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1. Introduction

Gas dynamics plays a critical and indispensable role in the design of various apparatus, engines
and gas-powered vehicles. It is instrumental in identifying and understanding the forces of pressure,
temperature, friction and heat flow that act on a body or duct interacting with gas. By examining
the propulsion of gas jets, blast and shock waves, combustion and detonation, gas dynamics enables
us to measure the pressure, temperature and other relevant gas characteristics throughout the entire
propagation region by its governing laws. The laws of gas dynamics find extensive applications in both
exterior and interior ballistics and the study of various phenomena, including explosion, combustion,
detonation and condensation in moving gas currents. Moreover, these laws are crucial in the design and
analysis of a wide range of engineering devices and systems, such as compressors, turbines, nozzles,
diffusers, rocket motors, wind tunnels, ejectors and gas pipelines. To effectively understand and predict
the behavior of these phenomena and devices, mathematical modeling plays a central role.

The mathematical model describing the phenomenon of gas dynamics is as follows:

ds(e,p)

HDls(e.p) + Cs(e. ) 5 = 5@ )1 = sE ) +x(E,9), a<s<h 0<p<T, (LD
s(&,0) = ¢(e), €€la,b], (1.2)
s(@, ) = wi(p), sb, ) = wa(p), 0< P < T, (1.3)

where € and J are convection and reaction parameters, correspondingly, s(g, ¢) is the state evolution
throughout the spatial-temporal domain, x(&, ¢) is a suitable prescribed function of € and g respectively,
0 < B < 1and “CDYs(, p) fractional derivative is expressed in the Caputo perspective as

1 ¥ ds(ef) -8
LeDlse, p) = {w 0 T @O g;j <h (1.4)
ap :

The exploration of complex fractional partial differential equations has been a highly significant
subject of research in the past. So, the analytical and numerical investigation of the time fractional gas
dynamics equation (TFGDE) is crucial for understanding and predicting the behavior of gases in
complex scenarios [1-4]. Authors in [5] have employed the fractional natural decomposition method
to solve TFGDE. Das and Kumar [6] obtained an approximate analytical solution of TFGDE using
the differential transform method. Rao and Balaji [7] provided the numerical solution to TEFGDE by
adopting the Laplace Adomian decomposition method coupled with fractional complex transform.
Saad et al. [8] stimulated efficient technique, namely the optimal gq-homotopy method for space and
TFGDE. Igbal et al. [9] presented an iterative transformation technique and homotopy perturbation
method combined with Elzaki transformation to obtain the analytical solutions of TFGDE. With the
advent of computers, splines have gained significant prominence in various fields of mathematics and
engineering. The authors in [10-12] have made significant contributions to the analysis of numerical
solutions of differential equations using various spline methods. In their work, they have extensively
explored and compared the effectiveness of three different spline methods: the spline method, the
modified spline method and the orthogonal spline method. Esen and Tasbozan [13, 14] proposed the
cubic B-spline collocation method and the quadratic B-spline Galerkin method to investigate the
approximate solution of TFGDE.
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Trigonometric B-splines have been proven to be highly effective in addressing surface
approximation problems in geometric modeling, as highlighted by Wang and Chen in their
research [15]. These special functions are well-known for their shape-preserving interpolation
properties and geometric characteristics, such as C* continuity, non-negativity and partition of unity.
Due to these desirable properties, trigonometric B-splines find extensive use in image processing and
computer graphics, where they are employed for tasks like image interpolation, smoothing and
compression. The wide applicability of trigonometric B-splines has led to the proposal of various
forms of these functions as alternatives to the more common polynomial B-splines. Researchers, such
as Nazir and Abbas [16], Ay and Dag [17], Yaseen and Abbas [18-20] and Abbas and Majid [21],
have contributed to the development and exploration of different formulations of trigonometric
B-splines.

In the current manuscript, our primary objective is to explore the practical applications of
trigonometric cubic B-spline functions in combination with the collocation method. We aim to
demonstrate the utility of these spline functions in tackling the TFGDE and to present a systematic
solution algorithm for effectively solving this equation. We have rigorously derived theoretical results
for the stability and convergence analysis of the proposed algorithm. To assess the accuracy
performance of the proposed method, we have conducted extensive investigations using various test
problems relevant to gas dynamics.

The manuscript is structured as follows: In Section 2, the authors introduce a numerical approach
based on trigonometric B-splines. Sections 3 and 4 address the stability analysis and theoretical
convergence of the analyzed system, respectively. The key findings for the investigated interacting
mechanism are derived in Section 5 and we conclude with several comments on the acquired
outcomes in Section 6.

2. Description of numerical approach

Consider the subdivision of temporal domain [0, T] into M equal sub-intervals [@,,, 9+1] Of the
length Ap = M% using the knots 0 = 9y < 91 < ... < pu = T, where p,, = mAp, m=0,1,...,M. The
time fractional derivative expressed in Eq (1.4) can be approximated at ¢ = ¢,,,.; with the help of L1
formula described as [18]:

S 1 S 5(&, Prmegr1) — S(E, Pim—y)

LC~38 (% (4 m+1

D > Om = — E - +E™, 2.1
WS(g Pm+1) T2 - %) £ Ty (QSO)B 2.1)

where 1, = (¢ + 1)!"% — ¢!~ and the truncation error E™*! is bounded.

[E™] < Rey(Ap)* ™, (2.2)

where Re; is constant.
The co-efficients r, fulfill the following regulations:

ro =1,

>0 >1>..>1, I, >0 as ¢— oo, 2.3)
t, >0, for ¢=0,1,2,..m, '

m—1

Zzzo(rcp - rgp+1) + r<,a+1 = (1 - r1) + 2¢:1 (rgo - r<,o+1) + r¢ =1.
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Employing Eq (2.1) combined with a #-weighted scheme, Eq (1.1) transforms into the following
form as

Im Z r(p[sm_‘”r1 — s+ 9[(‘:(553)Wrl - 3(s - sz)mH] +(1 = O)[C(ss,)" = I(s = s)™]
& (2.4)

=xX"! m=0,1,2,...,M—-1,

where Im = m, s™ = s(g, p) and X" = 0x™* 4 (1 — @)x™. Rubin and Graves [22] advertised
the following formula to linearize the nonlinear terms:

