
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(9): 9955–9980.
DOI:10.3934/math.2021579
Received: 09 April 2021
Accepted: 01 July 2021
Published: 06 July 2021

Research article

The extended generalized inverted Kumaraswamy Weibull distribution:
Properties and applications

Qasim Ramzan1, Muhammad Amin1, Ahmed Elhassanein2,3,∗ and Muhammad Ikram1

1 Department of Statistics, University of Sargodha, Sargodha, Pakistan
2 Department of Mathematics, College of Science, University of Bisha, Bisha, Saudi Arabia
3 Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt

* Correspondence: Email: el hassanein@yahoo.com; Tel: +201064941983.

Abstract: In this paper we introduce a new six-parameters extension of the Weibull distribution.
It will be called the extended generalized inverted Kumaraswamy Weibull (EGIKw-Weibull), that is
commonly used to model lifetime data. Various useful properties of the new distribution are derived.
A Monte Carlo simulation is employed to investigate the maximum likelihood estimator (MLE) for the
parameters. Two real applications are presented.

Keywords: generalized inverted Kumaraswamy Weibull distribution; Monte Carlo simulation;
MLEs; structural properties
Mathematics Subject Classification: 62E10, 62E15

1. Introduction

The Weibull distribution is one of the most important lifetime model. It has many applications in
statistics, bioscience, chemistry, engineering, economics and finance. The Exponential and Rayleigh,
among other, distributions are specials. It is suitable for modeling data with hazard functions of
different forms. It is proper in the cases where an item consists of multiple components and each
component has an identical failure time distribution and the item fails when the weakest part fails
[15]. A random variable X is said to have Weibull distribution if its cdf and pdf are respectively
defined by

G(x) = 1 − exp(−δxϕ), (1.1)
g(x) = δϕxϕ−1 exp(−δxϕ), (1.2)

where δ > 0 and ϕ > 0 are respectively the scale and shape parameters for x > 0. Because of the
widespread study and applications of the Weibull distribution, there is a need for new generalizations.
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Several generalizations distributions of Eq (1.1) have been studied in the literature. Kumaraswamy
generalized power Weibull distribution has been discussed by Selim and Badar [23]. A new
three-parameter lifetime model, the Truncated Weibull Lomax (TWL) distribution has been proposed
by Al-marzoki and Al-said [3]. The exponentiated power generalized Weibull distribution has been
investigated by Pena-ramirez et al. [17]. A recurrence relations for the single and product moments of
order statistics for power generalized Weibull (PGW) distribution have been established by Kumar
and Dey [14]. Using these recurrence relations, they obtained the means, variances and covariances of
all order statistics for different sample sizes in an efficient manner. Some useful generalizations of the
standard Weibull distribution have been introduced by Ramos et al. [18] to describe the lifetime of
two important components of sugarcane harvesting machines. The mathematical background of the
considered model was discussed and different discrimination procedures were used to obtain the best
fit for each component. The inverse Weibull generated (IW-G) family with two extra positive
parameters was generated from inverse Weibull random variable [10]. Four special models for the
new family, some mathematical properties, the estimation of the model parameters and an
applications to real data were offered. A new two-parameter model, the inverse weighted Lindley
(IWL) distribution with upside-down bathtub hazard rate was introduced by Ramos et al. [19]. A
detailed account of useful mathematical properties of the new distribution, a numerical simulation and
an application using a real data set were offered. The alpha power inverse Weibull (APIW)
distribution was proposed by Basheer [6]. He explored various useful properties along with the
estimation of the APIW parameters and an application of the new model to a real data representing
the waiting time before customer service in the bank was provided. Moreover, Ramos et al. [20]
introduced an extended Poisson family of life distribution via a new approach to generate flexible
parametric families of distributions. They discussed several mathematical properties and inferential
procedures of the proposed model. The applicability of considered model to real situation was
illustrated by an important data set. Further, the exponentiated power generalized Weibull power
series (EPGWPS) family of distributions, has been obtained by compounding the exponentiated
power generalized Weibull and power series distributions by Aldahlan et al. [2]. Bayesian inferences
for the inverse generalized gamma (IGG) distribution parameters under non-informative priors,
namely, the Jeffreys prior and the reference prior was discussed by Ramos et al. [21], and the
potentiality of the IGG model was analysed by employing real environmental data. The GIKum and
its distribution function [12], is given by

F(x) =
[
1 − (1 + xγ)−α

]β
, (1.3)

where x > 0 and α > 0, β > 0, γ > 0 are shape parameters. Let s(t) be the pdf of a random variable T
∈ [a, b], where −∞ ≤ a < b < ∞ and consider ξ[G(x)] be a function of the cdf of a random variable X,
the T − X family of distributions [4], is defined as

F(x) =

∫ ξ[G(x)]

a
s(t)dt, (1.4)

assuming the following conditions are satisfied.

(1) ξ[G(x)] ∈ [a, b].
(2) ξ[G(x)] is differentiable and monotonically non decreasing function.
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(3) ξ[G(x)]→ a, as x→ −∞ and ξ[G(x)]→ b, as x→ ∞.

