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Abstract: Based on the reproducing kernel theory, we solve the nonlinear fourth order boundary
value problem in the reproducing kernel space W5

2 [0, 1]. Its approximate solution is obtained by
truncating the n-term of the exact solution and using the ε-best approximate method. Meanwhile,
the approximate solution u(i)

n (x) converges uniformly to the exact solution u(i)(x), (i, 0, 1, 2, 3, 4). The
validity and accuracy of this method are verified by some examples.
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1. Introduction

The initial- and boundary-value problems for ordinary differential equations have been investigated
by numerous authors and by different methods [1–3]. Nonlinear fourth-order boundary value problems
are applied in many scientific fields, such as nuclear physics, gas dynamics, fluid mechanics, boundary
layer theory and nonlinear optics. It is an important branch of differential equation theory. It has a
profound physical background and extensive theoretical application. In recent years, many authors
have devoted themselves to the study of nonlinear fourth-order boundary value problems. Hence,
different numerical techniques have been proposed, such as the lower and upper solution method [4],
fixed point theory [5] and so on. In [6], Liu studied the existence of one or multiple positive solution
of the fourth-order two point boundary value problem by using the Krasnoselskii fixed point theorem.
Mustafa et al. present an iterative collocation numerical approach based on interpolating subdivision
schemes for the solution of non-linear fourth order boundary value problems involving ordinary
differential equations in [7]. Abd-Elhameed study two algorithms based on applying Galerkin and
collocation spectral methods to obtain new approximate solutions of linear and nonlinear fourth-order
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two point boundary value problems [8]. In [9], a fixed-point iterative method to find the solution of
the problem was also proposed by Chang to solve nonlinear fourth-order two-point boundary value
problem.

Recently, reproducing kernel space theory has applied to solving system of second-order BVPs [11],
heat conduction equation [12, 13], impulsive delay differential equations [14], the fractional integro-
differential equation [15], nonlinear fractional Fokker-Planck differential equations [16] and other
equation models [17–20]. In [12, 15, 16], the theory of reproducing kernel and ε-best approximate
method are used to solve equations. In this paper, We construct a reproducing kernel space W5

2 [0, 1]
with boundary value conditions, in which the boundary value conditions are in the form of linear
combination and the ε approximate solution method is used to solve the equation. By truncating the
n-term of the exact solution, we can construct the numerical solution for fourth-order BVPs. The
advantage of the approach is that the u(i)

n (x) converges uniformly to u(i)(x), (i, 0, 1, 2, 3, 4).
This paper is organized in six sections including the Introduction, the reproducing kernel spaces are

constructed and the reproducing kernels are given in section 2. The representation of approximation
solution of Eq (1.1) is introduced in section 3. And the implementation method for obtaining the
approximation solution is described in detail. Then some numerical experiments are presented in
section 4. Finally, a conclusion is generalized in the final section.

In this paper, we will consider how to solve the following nonlinear fourth order differential
equation:

u(4)(x) − λq(x) f (x, u(x)) = 0, 0 ≤ x ≤ 1, (1.1)

with the boundary conditions 
α1u(0) − β1u′(0) = 0,
γ1u(1) + σ1u′(1) = 0,
α2u′′(0) − β2u(3)(0) = 0,
γ2u′′(1) + σ2u(3)(1) = 0,

(1.2)

where λ is non-negative real numbers, αi, βi, σi, γi(i = 1, 2) are constants. f (x, u(x)) and q(x) are two
continuous functions on [0,1]. In this paper, ε-best approximate solution is used, and the numerical
solution are obtained in the reproducing kernel space W5

2 [0, 1].

2. Reproducing kernel spaces W5
2 [0, 1] and W1

2 [0, 1]

2.1. The reproducing kernel space W5
2 [0, 1]

Definition 2.1. W5
2 [0, 1] = {u(x) | u(4) is absolutely continuous, α1u(0)−β1u′(0) = 0, γ1u(1)+σ1u′(1) =

0, α2u′′(0) − β2u(3)(0) = 0, γ2u′′(1) + σ2u(3)(1) = 0, u(5) ∈ L2[0, 1]}, and

〈u(x), v(x)〉
W5

2
=

4∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0
u(5)(x)v(5)(x)dx, (2.1)

‖u‖W5
2

=
√
〈u, u〉

W5
2
, u(x), v(x) ∈ W5

2 [0, 1].
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Theorem 2.1. W5
2 [0, 1] is a complete reproducing kernel space, i.e., there exists Rx(y) ∈ W5

2 [0, 1], for
every x ∈ [0, 1] and u(y) ∈ W5

2 [0, 1] satisfying

〈u(y),Rx(y)〉
W5

2
= u(x). (2.2)

2.2. The reproducing kernel space W1
2 [0, 1]

Definition 2.2. W1
2 [0, 1] = {u(x) | u is absolutely continuous, u′ ∈ L2[0, 1]}, and

〈u, v〉W1
2

= u(0)v(0) +

∫ 1

0
u′v′dx, (2.3)

‖u‖
W1

2
=
√
〈u, u〉

W1
2
, u(x), v(x) ∈ W1

2 [0, 1]. (2.4)

It can be easily proved that W1
2 [0, 1] is a reproducing kernel space, its kernel function is

Qx(y) =

{
1 + x, y ≤ x,
1 + y, y > x.