(Ssg)m+1 — Sm+lsg1 + Smsgwl _ Smsgl, (2 5)
(SZ)m+l — 2sm+1sm — ghgm

Utilizing Eq (2.5) in Eq (2.4) as

m
q)msm+1 + \Ijmsgwl = YT"" — Im Z r‘p[sm—t,oﬂ _ sm—<p] + xm+l’ (26)
¢=1
where
O" = Im +Chs; — 63 + 263s™, P = 0Cs™,

T = Im +60Cs™ + 63s™ — (1 — 9)[(ng‘ — 3+ 35",

Let us assume the spatial domain [a, b] is uniformly partitioned into I subdomains of step distance
by inserting the knots g suchthata = gy < &) < ... < g = bwhereh =g, —g, 1=0,1,2,..L. Our
scheme for solving Eq (1.1) demands approximate solution S(g, ¢) to the exact solution s(g, ) in the
ensuing form [23,24]:

L+1
Se.9) = ) N'(©)T(®), 2.7)
=1
where time-dependent unknowns N"(p) are to be determined from the boundary and trigonometric
cubic B-spline collocation conditions and Ti(g) are twice continuously differentiable trigonometric
cubic B-spline functions, described as follows [19]:

773(81—2), € € e, &1,
| |ne(ne et + olen e n) + ey, &€ losal,
Ti(e) = W (2.8)
Q(SI+1)(77(81—2)Q(81+1) + Q(SI+2)77(81—1)) +n(e)0*(ena), € € [en €],
93(81+2), € € &1, E12l,
where 3
n(ey) = sin (8 _2 & ), o(g) = sin (8I ; 8), W = sin (g) sin (b) sin (?b)

The support of the B-spline functions Ti(¢) is assumed to be [g_,, €;2]. Notice that each Ty(e) is
piecewise cubic and nonzero over four consecutive sub-domains and die out otherwise. Consequently,
each sub-domain [&i, ;1] contains three segments of T\(g).
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Equation (2.6) in terms of approximate solution (2.7) can be written as

oS 4 ‘PmS?H — e Imz rw[Sm—wH —S™¥] + X+l (2.9)
¢=1

Discretizing the above Eq (2.9) along the spatial grid gives

Q"SI+ P(S )M = YS! — Im Z r, (S — e 4 el (2.10)

p=1
Using Eqgs (2.7) and (2.8), the expression of S(g, ¢) and its necessary spatial derivatives at the nodal

points are determined in terms of the parameters N as follows:

S(e, ™) = XaNL () + x2N'(9) + 1N (9),

Se(er, ™) = —x3NL (9) + xaN (9), (2.11)

Ses(en, ™) = xaN1 () + xsN"(9) + xaR (9),

where
2 3

=)o (B 3 = o= Soe(2)

B 3+9cosh _ 3cot?(3)
X 4cos (3) —4cos (D)’ T T dcos()

Substituting Eq (2.11) into Eq (2.10) gives

()aCD}“ —Xs‘P{")N{T + 2O+ ()a(D{“ +X3\P}")le
m

S TINE TN TN T Y e NI R ST N @)
¢=1

T (R N ] +X™, 0<m<M, 0<I<L.

Framework (2.12) is a system of (L + 1) equations in (L + 3) unknown parameters. Boundary
conditions are used to procure two more equations. Consequently, we acquire a consistent diagonal
system, which can be solved using any suitable algorithm based on Gaussian elimination.

2.1. Initial vector

The initial vector X° = [K°,N),...,N] 17 is needed to start the iterative process, which can be
captured from the initial condition and its first derivatives at the endpoints as follows:

86 = §'/(80), (2.13)
S? =g(e), 1=0,1,2,...,L,
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S = ¢ (s0).

This yields the following (L + 3) X (L + 3) matrix system:

[—x3 0 x3 0 --- 0 0 O][N] [G)]
Xt x2 x1 0 -« 0 0 Of|N) S0
0 0 0 0 - xi x x N]}(i G'H(i
[0 0 0 0 - —x3 0 xs [N, ] [(e))

The above system is easily solvable for X° by means of a suitable numerical algorithm. All the
numerical computations are performed in Mathematica 12.

3. Stability

Here, we examine scheme (2.12) for the stability analysis. According to Duhamels’ principle,
stability analysis for an inhomogeneous problem is typically assumed to be an immediate outcome of
the stability analysis for the corresponding homogeneous case. So it is sufficient to provide the stability
analysis for the homogenous case (g, 9) = 0 of Eq (1.1) as follows:

LCD¥s(e, 9) + Cs(e, p) ( 50) =3s(g, )1 = s(e,9)), a<e<b 0<p<q. (3.1)

We first consider the term s a local constant @, as is done in Von Neumann method. Substituting
the approximate solution S, their derivatives at the knots with 6 = 1, into Eq (3.1) yields the equation
given by

(Im i —Gays — (1 — @)Xl)x;‘jl ; (Im o —3(1 - @)Xz)x;"“

+ (Im)(l +Cays; —3(1 - @m)&”ﬁl

(3.2)
=TIm N, + Im oS + Im N — Imz r¢[X1(N1“ AL i

p=1

+ xR =R (R - N ] 0<m<M, 0<I<L.

Let o« and & be the growth factor and its approximation, respectively, of a Fourier mode. Defining
A" = =&, which on substituting in Eq (3.2) gives

(Im i —Cays — (1 — @)Xl)A}‘jl + (Im o — (1 — @))(Z)A{““

+ (Im i+ Cays — (1 - @)Xl)Aml

m 3.3)
=Imy AL, + Imy2 A" + Imy A — ImZ r¢[X1(A1" ol ALY
p=1
F AT A = AT
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The above error equation fulfills the initial and boundary conditions:

A =¢(e), 1=1,2,...L,

Ay = wi(p™), Al' = w(p™), m=0,1,.., M.

Define the grid function
A JAT s-2<e<g+3, I=1:1:L-1,
0, aSesa+§ or b—%’Sssb.
Notice that the Fourier expansion of A™(g) is

INOEDY Q"(g)ers, m=1,2,.., M,

g=—c0

where

1 b nLge
Q"(g) = P f Am(g)e_zb—a de.