Our motivation here is to introduce a new more flexible model so called the extended generalized
inverted Kumaraswamy Weibull (EGIKw-Weibull) distribution. It is rarly to get closed forms of
statistical quntities of distributions, here we derive closed formes for most statistical quantities for the
new model, including moments, moment generating function, reliability function, Rényi Entropy etc.
The new model shows higher flexibility as compared to other commonly used standard distributions.
Its hazard function shows different shapes that makes it a preferable choice for modeling the
monotonic and non-monotonic hazard behaviors which are more likely to be encountered in practical
situations like, human mortality, reliability analysis and biomedical applications. The remaining of
this paper is organized as follows: the formation of the EGIKw-Weibull distribution and its reliability
measures are provided in section 2; the density and distribution functions of EGIKw-Weibull
distribution and some mathematical properties of the proposed model are derived in section 3;
parameters are estimated using the maximum likelihood method (MLE) method in section 4; Monte
Carlo simulation is employed in section 5, to investigate the model; two real applications are given in
section 6 to demonstrate the properties; finally, the concluding remarks are given in section 7.

2. The EGIKw-Weibull distribution

Using G (x, ϑ) and g (x, ϑ) from Eq (1.1) and Eq (1.2), in Eq (1.4), the cdf of the EGIKw-Weibull
distribution is given by

FEGIKw−W(x) = αβγ

∫ [1−exp(−δxϕ)]λ

1−[1−exp(−δxϕ)]λ

0
tγ−1 (1 + tγ)−α−1 [

1 − (1 + tγ)−α
]β−1 dt

=

1 −
1 +

 [
1 − exp(−δxϕ)

]λ
1 −

[
1 − exp(−δxϕ)

]λ γ

−α

β

, (2.1)

where x ≥ 0, α > 0, β > 0, γ > 0 and λ > 0 are shape parameters. For ϕ = 1 we obtain the
EGIKw-Exponential distribution. The corresponding pdf is given by

fEGIKw−W(x) = αβγλδϕxϕ−1 exp(−δxϕ)
[
1 − exp(−δxϕ)

]λγ−1

×
[
1 −

[
1 − exp(−δxϕ)

]λ]−γ−1

×

1 +

 [
1 − exp(−δxϕ)

]λ
1 −

[
1 − exp(−δxϕ)

]λ γ

−α−1

×

1 −
1 +

 [
1 − exp(−δxϕ)

]λ
1 −

[
1 − exp(−δxϕ)

]λ γ

−α

β−1

. (2.2)

This extension gives a highly flexible life distribution which admits different degrees of kurtosis and
asymmetry. Figure 1(a) shows the unimodality and positivity skewed. The graphical representation of
the cdf of the EGIKw-Weibull distribution is given in Figure 1(b). The plot at other parametric values
produces similar shapes. In insurance problems and biomedical applications, it is often general to use
the survival function to depict the distribution of survival time. Let the random variable X denotes the
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survival time and FX(x) be the cdf or the failure probability by time x, then the survival function is
given by

S x(x) = P(X > x) = 1 − Fx(x).

The survival function is the probability of survival beyond time x. The survival function of X ∼ EGIKw-
Weibull is given by

S x(x) = 1 −

1 −
1 +

 [
1 − exp(−δxϕ)

]λ
1 −

[
1 − exp(−δxϕ)

]λ γ

−α

β

. (2.3)
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Figure 1. The graphs for EGIKw-Weibull distribution with selected parameters.

For brevity purpose, a graphical representation of the survival function of the EGIKw-Weibull
distribution at selected parameter values is shown in Figure 2(a). The hazard rate function commonly
used in lifetime modeling because it gives the amount of risk to fail. The hazard rate for
EGIKw-Weibull is given as

h(x, φ) = αβγλδϕxϕ−1 exp(−δxϕ)
[
1 − exp(−δxϕ)

]λγ−1

×
[
1 −

[
1 − exp(−δxϕ)

]λ]−γ−1

×

1 +

 [
1 − exp(−δxϕ)

]λ
1 −

[
1 − exp(−δxϕ)

]λ γ

−α−1

×

1 −
1 +

 [
1 − exp(−δxϕ)

]λ
1 −

[
1 − exp(−δxϕ)

]λ γ

−α

β−1

×

1 −

1 −
1 +

 [
1 − exp(−δxϕ)

]λ
1 −

[
1 − exp(−δxϕ)

]λ γ

−α

β

−1

, (2.4)
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where x > 0 and φ = α, β, γ, λ, δ, ϕ. The EGIKw-Weibull model shows versatility and high flexibility.
Its hazard rate function follows an upside down bathtub shape over time, when α < β < γ < λ and
δ > ϕ. In this situation, hazard rate decreases as proportion parameters increase. The hazard rate offers
a J-shaped trend over time, when α > β > γ > λ and δ > ϕ. In this scenario, the hazard rate increases as
proportion parameters increase. Further, the hazard rate exhibits an exponential decreasing trend with
increase in time, when α > β > γ > λ and δ ≶ ϕ. Similarly, the hazard rate function of the considered
model offers various shapes, such as monotonically increasing, bathtub shape, constant and increasing-
decreasing almost linearly, monotonically decreasing, constant and exponential increasing, and upside
down bathtub shapes, for different parametric values. These attractive features render the EGIKw-
Weibull distribution suitable for modeling the monotonic and non-monotonic hazard behaviors which
are more likely to be encountered in practical situations like, human mortality, reliability analysis and
biomedical applications thus enhancing its adaptability to fit diverse lifetime data, Figure 2(b). The
quantile function is given by