(2.5)

3. ε-best approximate solution for Eq (1.1)

In this section, the solution of Eq (1.1) is given in the reproducing kernel space W5
2 [0, 1].

3.1. The linear boundedness of operator L

Here introduce the linear operation L : W5
2 [0, 1]→ W1

2 [0, 1]

L(u(x)) , u(4)(x), (3.1)

then Eq (1.1) is equivalent to
Lu(x) = g(x, u(x)), (3.2)

where g(x, u(x)) = λq(x) f (x, u(x)).

Lemma 3.1. W5
2 [0, 1] is a reproducing kernel space, Rx(y) is the reproducing kernel function of

W5
2 [0, 1], then R(i)

x (y), (i = 0, 1) is bounded on [0,1].

Theorem 3.1. L is a bounded linear operator.

Proof. We only prove that ‖Lu‖2
W1

2

≤ M‖u‖2
W5

2

, where M > 0 is a fixed constant. Due to (2.3) we have

‖Lu‖2
W1

2

= 〈Lu(x), Lu(x)〉
W1

2

= (Lu(0))2 +
∫ 1

0
((Lu(x))′)2dx.

By the property of reproducing kernel space and (3.1), it is easy to know that

〈u(·), (LRx)(·)〉W5
2

= 〈u(·),R(4)
x (·)〉

W5
2

= 〈u(4)(·),Rx(·)〉W5
2

= u(4)(x) = Lu(x),

〈u(·), ((LRx)(·))′〉W5
2

= 〈u(·),R(5)
x (·)〉

W5
2

= 〈u(5)(·),Rx(·)〉W5
2

= u(5)(x) = (Lu(x))′.
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For Lemma 3.1, we have
|Lu(x)| = |〈u(·),R(4)

x (·)〉
W5

2
| ≤ M1 · ‖u‖W5

2
,

|(Lu(x))′| = |〈u(·),R(5)
x (·)〉

W5
2
| ≤ M2 · ‖u‖W5

2
,

where M1,M2 are constants. Then

‖Lu‖2
W1

2

= (Lu(0))2 +

∫ 1

0
((Lu(x))′)2dx ≤ (M2

1 + M2
2) · ‖u‖2

W5
2

≤ M · ‖u‖2
W5

2

,

where M = M2
1 + M2

2 .

3.2. ε-best approximate solution for Eq (3.2)

Noting that {xi}
∞
i=1 is dense subset in [0, 1], and let ψx(y) = L∗Qx(y), where L∗ is the conjugate

operator of L and Qx(y) is given by (2.5). Furthermore, ψi(x) = ψxi(x) = L∗Qxi(x).

Definition 3.1. Let {ψn}
∞
i=1 be a standard orthogonal system of the inner product space H, if every

u ∈ H, 〈u, ψn〉 = 0, (n = 1, 2, . . .), we know u = 0, then {ψn}
∞
i=1 is complete.

Lemma 3.2. {ψi(x)}∞i=1 is a complete system in W5
2 [0, 1].

Proof. For u(x) ∈ W5
2 [0, 1], let 〈u(x), ψi(x)〉W5

2
= 0, (i = 1, 2, . . .), that is

〈u(x), ψi(x)〉W5
2

= 〈u(x), L∗Qxi(x)〉W5
2

= 〈Lu(x),Qxi(x)〉W1
2

= (Lu)(xi) = 0.

Noting that {xi}
∞
i=1 is dense subset in [0, 1], then (Lu)(x) = 0, due to the existence of L−1, we get

u(x) = 0.
{ψi(x)}∞i=1 can be derived from Gram−Schmidt orthogonalization process of {ψi(x)}∞i=1 of W5

2 [0, 1]

ψi(x) =

i∑
k=1

βikψk(x), (βii > 0, i = 1, 2, . . .), (3.3)

where βik are orthogonal coefficients.