Let
A" = [AT A, L AT

and introduce the norm
L-1 1
1=

m m2 % ’ m2 2
N bIAII)I[flAIds].
1 a

By Parseval equality, we have

b 0
f A"Pde = > 1Q )P,
a g=—oo
which implies that
IAME = ) 1" @)

g:—OO

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Suppose that Eqs (3.3)—(3.5) have solutions of the form A" = ¢ me'e where t = V-1 and y €

[—n, ]. Substituting this expression in Eq (3.3) and dividing by ¢, we obtain
[( Imy; — 3(1 - @))(1)(6‘75 + e_‘yg) + @@)(3(6‘78 - e_‘yg) +Imy, — 3(1 - @)Xz]{”‘“

m
:g‘“[ Im Xl(e”'s + e“”) +1Im )(2] - Z rw[({ moerl g “““’)( Imy(e”® + e™) + Im )(2)].
1

Using the relations
e’ + e =2 cos(ye),

e’® — e = 2 sin(ye),

(3.10)
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and grouping the similar terms, we obtain the following relation:

[(1m61 = 301 = @)1 )2 cos(re) + Coxs(2usin(re)) + Imgz = 3(1 = @)z ¢
m 3.11)
Im y (2 cos(ye)) + Im)(z] - Z rw[(gm_“’” - {'"‘“’)( Im y (2 cos(ye)) + Im)(z)].

p=1

:é/m

Without any loss of generality, we can suppose that y = 0. Then, the last expression reduces to

§m+1 — { _ Z w(‘:m e+l _ m ‘P)’ (312)

23(1-2 J(1-2
where ¢ = | + 220500k
m y+Imy;

Now we have to show that

12" <10 m=1,2,.. M. (3.13)
With the help of mathematical induction, we have to conclude this result. For m = 0, we have

from Eq (3.12) that

1_10 0 .. l
=Sl =1L g <L (3.14)

Assume that |¢™] < |¢°| form = 0,1,2,...,M — 1. We have to prove it for m = k + 1. Now consider

1 k
|§k+1 1_9 Z k -+l _ k )]
-1

1 k
<l58+ E 5 D L = )

p=1

1 1 <
< | gk = k—p+1 k-
<lgdl 5 Dl = 470
¢=1
1 1 <&
< 1—9|§"|+1—9;[|§"-¢+‘|+|g"-@|], v 0<r, <1,
1 1 <
< 210+ =
< I+ ﬁ;[wmm]
] 2k
—|§°|+—|{°|
1+2k
12°.
Hence,
I <180, if 1;% <1. (3.15)

From Eqgs (3.9) and (3.15), it follows that
IATL < 1AL, m=0,1,2,.., M,

which shows that the numerical scheme is conditionally stable.
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4. Convergence analysis

To describe convergence analysis, we first go through some important findings.

Theorem 4.1. Note that s(s, p) € C*[a, b, x € C?[a, b] such that [a, b] is partitioned with step length b
at the equidistant knots. If the trigonometric cubic B-spline approximation for solving TFGDE at knots
&, ..., €L € |a, b is S(e, 9), then there are J that are free of b, such that

1D (s(&, 9) = S, Pl < 6D, k=0,1,2. 4.1

Lemma 4.1. The trigonometric cubic B-spline basis {T_, Ty, ..., Tr,1} explained in Eq (2.8) follow the
result [25]

L+1
Z IT(e) <6, 0<e<l. (4.2)

=1

Theorem 4.2. Let S(g,9) be the computed solution to the exact solution s(g,¢) for TFGDE.
Furthermore, if x € C?[0, 1], we have

lIs(e, ) = Se, Pl < OB, (4.3)

for every ¢ > 0 and sufficiently small Y), where O is a positive constant free of 1.

Proof. Suppose that § (g, p) = S, 0"T\ is the decisive solution to S(g, ). Allow the current approach

for solving TFGDE to achieve the following collocation conditions:
LS(Sla K‘)) = LS(‘SD K')) = x(SI, 80)’ [= O’ 17 ceey La

LS (e, 9) = ¥e,9), 1=0,1,..,L.

The error equation of trigonometric cubic B-spline method for TFGDE at mth time level, can be
declared as

(Im)(l -Coys —3(1 - ®))(1)H?1+11 + (Im)(2 - 3(1 - @)XZ)H}“H

+(Tmgs + 6oxs = 3(1 - 2 I

m m m N m—p+1 m—e (44)
= Imy I1", + Im yo I} +ImX1HI+1—Ier¢[X1(HI_] .
p=1
1 .
m—e+1 m— m—p+1 m— m m
X T I T+ - )

following the end conditions:
XIET el + I =0, 1=0,L,

where
Im"=9"-N", 1=-1,0,1,..,L + 1.

From Theorem 4.1, we can see that
07| = bl&" - x| < 6ob*.
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Define U™ = max{|O";0 < [ < L}, R" = [I[I]"| and R" = max{|I[I";0 < [ < L}. Form = 0
in Eq (4.4), we have

(Im,\/l — oy - 3(1 - @)XI)H;_I + (Im)(z ~3(1 - @)XZ)H}
+(Tms + Coxs - 301 - o) |1,

1
:(Im)(ll'l?_l + Im y, 10 + Im)(ll'l?H) + BU}.
This implies

(12 =301 - oe

1
=~ |(1mx1 - €23 = 31~ @pa i, + (1ms + Soxs - 301 - @ 1t | + £

From the initial condition R® = 0 and taking absolute values of U' and I1! with a sufficiently small
mesh size I), we have
R} < 4/H%

Also from the boundary conditions, we obtain
R' <6'p% (4.5)

Using the induction technique, we can easily prove that

R™ <6p®, ¥V m, (4.6)
where ¢ is a constant.
Hence, we can write
L+1
$(e,9) = S, 9) = ) (8 = NI)Ti(e) < 60b” 4.7)

=1

By means of triangular inequality, we have
Is(&,9) = S&, P)lleo < lIs(8,9) = S (&, P)lleo + IS (&, 9) = S(&, P)l|eo- (4.8)
By using inequalities (4.1) and (4.7), we obtain
lIs(e, 9) = S(&, P)lleo < S0b* + 66h* = OF?, (4.9)
where O = §yh° + 60. O
Hence, ||s(e, 9) — S(&, 9)lle < Oh? + Re,(Ap)>~®, where O and Re, are constants.
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5. Results and discussions

In this section, to demonstrate the efficiency and accuracy of the suggested approach, four
numerical examples are investigated. Numerical findings are compared with existing methods
available in literature as well as with the exact solutions for various nodal points & at some time levels
™ employing the specific mesh size b and time step Ag. The numerical simulation has been executed
in Mathematica 12. In order to compute the maximum and Euclidean error norms for the proposed
scheme, we use the following formulas:

Lo = max |se, p) = S(ei, ),

L+1

b ) Is(e, 9) = Ster, )P
=1

L,
The experimental order of convergence is calculated as
(2
0 )
LoD

EOC =
log2
Example 5.1. Consider the following time fractional gas dynamics equation of the form [13]:

LCDIs(e,9) + s(e, ) ——— ( 50) = s(e, )1 — s(e,9)), 0<B <1, (5.1)

s(e, 0) =e”’, e€][0,1],
50,9) = Ex(9"), s(1,9) = ¢” Ex(p®), ¢ €[0,T],
where Egy is the Mittag—Lefller function defined as

v 9
Ex(p) = kZ:;J T(Bk+ 1)

The exact solution to the problem is

s(&,9) = e “Ex(p?).