Q(u) = xu = F−1(u)

= [−
1
δ

log{1 − (1 + ((1 − u

1
β )
−

1
α − 1)

−
1
γ )
−

1
λ }]

1
ϕ , (2.5)

the random numbers from EGIKw-Weibull distribution can be simulated using the expression Eq (2.5),
where U ∼ Uniform (0, 1). In particular, the median of the EGIKw-Weibull distribution can be derived
by substituting u = 0.5 in Eq (2.5), we have

Median = [−
1
δ

log{1 − (1 + ((1 − 0.5

1
β )
−

1
α − 1)

−
1
γ )
−

1
λ }]

1
ϕ .
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Figure 2. The survival and hazard rate function graphs for EGIKw-Weibull distribution with
selected parameters.
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Note that the EGIKw-Weibull distribution of models outlined above reduces to GIKw-Weibull
distribution for γ = 1 and for γ = 1, λ = 1 we obtain the exponentinated generalized Weibull
distribution. Hence the parameter γ of the EGIKw-Weibull distribution offers more flexibility to the
extremes for the pdf curves. That’s why the new distribution becomes more appropriate for analyzing
data sets that exhibit heavy-tail.

3. Properties of EGIKw-Weibull distribution

Here properties of EGIKw-Weibull distribution are discussed.

3.1. Density functions

By using the binomial expansions in Eq (2.1), we obtain the linear combination for EGIKw-Weibull
cdf (for γ > 0 integer) as

F(x) =

∞∑
i, j,k=0

wi, j,k
[
1 − exp(−δxϕ)

]λ(γ j+k)
, (3.1)

where wi, j,k = (−1)i+ j
(
β
i

)(
αi+ j−1

j

)(
γ j+k−1

k

)
. Otherwise, for γ > 0 real non-integer, we have

F(x) =

∞∑
r=0

zr
[
1 − exp(−δxϕ)

]r , (3.2)

where the coefficient zr =
∑∞

i, j,k=0
∑∞

l=r (−1)l+r
(
λ(γ j+k)

l

) (
l
r

)
wi, j,k is sum of constants. Moreover the

EGIKw-Weibull cdf can be expressed in terms of Weibull Exponential-G cdf,s as

F(x) =

∞∑
r=0

zrVr (x) , (3.3)

where Vr (x) =
[
1 − exp(−δxϕ)

]r is the Weibull Exponential-G cdf with power parameter r. The
corresponding expansions for the EGIKw-Weibull density fucntion are respectively obtained by
differentiation of Eq (3.1) for γ > 0 integer and of Eq (3.2) and Eq (3.3) for γ > 0 real non-integer, as

f (x) = δϕxϕ−1 exp(−δxϕ)
∞∑

i, j,k=0

′′

wi, j,k
[
1 − exp(−δxϕ)

]λ(γ j+k)−1 , (3.4)

f (x) = δϕxϕ−1 exp(−δxϕ)
∞∑

r=0

z̆r
[
1 − exp(−δxϕ)

]r , (3.5)

f (x) =

∞∑
r=0

′′

zrvr+1 (x) , (3.6)

where
′′

wi, j,k = λ (γ j + k) wi, j,k, z̆r = (r + 1)zr+1,
′′

zr = zr+1 for r = 0, 1, 2, ..., and vr+1 (x) = (r +

1)δϕxϕ−1 exp(−δxϕ)
[
1 − exp(−δxϕ)

]r is the Weibull Exponential-G density with parameter (r + 1).
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3.2. Moments

For p and q non-negative integers, the ordinary moments are defined by

τp,q = E[XpG(X)q] =

∫
xpG (x)q g (x) dx

= δϕ

∫ ∞

0
xp+ϕ−1 exp(−δxϕ)

[
1 − exp(−δxϕ)

]q dx

=
1

δ
p
ϕ

q∑
l=0

(
q
l

)
(−)l

Γ
(

p
ϕ

+ 1
)

(l + 1)
p
ϕ+1

. (3.7)

The pth ordinary moment for an integer for γ > 0 can be expressed as

µ
′

p = E(Xp) =

∞∑
i, j,k=0

′′

wi, j,k τp,λ(γ j+k)−1, (3.8)

where
′′

wi, j,k, is defined in Eq (3.4) and τp,λ(γ j+k)−1, is the (p, λ (γ j + k)−1)th PWM of Weibull distribution
given in Eq (3.7). For a non-integer γ > 0 , we can write

µ
′

p = E(Xp) =

∞∑
r=0

z̆r τp,r, (3.9)

where z̆r, is defined in Eq (3.5) and τp,r, is the (p, r)th PWM of Weibull distribution. Moreover, we
can also provide the moments of the EGIKw-Weibull distribution in terms of Weibull Exponential-G
moments. Let Xr+1 has Weibull Exponential-G distribution with cdf, Vr+1(x) =

[
1 − exp(−δxϕ)

]r and
pdf, vr+1(x) = (r + 1)δxϕ−1 exp(−δxϕ)

[
1 − exp(−δxϕ)

]r with power parameter (r + 1), the pth ordinary
moment of Weibull Exponential-G distribution (for γ > 0 non-integer) is given as

E(Xp
r+1) =

∫ ∞

0
xpvr+1(x)dx.

