. M. M. Ortega, S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, J. Franklin I., 347 (2010), 1399–1429. doi: 10.1016/j.jfranklin.2010.06.010 |
[8] | F. R. De Gusmao, E. M. Ortega, G. M. Cordeiro, The generalized inverse Weibull distribution, Stat. Pap., 52 (2011), 591–619. doi: 10.1007/s00362-009-0271-3 |
[9] | F. H. Eissa, The exponentiated Kumaraswamy Weibull distribution with application to real data, Int. J. Stat. Prob., 6 (2017), 167–182. doi: 10.5539/ijsp.v6n6p167 |
[10] | A. S. Hassan, M. Elgrarhy, M. A. Ul Haq, On type II half logistic Weibull distribution with applications, Math. Theory Modeling, 9 (2019), 49–63. |
[11] | A. S. Hassan, S. G. Nassr, The inverse weibull generator of distributions, properties and applications, J. Data Sci., 16 (2018), 723–742. |
[12] | Z. Iqbal, M. M. Tahir, N. Rizan, Generalized inverted kumaraswamy distribution, properties and application, Open. J. Stat., 7 (2017), 645–662. doi: 10.4236/ojs.2017.74045 |
[13] | F. Jamal, H. Reyad, C. Chesnau, A. Nasir, The Marshall-Olkin odd Lindley-G family of distributions: Theory and applications, Punjab Univ. J. Math., 51 (2019), 111–125. |
[14] | D. Kumar, S. Dey, Power generalized Weibull distribution based on order statistics, J. Stat. Res., 51 (2017), 61–78. doi: 10.47302/jsr.2017510104 |
[15] | C. Liu, A comparison between the Weibull and lognormal models used to analyse reliability data, University of Nottingham, 1997. |
[16] | M. M. Nassar, F. H. Eissa, On the exponentiated Weibull distribution, Commun. Stat. Theor. M., 32 (2003), 1317–1336. doi: 10.1081/STA-120021561 |
[17] | F. A. Pena-ramirez, R. R. Guerra, G. M. Cordeiro, P. R. D. MARINHO, The exponentinated power generalized Weibull, Properties and applications, An. Acad. Bras. Cienc., 90 (2018), 2553–2577. doi: 10.1590/0001-3765201820170423 |
[18] | A. Rényi, On measures of entropy and information, University of California Press, 1961. |
[19] | P. L. Ramos, A. L. Mota, P. H. Ferreira, E. Ramos, V. L. Tomazella, F. Louzada, Bayesian analysis of the inverse generalized gamma distribution using objective priors, J. Stat. Comput. Sim., 91 (2021), 786–816. doi: 10.1080/00949655.2020.1830991 |
[20] | P. L. Ramos, D. C. Nascimento, C. Cocolo, M. J. Nicola, C. Alonso, L. G. Ribeiro, et al. Reliability-centered maintenance: Analyzing failure in harvest sugarcane machine using some generalizations of the Weibull distribution, Mod. Simul. Eng., 51 (2018), 1–12. |
[21] | P. L. Ramos, D. K. Dey, F. Louzada, V. H. Lachos, An extended poisson family of life distribution: A unified approach in competitive and complementary risks. J. Appl. Stat., 47 (2020), 306–322. |
[22] | P. L. Ramos, F. Louzada, T. K. Shimizu, A. O. Luiz, The inverse weighted Lindley distribution: Properties, estimation and an application on a failure time data, Commun. Stat. Theor. M., 48 (2019), 2372–2389. doi: 10.1080/03610926.2018.1465084 |
[23] | M. A. Selim, A. M. Badar, The kumaraswamy generalized power Weibull distribution, Math. Theo. Model., 6 (2016), 110–124. |