We implement the scheme (2.12) to Example 5.1 to get the computational solution. In Tables 1
and 2, a comparison of error norms with those in [13] and [14] is presented. We have obtained a better
accuracy compared to other methods. The experimental order of convergence and the CPU time taken
in the computation of the numerical results by our proposed technique are tabulated in Table 3. The
piece-wise defined spline solution at ¢ = 1 for L = 100, Ap = 0.01 is given in Eq (5.2). The exact and
approximate solutions for various fractional orders B are presented in Table 4.

Table 1. A comparison of error norms L., and L, for Example 5.1 with other studies when
L =80,¢ =1and B = 0.50.
Ap [13] [14] Proposed method
Lo L, Lo L, Lo L,
0.01 1.17815 x 1072 7.40766 x 1073 3.55659 x 107 1.73903 x 1073 6.02036 x 10™*  3.79089 x 10~
0.005 5.95821 x 107 3.74342 x 1073 1.79622 x 1073 0.87334 x 1073 3.60322 x 107+ 2.36533 x 107*
0.001 1.21004 x 1073 0.76063 x 1073 0.36364 x 1073 0.17680 x 1073 8.85761 x 10>  6.04303 x 1073
0.0005 0.60734 x 1073 0.38182 x 1073 0.18241 x 1073 0.08871 x 1073 4.63123 x 107 3.18181 x 1073
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Table 2. A comparison of error norms L., and L, for Example 5.1 with other studies at
various time knots when L = 80, Ap = 0.0005 and B = 0.50.

[13] [14] Proposed method
Leo L, Lo L, Lo L,

0.2 0.87075x 10  0.50233 x 10~° 0.46167 x 10 0.23390 x 10~* 3.87462 x 10+ 2.32251 x 10~
0.4 0.75565 x 10%  0.46757 x 1073 0.29086 x 10~*  0.13289 x 1073 2.07185 x 10*  1.30055 x 10~*
0.6 0.70014 x 103 0.43899 x 10~ 0.22388 x 10 0.10435x 1073 1.26823 x 107 8.59606 x 1073
0.8 0.65152x 10%  0.40981 x 103 0.19676 x 10~*  0.09402 x 1073 7.75223 x 107°  5.29422 x 1073

Table 3. Order of convergence for Example 5.1 when ¢ = 1 and Ap = 0.01.

L Lo EOC CPU time (s)
10 0.0213314 - 0.23437

20 0.00685282 1.63821 0.35937

40 0.002176118 1.65494 0.73437

80 0.0006880981 1.66107 1.6875

Table 4. Exact and approximate solutions when L = 100, ¢ = 1 and Ap = 0.01 for
Example 5.1 for different fractional orders.

B =0.25 B =0.50 B =0.75
& Exact Approximate Exact Approximate Exact Approximate
0.0 9.55411 9.55411 5.00898 5.00898 3.48587 3.48587
0.1 8.64491 8.64492 4.53231 4.53234 3.15414 3.15421
0.2 7.82224 7.82225 4.10101 4.10106 2.85399 2.85410
0.3 7.07786 7.07787 3.71074 3.71082 2.58239 2.58255
04 6.40431 6.40433 3.35762 3.35770 2.33665 2.33683
0.5 5.79486 5.79488 3.03810 3.03819 2.11428 2.11448
0.6 5.24341 5.24342 2.74899 2.74907 1.91308 1.91328
0.7 4.74443 4.74444 2.48739 2.48746 1.73103 1.73120
0.8 4.29294 4.29295 2.25068 2.25074 1.5663 1.56643
0.9 3.88441 3.88442 2.0365 2.03654 1.41725 1.41732
1.0 3.51476 3.51476 1.84270 1.84270 1.28238 1.28238
Lo 1.59262 x 10~ 6.02748 x 10~ 3.74731 x 107
L, 1.08097 x 10~ 3.79101 x 10~ 1.55645 x 107

Figure 1 graphically illustrates the behavior of the approximated and exact solutions at different
time levels. We observe a significant change in solution profiles when g is changed and L, Ap and B
are fixed. This figure indicates that the magnitude of s(g, p) increases by increasing ¢. The graphs of
both solutions are in excellent accordance. Figures 2 and 3 demonstrate an excellent 3D behavior of
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exact and numerical solutions at time ¢ = 1. It is clear that the numerical solution is consistent with the
exact solution, which indicates effectiveness of the proposed method. Figure 4 displays the effect of
fractional parameter B on the computational solution by considering ¢ = 0.5, L = 100 and Ap = 0.01.
We notice that as the value of the fractional parameter increases, we get closer to our exact solution.
The piece-wise defined spline solution for Example 5.1 at 9 = 1,IL = 100 and Ap = 0.01 is given as

3 A 3
—~10.0267 cos £ + 15.0357 cos(5) +2421.15sin(%) +

sin(£)(7253.44 - 22.5536 sin &) — 1815.87 sin 2, if £ € [0, 7551,

3 . 3
62.7016 cos £ — 57.6902 cos(£) — 2426.87 sin(£) +

1820.16 csc £ sin &% +sin £(=7292.1 + 86.5353sin¢g), ifee€ [ILOO, %],
~82.8888 cos & + 87.8808 cos(5) +2424.04sin(5) +
sin £(7266.46 — 131.821 sine) — 1818.03csc £ sin&?,  if & € [, 51,

: : . | .
1792.06 cos £ — 1644.31 cos(£) - 1788.96 sin(%) +

2
1341.72 csc £ sin & + sin £(—=7071.92 + 2466.46 sin¢), if € € [155, 2%

100° 100-4°
3 . 3 (5.2)
—~1810.87 cos £ + 1664.59 cos(5) + 1762.89sin(%) +

sin £(7038.33 — 2496.88 sin &) — 1322.17 csc £ sin &, ifee [, 2L

S(e, 1) =
100° 1001

: - e
2955.59 cos £ — 2087.9 cos(£) - 225.767 sin(%) +

169.326 csc £ sin &7 + sin £(~5568.02 + 3131.85sin¢), if & € [T, 1051,
3 3

—~2955.cos £ +2077.18 cos(£)” + 195.485sin(£) +

sin £(5513.18 — 3115.77 sin &) - 146.614 csc 2 sin;;z, ifeel[X, 2,

2975.85 cos £ — 2069.23 cos()” — 161.137 sin(%) +

2

120.853 csc £ sin &% + sin £(—5473.36 + 3103.85sin¢), ife€ [%, 1].