Hence the pth moment of the EGIKw-Weibull distribution can be expressed in terms of infinite
weighted sum of Weibull Exponential-G moments as

µ
′

p =

∞∑
r=0

′′

zr

∫ ∞

0
xpvr+1(x)dx, (3.10)

where
′′

zr, is defined in Eq (3.6).

3.3. Moment generating function

The moment generating function (MGF) for an integer γ > 0, can be derived using Eq (3.4) as

M(t) = δ

∞∑
i, j,k=0

′′

wi, j,k

∫ ∞

0
xϕ−1 exp(tx) exp(−δxϕ)

[
1 − exp(−δxϕ)

]λ(γ j+k)−1 dx,

AIMS Mathematics Volume 6, Issue 9, 9955–9980.



9962

=

∞∑
i, j,k,l,u=0

′′

wi, j,k,l,u

∫ ∞

0
xϕ(u+1)−1 exp(tx)dx,

=

∞∑
i, j,k,l,u=0

′′

wi, j,k,l,u
Γ (ϕ(u + 1))

(−t)ϕ(u+1) , (3.11)

where
′′

wi, j,k,l,u = wi, j,k

(
λ(γ j+k)−1

l

)
δu+1(l+1)u

u! (−1)l+u. For a non-integer γ > 0 an alternative representation for
M(t) can be derived from Eq (3.5) as

M(t) =

∞∑
r=0

z̆r

∫
exp(tx)g (x) G (x)r dx,

= δ

∞∑
r=0

z̆r

∫ ∞

0
xϕ−1 exp(tx) exp(−δxϕ)

[
1 − exp(−δxϕ)

]r dx,

=

∞∑
r,u=0

r∑
l=0

z̆r

(
r
l

)
δu+1(l + 1)u

u!
(−1)l+u Γ (ϕ(u + 1))

(−t)ϕ(u+1) . (3.12)

Another representation for M(t) in terms of Weibull Exponential-G MGF, for a non-integer γ > 0 is
obtained from Eq (3.6) as

M(t) =

∞∑
r=0

′′

zr

∫ ∞

0
exp(tx) vr+1 (t) dx,

=

∞∑
r=0

′′

zr Mr+1 (t) , (3.13)

where Mr+1 (t) is the mgf of X ∼Weibull Exponential-G random variable with power parameter (r + 1).

3.4. Mean deviations

Let X be a EGIKw-Weibull random variable with mean µ = E(X) and median M. The mean
deviation about the mean δµ(X) and about the median δM(X) are respectively defined by

δµ(X) = E(|X − µ
′

1|) = 2µ
′

1F(µ
′

1) − 2T (µ
′

1), (3.14)
δM(X) = E(|X − M|) = µ

′

1 − 2T (M), (3.15)

where T (z) = δϕ
∫ z

0
xϕ exp(−δxϕ)dx. = δ−1/ϕg (1/ϕ + 1, δzϕ) is first GIKw-Weibull incomplete moment

with g(., .) the incomplete gamma function, µ′1 = E(X) is the first ordinary moment, M =Median(X)
denotes the median determined from the Eq (2.5) for u = 1/2, and F(µ

′

1) comes from Eq (2.1). Using
the quantile function, two additional forms for T (x) are obtained. Firstly, when γ > 0 an integer,

T (z) =

∞∑
i, j,k=0

′′

wi, j,k

∫ [1−exp(−δzϕ)]

0
uλ(γ j+k)−1Q(u)du,

where Q(u) is the EGIKw-Weibull quantile functin given in Eq (2.5) and the second representation for
γ > 0 is derived as

T (z) =

∞∑
r=0

z̆r

∫ [1−exp(−δzϕ)]

0
urQ(u)du.
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Alternatively using EGIKw-Weibull density Eq (3.6), in terms of Exponential-G distribution we
obtain,

T (z) =

∞∑
r=0

′′

zr

∫ z

0
x vr+1 (x) dx,

where
′′

wi, j,k, z̆r,
′′

zr are given in Eqs (3.4–3.6).

3.5. Rényi entropy

The Rényi [22], is one of the most popular measures of entropy and for EGIKw-Weibull distribution,
it is defined as

Iζ(x) =
1

1 − ζ
log

(
(αβγλϕδ)ζ

∞∑
i, j,k=0

w̃i, j,k

∫ ∞

0

[
1 − exp(−δxϕ)

]λ(γ j+k)+ζ(γλ−1) xζ(ϕ−1) exp(−ζδxϕ)dx
)
,

=
1

1 − ζ
log

(
(αβγλϕδ)ζ

∞∑
i, j,k=0

w̃i, j,k,t

∫ ∞

0
xζ(ϕ−1) exp(−δxϕ (ζ + t))dx

)
,

=
1

1 − ζ
log

(
(αβγλϕδ)ζ

∞∑
i, j,k=0

w̃i, j,k,t

Γ
(
ζ − ζ−1

ϕ

)
ϕ
[
δ (ζ + t)

](ζ− ζ−1
ϕ

) ), (3.16)

where w̃i, j,k,t = (−1)i+ j+t
(
ζ(β−1)

i

)(
αi+ζ(α+1)+ j−1

j

)(
γ j+ζ(γ+1)+k−1

k

)(
λ(γ j+k)+ζ(γλ−1)

t

)
.

