Based on the reproducing kernel theory, we solve the nonlinear fourth order boundary value problem in the reproducing kernel space $ W_{2}^{5}[0, 1] $. Its approximate solution is obtained by truncating the n-term of the exact solution and using the $ \varepsilon $-best approximate method. Meanwhile, the approximate solution $ u^{(i)}_{n}(x) $ converges uniformly to the exact solution $ u^{(i)}(x), (i, 0, 1, 2, 3, 4) $. The validity and accuracy of this method are verified by some examples.
Citation: Shiyv Wang, Xueqin Lv, Songyan He. The reproducing kernel method for nonlinear fourth-order BVPs[J]. AIMS Mathematics, 2023, 8(11): 25371-25381. doi: 10.3934/math.20231294
Based on the reproducing kernel theory, we solve the nonlinear fourth order boundary value problem in the reproducing kernel space $ W_{2}^{5}[0, 1] $. Its approximate solution is obtained by truncating the n-term of the exact solution and using the $ \varepsilon $-best approximate method. Meanwhile, the approximate solution $ u^{(i)}_{n}(x) $ converges uniformly to the exact solution $ u^{(i)}(x), (i, 0, 1, 2, 3, 4) $. The validity and accuracy of this method are verified by some examples.
[1] | M. Ronto, A. M. Samoilenko, Numerical-analytic methods in the theory of boundary-value problems, World Scientific Publishing, 2001. https://doi.org/10.1142/3962 |
[2] |
D. S. Dzhumabaev, S. M. Temesheva, A parametrization method for solving nonlinear two-point boundary value problems, Comput. Math. Math. Phys., 47 (2007), 37–61. https://doi.org/10.1134/S096554250701006X doi: 10.1134/S096554250701006X
![]() |
[3] |
D. S. Dzhumabaev, New general solutions of ordinary differential equations and the methods for the solutions of boundary-value problems, Ukr. Math. J., 71 (2019), 1006–1031. https://doi.org/10.1007/s11253-019-01694-9 doi: 10.1007/s11253-019-01694-9
![]() |
[4] |
R. Ma, J. Zhang, S. Fu, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), 415–422. https://doi.org/10.1006/jmaa.1997.5639 doi: 10.1006/jmaa.1997.5639
![]() |
[5] |
D. Jiang, H. Z. Liu, X. J. Xu, Nonresonant singular fourth-order boundary value problems, Appl. Math. Lett., 18 (2005), 69–75. https://doi.org/10.1016/j.aml.2003.05.016 doi: 10.1016/j.aml.2003.05.016
![]() |
[6] |
B. Liu, Positive solutions of fourth-order two point boundary value problems, Appl. Math. Comput., 148 (2004), 407–420. https://doi.org/10.1016/S0096-3003(02)00857-3 doi: 10.1016/S0096-3003(02)00857-3
![]() |
[7] | G. Mustafa, M. Abbas, S. T. Ejaz, A. I. M. Ismail, F. Khan, A numerical approach based on subdivision schemes for solving non-linear fourth order boundary value problems, Comput. Anal. Appl., 23 (2017), 607–623. |
[8] |
W. M. Abd-Elhameed, H. M. Ahmed, Y. H. Youssri, A new generalized Jacobi Galerkin operational matrix of derivatives: two algorithms for solving fourth-order boundary value problems, Adv. Differ. Equ., 22 (2016), 22. https://doi.org/10.1186/s13662-016-0753-2 doi: 10.1186/s13662-016-0753-2
![]() |
[9] |
S. H. Chang, Existence-uniqueness and fixed-point iterative method for general nonlinear fourth-order boundary value problems, Appl. Math. Comput., 67 (2021), 221–231. https://doi.org/10.1007/s12190-020-01496-4 doi: 10.1007/s12190-020-01496-4
![]() |
[10] | B. Wu, Y. Lin, Applied reproducing kernel space, New York: Science Press, 2012. |
[11] |
H. Sahihi, T. Allahviranloo, S. Abbasbandy, Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space, Appl. Numer. Math., 151 (2020), 27–39. https://doi.org/10.1016/j.apnum.2019.12.008 doi: 10.1016/j.apnum.2019.12.008
![]() |
[12] |
L. C. Mei, B. Y. Wu, Y. Z. Lin, Hifted-legendre orthonormal method for high-dimensional heat conduction equations, AIMS Math., 7 (2020), 9463–9478. https://doi.org/10.3934/math.2022525 doi: 10.3934/math.2022525
![]() |
[13] |
J. Niu, L. X. Sun, M. Q. Xu, J. J. Hou, A reproducing kernel method for solving heat conduction equations with delay, Appl. Math. Lett., 100 (2020), 106036. https://doi.org/10.1016/j.aml.2019.106036 doi: 10.1016/j.aml.2019.106036
![]() |
[14] |
X. Y. Li, H. X. Li, B. Y. Wu, Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments, Appl. Math. Comput., 349 (2019), 304–313. https://doi.org/10.1016/j.amc.2018.12.054 doi: 10.1016/j.amc.2018.12.054
![]() |
[15] |
H. Du, Z. Chen, T. J. Yang, A stable least residue method in reproducing kernel space for solving a nonlinear fractional integro-differential equation with a weakly singular kernel, Appl. Numer. Math., 157 (2020), 210–222. https://doi.org/10.1016/j.apnum.2020.06.004 doi: 10.1016/j.apnum.2020.06.004
![]() |
[16] |
B. B. Guo, W. Jiang, C. P. Zhang, A new numerical method for solving nonlinear fractional Fokker-Planck differential equations, Comput. Nonlinear Dyn., 12 (2017), 051004. https://doi.org/10.1115/1.4035896 doi: 10.1115/1.4035896
![]() |
[17] |
Z. Chen, W. Jiang, H. Du, A new reproducing kernel method for Duffing equations, Int. J. Comput. Math., 98 (2021), 2341–2354. https://doi.org/10.1080/00207160.2021.1897111 doi: 10.1080/00207160.2021.1897111
![]() |
[18] |
L. Mei, A novel method for nonlinear impulsive differential equations in broken reproducing kernel space, Acta Math. Sci., 40 (2020), 723–733. https://doi.org/10.1007/s10473-020-0310-7 doi: 10.1007/s10473-020-0310-7
![]() |
[19] |
A. Alvandi, M. Paripour, Reproducing kernel method for a class of weakly singular fredholm integral equations, J. Taibah Univ. Sci., 12 (2018), 409–414. https://doi.org/10.1080/16583655.2018.1474841 doi: 10.1080/16583655.2018.1474841
![]() |
[20] |
X. Lv, M. Cui, An efficient computational method for linear fifth-order two-point boundary value problems, J. Comput. Appl. Math., 234 (2010), 1551–1558. https://doi.org/10.1016/j.cam.2010.02.036 doi: 10.1016/j.cam.2010.02.036
![]() |