Figure 1. Plot showing exact and approximate solutions when L = 100, Ap = 0.01 and
B = 0.50 at various time levels.

AIMS Mathematics Volume 8, Issue 11, 25343-25370.



25356

Figure 2. Three-dimensional plot of exact solutions for Example 5.1 when L = 100, Ap =
0.01 and B = 0.50.

Figure 3. Three-dimensional plot of numerical results for Example 5.1 when L = 100,
Agp = 0.01 and B = 0.50.

Figure 4. The effect of fractional parameter B on the computational solution for Example 5.1
when ¢ = 0.5,L = 100 and Ap = 0.01.
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Example 5.2. Consider the following time fractional gas dynamics equation of the form [6]:

LCD¥s(e, 9) + s(e. gO)—aS(;’ P _ s(e, )1 —s(e,9) —e”®, 0<B<1, >0, (5.3)
’ E

s(g,0)=1-¢%, £€][0,1],

50,9) = =9 Erga(p), s(1,p) = 1 - — ¢ 9 Er51(p), 9 €[0,T],
where Eg, 1s the two-parametric Mittag—Leffler function defined as

oo k

)

Es = s E—
2.a(9) Zk:O ['(Bk + @)

The exact solution to the problem is

se,9)=1—e*— e P E  g:1(p).

Table 5 reports the error norms for different values of fractional parameter B at ¢ = 1 and L = 100.
Table 6 presents the error norms at various time knots and for different step sizes when B = 0.50.
Exact and computational outcomes for various values of fractional parameter B when L = 100, p = 1
and Ap = 0.01 are tabulated in Table 7. It is observed that the computational and exact solutions
are in good agreement. The piece-wise defined spline solution for Example 5.2 at ¢ = 1, L = 100
and Ap = 0.01 is given in Eq (5.4). Table 8 presents the comparison of error norms with the method
discussed in [6] at different time knots and fractional orders. From this table, the efficiency of the
proposed method is remarkably pronounced. It is observed that the error norms of the present method
are less than those computed from the semi-analytical solution derived in [6].

Table 5. Maximum error norms L., and Euclidean error norms L, when L. = 100, ¢ = 1 for
Example 5.2 corresponding to different fractional orders.
B =0.25 B =0.50 B =0.75
Lo L, Lo L, Lo L,

0.01 3.69844 x 1073 2.47623 x 1073 4.54598 x 1073 2.93294 x 1073 221600 x 1073 1.52382 x 1073
0.005 1.91491 x 1073 1.28204 x 1073 241824 x 1073 1.58057 x 1073 1.44097 x 1073 1.03372x 1073
0.001 3.97575x 1074 2.66275 x 107* 5.22475x 107* 3.46776 x 107* 4.55943 x 107*  3.05383 x 107*
0.0005  2.00173x10™* 1.34092x 10*  2.67174x10™* 1.77002x 10™*  2.56362 x 10™* 1.68682 x 107*

Ap

Table 6. Maximum error norm L., and Euclidean error norm L, at various time levels when
B = 0.50 for Example 5.2.

_ =02 9 =04 0 =0.6 0 =028

b=A4p L. L, Lo L Lo L, L L
T 117673 x 102 5.17553 x 107 8.08584 x 105 40544 x 107 635047 x 107 3.54398 x 107 521918 x 107 3.21038 x 10
-+ 0.87829 x 10° 4.34265x 10 6.80441 x 10° 34097 x 103 536286 x 10° 2.98976x 10 442947 x 10° 271966 x 10-3
& 85147 x 10 374193x 107 587618 x 10 2.9432x 10 464379 x 10 2.58691 x 10 3.85015x 10 2.36102 x 10~
-+ 748358 x 10° 328796 x 103 5.17236 x 10° 2.58977x 10 4.09641 x 10° 228063 x 10 3.4066 x 10  2.08689 x 10-3
* 6.67627x 107 293260 x 10 4.62012x 107 231262x 10~ 3.66554x 10 2.03978 x 10 3.05585 x 10 1.87054 x 10-3
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Table 7. Exact and numerical outcomes when L = 100, ¢ = 1 and Ap = 0.01 for

Example 5.2.
. B =0.25 B =0.50 B=0.75

Exact Numerical Exact Numerical Exact Numerical

0.0 —2.53365 —2.53365 -2.2907 —2.2907 -2.01147 -2.01147
0.1 -2.19738 -2.19756 -1.97755 -1.97783 —1.72489 —1.72506
0.2 -1.89311 —1.89345 —1.6942 —1.69474 —1.46559 —1.46592
0.3 -1.61779 -1.61827 —1.43781 —1.4386 —1.23096 —1.23146
04 —1.36868 -1.36926 —1.20582 —1.20683 -1.01865 -1.01934
0.5 —1.14327 —1.14393 —0.995909 -0.997117 —0.826551 —0.827426
0.6 —0.93931 —0.940017 —-0.805973 —0.807343 —0.652732 —0.6538
0.7 —0.75476 —0.755462 -0.634112 —0.635586 —0.495454 -0.496713
0.8 —-0.587773 —0.588396 —-0.478606 —-0.480066 —-0.353143 —0.354546
0.9 -0.436676 —-0.437101 —0.337898 —-0.339028 —0.224374 —0.225679
1.0 —0.299958 —0.299958 —0.21058 -0.21058 —-0.107859 —0.107859
Lo 3.69844 x 1073 4.54598 x 1073 2216 x 1073
L, 2.47623 x 1073 2.93294 x 1073 1.52382 x 1073

Table 8. A comparison of error norms when f) = Ap = 0.01 for Example 5.2.