3.6. Stress-strength reliability

Let X1 be a random variable having EGIKw-Weibull distribution with pd f , f1(x) given in Eq (2.2)
with parameters α1, β1, γ1, λ1, δ, ϕ and X2 be a random variable having the cdf F2(x) given in Eq (2.1)
with parameters α2, β2, γ2, λ2, δ, ϕ. Assuming X1 and X2 to be independent, the reliability function R is
defined by

R = P(Y < X) =

∫
f1(x)F2(x)dx

= α1β1γ1λ1ϕδ

∫ ∞

0
xϕ−1 exp(−δxϕ)

[
1 − exp(−δxϕ)

]γ1λ1−1

×
[
1 −

[
1 − exp(−δxϕ)

]λ1
]−γ1−1

×

1 +

 [
1 − exp(−δxϕ)

]λ1

1 −
[
1 − exp(−δxϕ)

]λ1

γ1−α1−1

×

1 − 1 +

 [
1 − exp(−δxϕ)

]λ1

1 −
[
1 − exp(−δxϕ)

]λ1

γ1−α1β1−1

×

1 − 1 +

 [
1 − exp(−δxϕ)

]λ2

1 −
[
1 − exp(−δxϕ)

]λ2

γ2−α2β2

dx. (3.17)
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Alternatively, with the change of variable x = Q1(u), where Q1(u) denotes the EGIKw-Weibull
quantile function Eq (2.5) corresponding to f1(x), we have

R =

∫ 1

0
F2(Q1(u))du (3.18)

=

∫ 1

0

1 −

1 +


1 +

{(
1 − u

1
β1

)− 1
α1
− 1

}− 1
γ1


λ2
λ1

− 1


−γ2

−α2
β2

du.

In particular, from this expression we see that R does not depend on the baseline distribution
characterized by the cdf

[
1 − exp(−δxϕ)

]
. Various forms of R for γ1, γ2 > 0 integer, by using linear

expression can be obtained as

f1(x) = ϕδxϕ−1 exp(−δxϕ)
∞∑

t,u,v=0

′′

wt,u,v
[
1 − exp(−δxϕ)

]λ1(γ1u+v)−1 ,

F2(x) =

∞∑
i, j,k=0

w̄i, j,k
[
1 − exp(−δxϕ)

]λ2(γ2 j+k)
,

where
′′

wt,u,v = λ1 (γ1u + v) (−1)t+u
(
β1
t

) (
α1t+u−1

u

) (
γ1u+v−1

v

)
and w̄i, j,k = (−1)i+ j(

β2
i

) (
α2i+ j−1

j

) (
γ2 j+k−1

k

)
. Thus, we have

R = ϕ δ

∞∑
i, j,k,t,u,v=0

w̄i, j,k

′′

wt,u,v∫ ∞

0
xϕ−1 exp(−δxϕ)

[
1 − exp(−δxϕ)

]λ1(γ1u+v)+λ2(γ2 j+k)−1 dx

=

∞∑
i, j,k,t,u,v=0

w̄i, j,k

′′

wt,u,v

λ1 (γ1u + v) + λ2 (γ2 j + k)
. (3.19)

Similar expressions can be obtained for the case γ1, γ2 > 0 non-integers.

3.7. Lorenz and Bonferroni curves

Various expressions for EGIKw-Weibull Lorenz L(p) and Bonferroni B(p) curves for γ > 0 integer,
are given as

L(p) =
EX≤x

E(X)
=

1
E(X)

∫ x

0
t f (t)dt

=
δϕ

µ

∞∑
i, j,k=0

′′

wi, j,k

∫ x

0
tϕ exp(−δtϕ)

[
1 − exp(−δtϕ)

]λ(γ j+k)−1 dt

=
δϕ

µ

∞∑
i, j,k=0

′′

wi, j,k

(
λ (γ j + k) − 1

l

)
(−1)l

∫ x

0
tϕ exp(−δtϕ (l + 1))dt
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=
δ

µ

∞∑
i, j,k,l=0

′′

wi, j,k

(
λ (γ j + k) − 1

l

)
(−1)l g (1/ϕ + 1, δ (l + 1) xϕ)

[δ (l + 1)]1/ϕ+1 . (3.20)

Equivalently based upon EGIKw-Weibull quantile function Eq (2.5) we have

L(p) =
1
µ

∞∑
i, j,k=0

′′

wi, j,k

∫ [1−exp(−δtϕ)]

0
uλ(γ j+k)−1Q(u)du.

Alternatively using the expression given in Eq (3.6) in terms of Exponential-G density vr (t) we have

L(p) =
1
µ

∞∑
i, j,k=0

′′

wi, j,k

λ (γ j + k)

∫ x

0
tvλ(γ j+k) (t) dt.

The corresponding expressions for the Bonferroni Curve are given by

B(p) =
EX≤x

F(X)E(X)
=

L(X)
F(X)

=
1

F(X)E(X)

∫ x

0
t f (t)dt (3.21)

=
δ

µF(x)

∞∑
i, j,k,l=0

′′

wi, j,k

(
λ (γ j + k) − 1

l

)
(−1)l g (1/ϕ + 1, δ (l + 1) xϕ)

[δ (l + 1)]1/ϕ+1 .

and

B(p) =
1

µF(X)

∞∑
i, j,k=0

′′

wi, j,k

∫ G(x)

0
uλ(γ j+k)−1Q(u)du

=
1

µF(X)

∞∑
i, j,k=0

′′

wi, j,k

λ (γ j + k)

∫ x

0
tvλ(γ j+k) (t) dt, (3.22)

where g(., .) is the upper incomplete gamma function. Similar expressions can be obtained for the case
of γ > 0 non-integer using Eq (3.5).