Theorem 3.2. Suppose u(x) is the exact solution of Eq (3.2), then u(x) can be expressed as

u(x) =

∞∑
i=1

i∑
k=1

βikg(xk, u(xk))ψi(x). (3.4)

Proof. From (3.3), we know

u(x) =
∞∑

i=1
〈u(x), ψi(x)〉W5

2
ψi(x)

=
∞∑

i=1

i∑
k=1
βik〈u(x), ψk(x)〉W5

2
ψi(x)

=
∞∑

i=1

i∑
k=1
βik〈u(x), L∗Qxk(x)〉W5

2
ψi(x)

=
∞∑

i=1

i∑
k=1
βik〈Lu(x),Qxk(x)〉W1

2
ψi(x)

=
∞∑

i=1

i∑
k=1
βik〈g(x, u(x)),Qxk(x)〉W1

2
ψi(x)

=
∞∑

i=1

i∑
k=1
βikg(xk, u(xk))ψi(x).
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Now, the approximate solution un(x) can be obtained by truncating the n-term of the exact solution
u(x),

un(x) =

n∑
i=1

i∑
k=1

βikαkψi(x), (3.5)

where αk = g(xk, u(xk)), so un(x) → u(x) in W5
2 [0, 1] as n → ∞. Next we will get the concrete

ε-approximate solution.

Definition 3.2. ∀ε > 0, if u(x) ∈ W5
2 , satisfies

‖Lu − g‖W1
2
< ε,

the u(x) is recorded as the ε-best approximate solution of Lu = g.

Theorem 3.3. For any ε > 0, there exists a positive integer N, such that for every n > N,

un(x) =

n∑
i=1

i∑
k=1

βikα
∗
kψi(x)

is an ε-best approximate solution of (3.2), and {α∗k}
n
k=1 satisfies

||L
n∑

i=1

i∑
k=1

βikα
∗
kψi(x) − g(x, u(x))||W1

2
= min
{αk}

n
k=1

||L
n∑

i=1

i∑
k=1

βikαkψi(x) − g(x, u(x))||W1
2
.

Proof. u(x) is the exact solution, then u(x) can be expressed as (3.4). So, ∀ε > 0, there exists a positive
integer N, such that for every n > N, we have the following inequality

||

n∑
i=n

i∑
k=1

βikαkψi(x) − u(x)||W5
2
≤

ε

||L||
.

Thus,

||Lun − g||W1
2

= ||L
n∑

i=1

i∑
k=1
βikα

∗
kψi(x) − g(x, u(x))||W1

2

= min
{αk}

n
k=1

||L
n∑

i=1

i∑
k=1
βikαkψi(x) − Lu(x)||W1

2

≤ ||L
n∑

i=1

i∑
k=1
βikαkψi(x) − Lu(x)||W1

2

≤ ||L|| · ||
n∑

i=1

i∑
k=1
βikαkψi(x) − u(x)||W5

2
≤ ε.

Thus, un(x) =
n∑

i=1

i∑
k=1
βikα

∗
kψi(x) is the ε-best approximate solution of Eq (3.2).

According to (3.5), if we can determine the approximate value of {αk}
n
k=1, we can get the

approximate solution un(x).

In order to find the minimum of ||L
n∑

i=1

i∑
k=1
βikαkψi(x) − g(x, u(x))||W1

2
with respect to {αk}

n
k=1, we

bring (3.5) into g(xk, un(xk)) and solve

min
{αk}

n
k=1

n∑
k=1

[g(xk, un(xk)) − αk]2.
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For convenience, we denote

J(α1, α2 · · ·αn) =

n∑
k=1

[g(xk, un(xk)) − αk]2,

then

J(α∗1, α
∗
2 · · ·α

∗
n) = min

{αk}
n
k=1

J(α1, α2 · · ·αn),

we can get the unique solution (α∗1, α
∗
2, . . . , α

∗
n) of Eq (3.5), so we can get an approximate solution un(x).

We will give the concrete calculation process of applying Mathematica 11.0 to realize the above
algorithm.

Step 1. Firstly we pick any initial set of values {α0
k}

n
k=1, usually we set {α0

k}
n
k=1 to the initial value of

zero.

Step 2. When we pick the initial value, using the command FindMinimum, the lowest value point
{α1

k}
n
k=1 of J(α0

1, α
0
2 · · ·α

0
n) is obtained. If J(α0

1, α
0
2 · · ·α

0
n) < 10−20, the program ends.

Step 3. Otherwise, inserting {α1
k}

n
k=1 into Eq (3.5) to get α1

n(x). Due to αk = g(xk, u(xk)), we can get
{α2

k}
n
k=1. Subsequently insert {α2

k}
n
k=1 into Eq (3.5) to get α2

n(x). We can calculate J(α2
1, α

2
2 · · ·α

2
n) with

{α2
k}

n
k=1 and α2

n(x).

Step 4. If J(α2
1, α

2
2 · · ·α

2
n) < J(α1

1, α
1
2 · · ·α

1
n), replace {α0

k}
n
k=1 with {α2

k}
n
k=1, and proceed to the second

step; Otherwise, return to the first step, select another set of {α0
k}

n
k=1 as the initial value, and recalculate.