9] B [6] Proposed method
Lo L, Lo L,

02 0.5 1.42819x 107! 9.45221 x 1072 1.17673 x 1072 5.17553 x 1073
0.7 421493 x 1072 2.78958 x 1072 9.24571 x 1073 3.70292 x 1073

09 6.85292 x 1073 4.53549 x 1073 2.7463 x 1073 9.75071 x 107*

0.5 0.5 2.81188x 107! 1.861 x 107! 7.10279 x 1073 3.76407 x 1073
0.7 1.14254 x 107! 7.56171 x 1072 6.28378 x 1073 3.12786 x 1073

0.9 2.49654x 1072 1.65229 x 1072 8.11543 x 10~ 3.50029 x 1074

1 0.5 241329x 107! 1.59719 x 107! 4.54598 x 1073 2.9329 x 1073
0.7 1.43865 % 107! 9.52147 x 1072 3.04349 x 1073 2.18887 x 1073

09 4.32218x 1072 2.86057 x 1072 6.14144 x 107* 2.99519 x 10~*

The effect of varying the time on exact and approximate solutions is sketched in Figure 5. It can be

seen that an increase in time level leads to a decrease in s(g, ).

Figures 6 and 7 display a

three-dimensional visual of exact and numerical outcomes when L. = 100, Ap = 0.01 and B = 0.50.
The influence of the fractional parameter on the computational solution is observed in Figure 8. We
conclude that an increase in the fractional parameter leads to a closer approximation to the exact

solution.

The piece-wise defined spline solution for Example 5.2 at ¢ = 1, L = 100 and Ap = 0.01 is given as
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S(e, 1) =

126766 cos £ — 129.057 cos(5)’ - 17494.7 sin(5) +
13121.0sin £ + sin £(—52477.6 + 193.586 sin &),

~399.055 cos £ + 396.746 cos(
sin £(52685.8 — 595.12sing) — 13167.2 ¢sc £ sin g%,
658.512cos(2) — 17608.5sin(5) +

656.344 cos % -

if £ € [0, 7151,

)’ +17556.25in(5) +

1 2

ifee [m, m],

100° 100

13206.4 csc £ sin &2 + sin £(—52850.6 + 987.768sing), if & € [Z, 05,

15311.7005%—

14039.9 cos(5)” - 14847 8 sin(5) +

11135.9 csc £ sin&” + sin £(—59355.3 + 21059.8sin¢e), ife €[ 49 S50
~15651.1cos § + 14296.2cos(5) + 14668.5sin(5) +

sin £(59424.3 — 21444.3 sine) — 11001.4 csc § sin &,

100° 100

: 50 51
ifee [m, 100l

: - o
—~26946.2 cos £ + 19061.7 cos(%) +2070.91 sin(%) +

sin £(50820.8 — 28592.5 sin &) — 1553.19 csc £ sin g%,
18843.8 cos(5) — 1762.82sin(5) '+

26844.8 cos % -

97 98

ifee [m,m y

1322.11 csc £ sin & + sin £(~50026.9 + 28265.8 sin¢), if & € 155, 70
3 3
~26703.1 cos § + 18592.9 cos(%)" + 1457.03 sin(%) +

sin £(49167.5 — 27889.4 sin &) — 1092.77 csc £ sin g%,

100° 1004

if & € 355, 11.

0=0.2
— p=04
p=0.6
— p=08
»=1.0

(5.4)

Figure 5. Plot of approximate and exact outcomes when L = 100, Ap = 0.01 and B = 0.50.
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%
<Y

1

Figure 6. Three-dimensional view of exact solutions for Example 5.2 when L = 100, Ap =
0.01 and B = 0.50.

Figure 7. Three-dimensional view of numerical results for Example 5.2 when L = 100,
Ap = 0.01 and B = 0.50.

S(c.B)
05,

B=0.1
----- B=03

B=05
....... B=0.7
——— B=09
—-— B=1.0

Figure 8. The effect of fractional order B on the approximate solution for Example 5.2 when
¢ =0.5,L =100 and Ap = 0.01.
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Example 5.3. Consider the following time fractional gas dynamics equation:

s(e,
LODB (e, ) + s(e. @)w _ o) = s o) e, 0<B<1, p>0, (5.5
&
s(e,0)=0, €€]0,1],
5(0,9) =0, 5(1,9) = ptan(1), ¢ € [0, 3],
where %
(e, p) = _Tesen tan € + pm tan e sec’ & — g)% tane + gom tan’ &.

I'(—3)
The exact solution to the problem is

s(e, p) = p® tane.

In Table 9, the L., and L, error norms are presented for various values of fractional parameter B
with ¢ = 1 and L = 100. For ) = Agp and at various time knots, error norms L., and L, are computed in
Table 10 for a fixed fractional order B = 0.50. We have compared the exact and numerical solutions for
Example 5.3 for different values of fractional order B in Table 11. In Table 12, the experimental order
of convergence and CPU time in seconds is reported. The piece-wise spline solutions for Example 5.3
atp = 1,L = 100 and Ap = 0.01 are given in Eq (5.5).

Table 9. Error norms L, and L, for Example 5.3 when L = 100, ¢ = 1 for various fractional
orders.

B =0.25 B =0.50 B =0.75
Lo L, Lo L, Lo L,
0.01 8.50403 x 10* 1.41383 x 10~* 9.61123 x 107*  4.46289 x 107* 1.17661 x 1073 7.69718 x 10~*

0.005 8.60954 x 10 1.22026 x 107* 8.74341 x 10*  2.52383 x 107* 6.36569 x 1074  4.21379 x 107*
0.001 8.41729 x 10*  1.01507 x 107* 7.83217 x 107*  9.77376 x 1073 6.04633 x 107*  1.10021 x 10~
0.0005 8.35969 x 10™*  9.95314 x 1073 7.69857 x 107*  8.63077 x 1073 6.01817 x 10™*  7.65989 x 107>

Ap

Table 10. Error norms L., and L, for Example 5.3 when 8 = 0.50 at different time knots.

=0. 0 =0. 0 = 0. =0.
b= Ap = =02 . = 9 =04 . - 9 =0.6 . - 0 =038 -
ulTo 7.07204 x 1073 3.49434 x 1073 2.94894 x 1073 1.70596 x 1073 1.62563 x 107 9.96108 x 10™* 1.01689 x 103 6.42331 x 10~
147) 6.0654 x 1073 2.99309 x 1073 2.522x 1073 1.45871x 1073 1.38865 x 1073 8.50993 x 10~* 8.68347 x 10 5.48019 x 107*
1le0 5.30865 x 103 2.6179 x 1073 220325 x 10 1.27426 x 1073 1.21215x 1073 7.42935x 107* 7.57773 x 107*  4.78002 x 10~*
]("—0 4.71981 x 1073 2.32666 x 1073 1.95621 x 10 1.13143 x 1073 1.0756 x 107> 6.59358 x 107* 6.72287 x 107+ 4.23956 x 107*
ﬁ 4.24883 x 1073 2.09406 x 103 1.75928 x 107 1.01756 x 103 9.66858 x 107 5.92788 x 10~ 6.04223 x 107+ 3.80968 x 107*
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Table 11. Exact and numerical solutions for Example 5.3 for different values of B when
L =100, 9 =1 and Ap = 0.01.