3.8. Moments of residual life function

The residual life plays an important role in life testing situations and reliability theory. The nth

moment of the residual life is defined as

mn(t) = E
[
(X − t)n /X > t

]
=

1
R(t)

∫ ∞

t
(x − t)n f (x) dx

=
1

R(t)

n∑
a=0

(n
a
)

(−t)n−a
∫ ∞

t
xa f (x) dx. (3.23)

For γ > 0 integer, using pdf Eq (3.4) we have

mn(t) =
δϕ

S (t)

∞∑
i, j,k=0

n∑
a=0

′′

wi, j,k
(n

a
)

(−t)n−a

×

∫ ∞

t
xa+ϕ−1 exp(−δxϕ)

[
1 − exp(−δxϕ)

]λ(γ j+k)−1 dx
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=
δϕ

S (t)

∞∑
i, j,k,l=0

n∑
a=0

′′

wi, j,k,l
(n

a
)

(−t)n−a
∫ ∞

t
xa+ϕ−1 exp(−δxϕ (l + 1))dx

=
δ

S (t)

∞∑
i, j,k,l=0

n∑
a=0

′′

wi, j,k,l
(n

a
)

(−t)n−a Γ (a/ϕ + 1, δ (l + 1) tϕ)
[δ (l + 1)]a/ϕ+1 , (3.24)

where
′′

wi, j,k,l =
′′

wi, j,k

(
λ(γ j+k)−1

l

)
(−1)l and Γ(., .) is lower incomplete gamma function, similarly using the

EGIKw-Weibull quantile function for γ > 0 non-integer, we have

mn(t) =
1

S (t)

∞∑
r=0

n∑
a=0

z̆r
(n

a
)

(−t)n−a
∫ 1

[1−exp(−δtϕ)]
urQ(u)adu. (3.25)

An alternative representation can be derived from Weibull Exponential-G distribution, as

mn(t) =
1

S (t)

∞∑
r=0

n∑
a=0

′′

zr
(n

a
)

(−t)n−a
∫ ∞

t
xavr+1 (x) dx, (3.26)

where S (x) = 1 − F(x) is the EGIKw-Weibull survival function and vr+1 is the Weibull Exponential-G
density function as given in Eq (3.6).

3.9. Order statistics

Let X1, X2, ..., Xn be a random sample of size n from the EGIKw-Weibull distribution and
X(1), X(2), ..., X(n) are the corresponding order statistics, then the pdf of ith order statistic can be
obtained as

fi:n(x) =
f (x)

B(i, n − i + 1)
F(x)i−1 [1 − F(x)]n−i

=
f (x)

B(i, n − i + 1)

n−i∑
h=0

(−1)h
(

n−i
h

)
F(x)h+i−1, (3.27)

where B(., .) is the beta function and F(x) is the EGIKw-Weibull cdf. Replacing Eq (3.2) in above
expression, we have

F(x)h+i−1 =

 ∞∑
t=0

zt
[
1 − exp(−δtϕ)

]t

h+i−1

=

∞∑
t=0

ct,h+i−1
[
1 − exp(−δtϕ)

]t , (3.28)

where c0,h+i−1 = (z0)h+i−1 , ct,h+i−1 = (tz0)−1 ∑t
m=1 [m(h + i) − t] zmct−m,h+i−1. Using Eq (3.28) in Eq

(3.27), with f (x) given in Eq (3.4) for γ > 0 integer, and with f (x) Eq (3.5) for γ > 0 non-integer, we
respectively obtain

fi:n(x) =
δϕtϕ−1 exp(−δtϕ)

B(i, n − i + 1)

∞∑
l, j,k,t=0

n−i∑
h=0

′′

wl, j,kct,h+i−1 (−1)h
(

n−i
h

)
[
1 − exp(−δtϕ)

]−(λ(γ j+k)+t−1) , (3.29)
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and

fi:n(x) =
δϕtϕ−1 exp(−δtϕ)

B(i, n − i + 1)

∞∑
r,t=0

n−i∑
h=0

z̆rct,h+i−1 (−1)h
(

n−i
h

) [
1 − exp(−δtϕ)

]r+t .

The corresponding expressions for moments, the mgf and other properties of the EGIKw-Weibull order
statistics can be obtained likewise.

4. Estimation

In this section, we employ the method of MLE to estimate the unknown parameters of EGIKw-
Weibull distribution. We consider independent random variables X1, X2..., Xn, from an EGIKw-Weibull
distribution with parameter vector Θ = (α, β, γ, λ, ϕ, δ)′. The log-likelihood l(Θ) = log L(Θ) for the
model parameters obtained from Eq (2.2) is

l(Θ) = n log(αβγλδϕ) + (ϕ − 1)
n∑

i=1

log x − δ
n∑

i=1

xϕ − (λ + 1)

×

n∑
i=1

log
[
1 − exp(−δxϕ)

]
− (γ + 1)

×

n∑
i=1

log
[[

1 − exp(−δxϕ)
]−λ
− 1

]
− (α + 1)

×

n∑
i=1

log
[
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)−γ]
+ (β − 1)