£ B =0.25 B =0.50 B =0.75 Exact solution
0.0 0.00000 0.00000 0.00000 0.00000
0.1 0.10025 0.10047 0.10075 0.10033
0.2 0.20263 0.20274 0.20293 0.20271
0.3 0.30925 0.30929 0.30937 0.30934
0.4 0.42270 0.42269 0.42269 0.42279
0.5 0.54621 0.54617 0.54612 0.54630
0.6 0.68405 0.68399 0.68391 0.68414
0.7 0.84221 0.84215 0.84207 0.84229
0.8 1.02958 1.02953 1.02946 1.02964
0.9 1.26013 1.26010 1.26005 1.26016
1.0 1.55741 1.55741 1.55741 1.55741

Table 12. Order of convergence for Example 5.3 when ¢ = 1, Ap = 0.001 and B = 0.95.

L Lo EOC CPU time (s)

5 0.0038709 - 0.92187
10 0.00135279 1.51673 1.42344
20 0.0004917785 1.45987 1.81094
40 0.00018486911 1.41150 2.38125

Absolute error

0.0008

0.0004

Figure 9. Absolute error plot when L = 100, Ap = 0.01 and B = 0.50 for Example 5.3.

Figure 9 reflects the 2D absolute error profile for L = 100, Ap = 0.01 and B = 0.50. This figure
indicates the error at each point in space. Figure 10 exposes the graph of exact and approximate
solutions when L = 100, Ap = 0.01 and B = 0.50 at various time levels. This figure reveals a
significant change in solution profiles with a change in time. We observe an increasing behavior
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between time and solution profiles. Figures 11 and 12 show the close agreement of 3D plots for
computational and exact solutions by taking L = 100, Ap = 0.01 and B = 0.50. Approximate
solutions for different values of fractional parameter B and for ¢ = 0.5, L = 100 and Ap = 0.01 can
be visualised in Figure 13. From this figure, it is evident that as we increase the fractional parameter,
we get closer to the exact solution.

The piece-wise spline solution for Example 5.3 at ¢ = 1 for L = 100, Ap = 0.01 is given as

60.5372 cos £ — 60.5372 cos(5) — 3858.82sin(5) +
2804.11 sin & + sin £(~11575.5 + 90.8059 sin &), if & € [0, L
19.2917 cos £ — 19.2931 cos(§)3 ~1109.42 sin(§)3+

2
832.062 csc £ sin g% +sin £(—3326.44 + 28.9396sin¢), ife €| L 2

T06° 100
~70.1482 cos £ + 70.1349 cos(g)3 + 1870.62 sin(§)3+

1 & . s - . 2 3
sin £(5617.25 — 105.202 sin &) — 1402.97 csc £ sin g, ifee (55 1051

: - BN
—~1606.64 cos £ + 1473.cos(%)" + 1558.73 sin(2) +

sin £(6232.54 — 2209.5 sin &) — 1169.05 csc £ sin g%, ifee[X, 4

S(S, 1) = 3 i 3 100° 100-+° (5.6)
1637.07 cos § — 1495.53 cos(%) — 1533 44 sin(5) +

2

1150.08 csc £ sin g% +sin £(—6210.99 + 2243.29sin¢), ife€ [%, % ,

: - i
3412.52 cos £ — 2412.92 cos(£) - 25749 sin(5) +

193.118 csc £ sin &7 + sin £(-6423.07 + 3619.38sin¢), if & € [, 751,
3 3

—~3506.36 cos £ + 2462.68 cos(5) +235.624sin(%) +

sin £(6548.49 — 3694.03 sin &) " 176.718 csc £ sin}gz, ifee[X 2

3513.63 cos £ — 2445.18 cos(£) — 186.488sin(£) +

2

139.866 csc £ sin g% + sin £(—6455.64 + 3667.76sin¢), ife€ [%, 1].

0=0.2
— p=04
0=06
— =08
p=1.0

Figure 10. Graph representing numerical and exact outcomes for L = 100, Ap = 0.01 and
B = 0.50 at different time levels.
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Figure 11. Three-dimensional view of exact solutions for Example 5.3 when L = 100,
Ap = 0.01 and B = 0.50.

Figure 12. Three-dimensional view of numerical results for Example 5.3 when L = 100,
Agp = 0.01 and B = 0.50.

S(eB)
15

B=0.1
----- B=0.3
o B=0.5
_______ B=0.7
——=— B=0.9
—— B=1.0

Figure 13. Approximate solutions for different B at ¢ = 0.5, L = 100 and Ap = 0.01.
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Example 5.4. Consider the following time fractional gas dynamics equation of the form:

LC~3B
D, s(e,9) + s(g, 9)

where

(g, 9)

0

s(e, )
oe

s(,0)=0, €€[0,1],

5(0,9) = 0, s(1, 9) = p**¥sin(n), ¢ € [0, 3],

2[(—2 - B)

_71502 csc(mB)

) b
+ —_
sin(re) 7 0

The exact solution to the problem is

s(e, p) = p* ¥ sin(ne).

4428

sin2re) — p*+¥ sin(e) + ¢

=s(e, )1 —s(e,9) +3x,9), 0<B<I1, p>0, 5.7

28 sin’(ne).

Table 13 reports exact and computational outcomes for different values of fractional order B when
L =100, ¢ = 1 and Ap = 0.01 at space knots. Error norms at various time knots and for different step
sizes when B = 0.50 are tabulated in Table 14. The experimental order of convergence and CPU time in
seconds is calculated and presented in Table 15. The piece-wise spline solutions at ¢ = 1 for L = 100,
Ap = 0.01 are given in Eq (5.8). The effect of time on solution profiles for L = 100, Ap = 0.01 and
B = 0.50 is observed in Figure 14. This graph reveals an excellent analogy between the exact and
numerical solutions, which indicates that the proposed method is effective. A close agreement between
the 3D exact and approximate solutions at ¢ = 1 is evident from Figures 15 and 16. The behavior
of the fractional parameter on an approximate solution for Example 5.4 when ¢ = 0.5, L = 100 and
Agp = 0.01 is shown in Figure 17. We conclude that we get closer to the exact solution as the fractional
parameter increases.