×

n∑
i=1

log
[
1 −

[
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)−γ]−α]
. (4.1)

The components of score vector U = (Uα,Uβ,Uγ,Uλ,Uϕ)
′

are given by

Uα =
n
α
−

n∑
i=1

log
[
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)−γ]
+ (β − 1)

×

n∑
i=1

log
[
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)−γ]
[
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)−γ]α
− 1

,

Uβ =
n
β

+

n∑
i=1

log
[
1 −

[
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)−γ]−α]
,

Uγ =
n
γ
−

n∑
i=1

log
([

1 − exp(−δxϕ)
]−λ
− 1

)
+ (α + 1)

n∑
i=1

log
([

1 − exp(−δxϕ)
]−λ
− 1

)
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)γ − (β − 1)α
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×

n∑
i=1

log
([

1 − exp(−δxϕ)
]−λ
− 1

) [
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)γ]−1[(
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)−γ)α
− 1

] ,

Uλ =
n
λ
−

n∑
i=1

log
[
1 − exp(−δxϕ)

]
− (γ + 1)

n∑
i=1

log
[
1 − exp(−δxϕ)

]([
1 − exp(−δxϕ)

]λ
− 1

)
− (α + 1) γ

n∑
i=1

log
[
1 − exp(−δxϕ)

](
1 −

[
1 − exp(−δxϕ)

]λ) [1 +
([

1 − exp(−δxϕ)
]−λ
− 1

)γ]
+

n∑
i=1

log
[
1 − exp(−δxϕ)

][
1 +

([
1 − exp(−δxϕ)

]−λ
− 1

)−γ]α
− 1

×
αγ (β − 1)(

1 −
[
1 − exp(−δxϕ)

]λ) [1 +
([

1 − exp(−δxϕ)
]−λ
− 1

)γ] ,
Uδ =

n
δ
−

n∑
i=1

xϕ − (λ + 1)
n∑

i=1

xϕ

exp(δxϕ) − 1
− λ (γ + 1)

×

n∑
i=1

xϕ[[
1 − exp(−δxϕ)

]λ
− 1

] [
exp(δxϕ) − 1

] + γλ (α + 1)

×

n∑
i=1

xϕ
[([

1 − exp(−δxϕ)
]−λ
− 1

)γ
+ 1

]−1[[
1 − exp(−δxϕ)

]λ
− 1

] [
exp(δxϕ) − 1

] − αγλ (β − 1)

×

n∑
i=1

xϕ
[
exp(δxϕ) − 1

]−1
[(([

1 − exp(−δxϕ)
]−λ
− 1

)−γ
+ 1

)α
− 1

]−1

[([
1 − exp(−δxϕ)

]−λ
− 1

)γ
+ 1

] [[
1 − exp(−δxϕ)

]λ
− 1

] ,

Uϕ =
n
ϕ

+

n∑
i=1

log x − δ
n∑

i=1

xϕ log x − δ (λ + 1)
n∑

i=1

xϕ log x
exp(δxϕ) − 1

− δλ (γ + 1)

×

n∑
i=1

xϕ log x[[
1 − exp(−δxϕ)

]λ
− 1

] [
exp(δxϕ) − 1

] + δγλ (α + 1)

×

n∑
i=1

xϕ log x
[([

1 − exp(−δxϕ)
]−λ
− 1

)γ
+ 1

]−1[[
1 − exp(−δxϕ)

]λ
− 1

] [
exp(δxϕ) − 1

] − αδγλ (β − 1)

×

n∑
i=1

xϕ log x
[(([

1 − exp(−δxϕ)
]−λ
− 1

)−γ
+ 1

)α
− 1

]−1

[([
1 − exp(−δxϕ)

]−λ
− 1

)γ
+ 1

] [[
1 − exp(−δxϕ)

]λ
− 1

] [
exp(δxϕ) − 1

] .
Setting these equations to zero and solving them simultaneously yields the MLEs of the GKw-E

parameters. Since there are no close form for these MLEs, a numerical solution to these equations can
be determined by using a standard statistical software.
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5. Monte Carlo simulation

In this section, an extensive numerical investigation is carried out to examine the performance of
MLEs for EGIKw-Weibull model. The performance of estimators is evaluated through their average
bias (AB) and root mean square errors (RMSE) for different sample sizes. The quantile function is
given in Eq (2.5) is used to generate random samples from the EGIKw-Weibull distribution. The
simulations experiment is repeated for N = 2, 000 times, for each set of parameters with sample sizes
n = 20, 50, 100 and 120 and assumed parametric values I : (α = 0.8, β = 2.0, γ = 1.5, λ = 3.0, δ =

2.5, ϕ = 1.25), II : (α = 2.0, β = 1.5, γ = 1.2, λ = 2.5, δ = 2.2, ϕ = 1.75), III : (α = 1.4, β =

0.5, γ = 0.75, λ = 2.5, δ = 0.7, ϕ = 3.5) and IV : (α = 0.2, β = 0.85, γ = 0.15, λ = 2.25, δ = 0.3, ϕ =

1.5) . The AB and RMSE values of the parameters α, β, γ, λ, δ and ϕ for different sample sizes are
presented in Table 1 and Table 2. From the results of these Tables, it is clear that the AB and RMSE
for the estimators of the parameters are showing decreasing pattern as the sample size increases. The
results indicate that the method of MLE performs quite well in estimating the model parameters of the
proposed distribution.