Table 13. Exact and numerical solution for different values of B when L = 100, ¢ = 1 and
Ap = 0.01 for Example 5.4.

& B =03 B =05 B =0.7 B =09 Exact solution
0.0 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 0.30647 0.30697 0.30878 0.30911 0.30902
0.2 0.58445 0.58470 0.58723 0.58796 0.58779
0.3 0.80504 0.80502 0.80812 0.80927 0.80902
0.4 0.94656 0.94624 0.94979 0.95138 0.95106
0.5 0.99512 0.99446 0.99834 1.00038 1.00000
0.6 0.94595 0.94490 0.94899 0.95149 0.95106
0.7 0.80390 0.80240 0.80653 0.80949 0.80902
0.8 0.58297 0.58096 0.58489 0.58821 0.58779
0.9 0.30512 0.30247 0.30577 0.30894 0.30902
1.0 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 14. Error norms L., and L, for Example 5.4 when 8 = 0.50.

h=Ap p =02 9 =04 9=06 9=08
1= 08 L. L, Lo L Lo L Lo L
&= 2.06027 x 107 145760 x 10* 493176 x 107 351835 x 10¢  8.03525x 10 5.69530 x 10¢  3.31259x 107 1.29496 x 10
L 1.14290 x 10 8.08707 x 1075 270994 x 10~ 1.93319x 10 439697 x 10~ 3.10886 x 10™*  2.06247 x 10~ 7.77378 x 10*

1 7.50698 x 107
L 5.41229 x 107
1 4.14017 x 107>
L 3.29960 x 1073

2.86791 x 107*
2.05925x 107
1.57118 x 107*
1.25004 x 10~

1.26263 x 10~
9.06862 x 10~
6.91779 x 107
5.50141x 107

1.77016 x 107
1.27161 x 107
9.70154 x 1073
7.71636 x 107

5.31225x 107
3.83025%x 107
2.93012 x 10~
2.33530 x 107°

2.02305x 107
1.44956 x 10~
1.10388 x 10~
8.76740 x 107

1.46990 x 103
1.12725x 1073
9.09107 x 107
7.56510 x 10~

5.42864 x 107
4.11152x 107
3.27633 x 1074
2.70346 x 107

Table 15. Order of convergence for Example 5.4 when L = 50 and B = 0.50.

Ap Lo EOC CPU time (s)
= 1.95329 x 1072 — 0.10937
3% 6.93789 x 10~ 1.49333 0.3125
= 2.48180 x 107 1.48311 0.57812
%5 8.90657 x 10~ 1.47845 1.0251
o 3.30056 x 10~ 1.43216 1.40625

The piece-wise spline solution for Example 5.4 at ¢ = 1, L = 100 and Ap = 0.01 is given as

S(e, 1) =

AIMS Mathematics

216.111 cos § — 216.111 cos(5) — 179661 sin(5) +
13474.6 sin 8 + sin £(—53894.9 + 324.166 sin ),
~154.373 cos £ + 154361 cos(5) + 6730.13 sin(5) +
sin £(20201.2 — 231.541 sin&) — 5047.6 csc £ sin &7,
277.673 cos § — 277.627 cos(5) — 7665.16 sin(5) +
5748.87 csc £ sin&® + sin £(-23001.9 + 416,441 sin &),

' & 3 o[ € 3

£ —39509.9 cos(£) - 39354.5sin(£) +

29515.9 csc £ sin & + sin £(—161564. + 59264.9 sin &),
~44749.5 cos £ + 40582.5 cos(2) +39214.4sin(5) +
sin £(163273. — 60873.7 sin &) — 29410.8 csc £ sin g%,

43405.8 cos £ —

: - »
—~75843.cos £ + 53651.7 cos(%)” + 582033 sin(£) +
sin £(143024. — 80477.5 sin &) — 4365.25 csc § sin &,
68605.4 cos £ — 48138.5 cos(§)3 — 4474.63 sin(§)3+
3355.97 csc §Sin32 +8in £(—=127789. + 72207.7 sin &),
3 3
451524 cos £ +31392.6cos(5) +2365.64sin(%) +
sin £(82941. — 47088.9 sin &) — 1774.23 csc £ sin g%,

if £ € [0, 51,

1 2

ifee [m, m],

: 2 3
ifee [m, m],

49 50

ifee [m,m s

50 51

ifee [m,m s

97 98 ]
b

ifee [m,m

98 99

ifee [m,m s

99 1]

ifee [m,

(5.8)
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0=0.1
— p=05
0=0.9

,‘/ \'\

Figure 14. Graph of numerical and exact solutions when L = 100, Ap = 0.01 and B = 0.50.

Figure 15. Three-dimensional view of exact solutions for Example 5.4 when L = 100,
Agp = 0.01 and B = 0.50.

Figure 16. Three-dimensional view of numerical results for Example 5.4 when L = 100,
Ap = 0.01 and B = 0.50.
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B=0.1
————— B=0.3
B=05
------- B=0.7
——— B=09
B=1.0

Figure 17. The behavior of different fractional order B on approximate solutions for
Example 5.4 corresponding to ¢ = 0.5, L = 100 and Ap = 0.01.

6. Conclusions
The authors summarize this work as follows:

e A computational method based on trigonometric cubic B-spline functions has been presented for
the numerical simulation of nonlinear time fractional gas dynamics equation.

e The typical finite difference formulation has been used to discretize the Caputo time fractional
derivative.

e The trigonometric B-spline functions have been used to interpolate the solution curve along the
spatial direction.

e The theoretical results for stability and convergence analysis show that the proposed numerical
scheme is conditionally stable.

e To check the efficiency and effectiveness of the presented scheme, the results of four numerical
experiments, with known exact solutions, have been reported.

e The experimental order of convergence has shown to be O(Agp
spatial direction it is slightly less than our theoretical expectations.

e Unlike the usual finite difference approaches that only yield numerical solutions at pre-selected
points of the spatial domain, the presented scheme can obtain numerical values of unknown
function and its derivatives at non-grid points as well.

e The obtained results have been compared with exact solutions and the approximate results
reported in the literature. The current method provides more accurate results as compared to the
cubic B-spline collocation method, quadratic B-spline Galerkin method and differential
transform method.

e The proposed numerical method is simple, straightforward to apply and efficiently approximates
the solution curve. Hence, it can be confidently used to solve many similar nonlinear models
whose exact solutions are not available.

)>~% in temporal direction, while in
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