6. Applications

This section provides two real applications to show how the proposed distribution can be applied
in practice. The importance and potentiality of the EGIKw-Weibull distribution are examined and
compared with the other fitted models namely the exponentiated Kumaraswamy-Weibull
(ExKu-weibuII) distribution [9], generalized Inverted Kumaraswamy Weibull (GIKw-Weibull)
distribution [11], the inverse Weibull Weibull (IW-weibuII) distribution [10], the
Kumaraswamy-Weibull (Ku-weibuII) distribution [7], Type II Half Logistic Weibull
(TyIIKwHL-weibuII) distribution [11], exponentiated Weibull (Ex-weibuII) distribution [16],
generalized inverse Weibull distribution[8] (GIWD) and the well known Weibull distribution. To do
so, we consider two real applications: first, the life of fatigue fracture of Kevlar data [1], and secondly,
the gauge lengths data [13].

6.1. Fatigue fracture of Kevlar data

The first data set has 76 observations and represents the life of fatigue fracture of Kevlar 373/epoxy
subjected to constant pressure at 90 percent stress level until all had failed. Among other applications,
the data set has been used to assess the superiority of the Transmuted Gompertz distribution over the
Gompertz distribution [1].

6.2. Gauge lengths data

The second data set consists of 63 observations and represents the gauge lengths of 10 mm as
reported in [13]. For each model, we estimate the parameters by using the method of MLE and adopt
the maximum value of log(likelihood) evaluated at MLEs (−l), minimum value of the
Cram’er-vonMises (W∗) statistics, Anderson-Darling (A∗) and Kolmogorov-Smirnov (K-S) test
statistics for model comparison purposes. In general, the smaller the values of these statistics, the
better the fit to the data. The TTT transformation curves of these data sets are depicted in Figure 3(a)
and Figure 3(b) respectively, which suggest an increasing f r f for both data sets and therefore,
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indicate that the proposed model is suitable for fitting these data [5]. Furthermore, the key descriptive
statistics of the data set 1 are listed in Table 3. Table 4 gives the MLEs of parameters with there
corresponding standard errors in parenthesis. To compare goodness-of-fit of considered models, the
computed goodness-of-fit measures are provided in Table 5. The estimated pd f , cd f , PP-plots and
QQ-plots of the various models are respectively plotted in Figures 4–7, for the first data set. The key
descriptive statistics, estimates of the parameters as well as the values of the goodness of fit statistics
for data set 2 are listed in Tables 6–8. The estimated pd f , cd f , PP-plots and QQ-plots of the different
models are plotted in Figures 8–11 for the second data set. We note that the EGIKw-Weibull
distribution provides the best fit for both data sets. Hence, the proposed six parameter Weibull
distribution is superior to other well known models in term of empirical model fitting to real data.
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Figure 3. TTT-transform plot for the data.
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Figure 4. Estimated pdf of the considered models for the first data set.
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Figure 5. Esimated cdf of the considered models for the first data set.
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Figure 6. The sample pp-plots of the considered models for the first data set.
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Figure 7. The sample QQ-plots of the considered models for the first data set.
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Figure 8. Estimated pdf of the considered models for the second data set.
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Figure 9. Estimated cdf of the considered models for the second data set.
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Figure 10. The sample pp-plots of the considered models for the second data set.
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Figure 11. The sample QQ-plots of the considered models for the second data set.
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Table 1. Mean estimates, AB and RMSEs of EGIKw-Weibull distribution for some
parameters values.
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Table 2. Mean estimates, AB and RMSEs of EGIKw-Weibull distribution for some
parameters values.
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Table 3. Descriptive statistics for the first data set.

Table 4. MLEs (standard errors in parentheses) of the considered models for the first data
set.

Table 5. The goodness-of-fit statistics of considered models for the first data set.
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Table 6. Descriptive statistics for the second data set.

Table 7. MLEs (standard errors in parentheses) of the considered models for the second data
set.

Table 8. The goodness-of-fit statistics of considered models for the second data set.
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7. Conclusions

There has been a growing interest among statisticians and applied researchers in constructing
flexible lifetime models to improve the modeling of survival data. As a result, significant progress has
been made towards the generalization of the traditional Weibull model. In this article, a new six
parameter Weibull extension named the EGIKw-Weibull distribution is proposed. The
EGIKw-Weibull model is motivated by the fact that the generalization provides more flexibility to
analyze positive real-life data. Graphs of the pdf, cdf, hrf and cumulative hrf of the distribution are
presented. From Figure 1(a), it can be seen that the shape of the distribution is extremely left skewed,
and Figure 2( b) shows that the hazard rate function of the EGIKw-Weibull distribution exhibits
various shapes. That support using it in modeling the monotonic and non-monotonic hazard behaviors
which are more likely to be encountered in practical situations like, human mortality, reliability
analysis and biomedical applications. Various properties of the new model have been derived and
explicit expressions for order statistics have been provided that makes analysis of data available.
Parameter estimation is done by the method of MLE. Finally, a Monte Carlo Simulation study has
been provided to assess the performance of the proposed model. The practical importance of the
proposed distribution is demonstrated using two real applications, it is found that the EGIKw-Weibull
model is well fitted as compared to its competing models, Tables 4, 5, 7 and 8.
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