Theorem 3.4. The approximate solution un(x) and its derivatives uniformly converge to exact solution
u(x) and its derivatives.

Proof. By Lemma 3.3, we know that there exist positive real numbers C1, such that

||R(i)
x (·)||W5

2
≤ C1.

Therefore, as n→ ∞ we have

|u(i)
n (x) − u(i)(x)| = |〈(un(·) − u(·))(i),Rx(·)〉W5

2
|

= |〈un(·) − u(·),R(i)
x (·)〉W5

2
|

≤ ||R(i)
x (·)||W5

2
||un − u||W5

2

≤ C1||un − u||W5
2
,

where i = 0, 1, 2, 3, 4. So, |un(x) − u(x)| → 0.

Lemma 3.3. (Lun)(xk) = g(xk, u(xk)), where {xk}
∞
k=1 is the dense subset in the [0,1].

Proof. By (3.5), we know

〈un, ψi〉W5
2

= 〈

n∑
i=1

i∑
k=1

βikg(xk, u(xk))ψi(xk), ψi(xk)〉 =

i∑
k=1

βikg(xk, u(xk)).
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On the other hand,

〈un, ψi〉W5
2

=
i∑

k=1
βik〈un, ψi〉W5

2

=
i∑

k=1
βik〈un, L∗Qxk(x)〉W5

2

=
i∑

k=1
βik〈Lun,Qxk(x)〉W1

2

=
i∑

k=1
βikLun(xk).

So,
i∑

k=1

βikg(xk, u(xk)) =

i∑
k=1

βikLun(xk).

Then Lun(xk) = g(xk, u(xk)).

Theorem 3.5. Suppose u(x) is the exact solution of Eq (3.2), en(x) is the error between the approximate
solution un(x) and the exact solution u(x), X = {xk}

∞
k=1 is the dense subset in the [0,1], then en(x) =

|u(x) − un(x)| = o( 1
n ).

Proof. For every x ∈ [0, 1], ∃ x j ∈ X, ( j = 1, 2, . . .) satisfying |x j − x| < 1
n . By Lemma 3.3, we have

Lu(x) − Lun(x) = Lu(x) − Lu(x j) − [Lun(x) − Lun(x j)]
= u(4)(x) − u(4)(x j) − u(4)

n (x) + u(4)
n (x j)

= 〈u(·),R(4)
x (·)〉W5

2
− 〈u(·),R(4)

x j (·)〉W5
2
− 〈un(·),R(4)

x (·)〉W5
2

+ 〈un(·),R(4)
x j (·)〉W5

2

= 〈u(·) − un(·),R(4)
x (·)〉W5

2
− 〈u(·) − un(·),R(4)

x j (·)〉W5
2

= 〈u(·) − un(·),R(4)
x (·) − R(4)

x j (·)〉W5
2

= 〈u(·) − un(·), LRx(·) − LRx j(·)〉W5
2
.

Furthermore, due to the bounded properties of ||R
′

ξ(·)||W5
2

and Lagrange mean value theorem,

|u(x) − un(x)| = |L−1L(u(x) − un(x))|
= |〈u(·) − un(·), L−1LRx(·) − L−1LRx j(·)〉W5

2
|

≤ ||u(·) − un(·)||W5
2
||Rx(·) − Rx j(·)||W5

2

≤ ||u(·) − un(·)||W5
2
||R

′

ξ(·)(x − x j)||W5
2

≤ ||R
′

ξ(·)||W5
2
||u(·) − un(·)||W5

2
||x − x j||W5

2
= o( 1

n ),

where ξ is between x and x j

4. Numerical examples

Two numerical experiments are conducted to demonstrate the effectiveness of the proposed
algorithm, where they satisfy (1.2), α1 = γ1 = α2 = γ2 = 1, β1 = σ1 = β2 = σ2 = 0, u(0) =

u(1) = u′(0) = u′(1) = u′′(0) = u′′(1) = u(3)(0) = u(3)(1) = 0. Symbolic and numerical computations
performed by using Mathematica 11.0.

Example 1. Consider a nonlinear equation

u(4)(x) − eu(x) − sin(u2(x)) = f(x), 0 ≤ x ≤ 1.

AIMS Mathematics Volume 8, Issue 11, 25371–25381.
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The true solution is u(x) = sinπx, where f (x) = −esinπx + π2sin(πx) − 2sin(sin(πx)2). C.R. is calculated
according to C.R. = log n2

n1

max|en1(x)|
max|en2(x)| and The errors in Table 1 show that the proposed algorithm is

effective. The absolute error en(x) = |u(x) − un(x)|, (n = 20, 40, 60, 80) are shown in Figure 1.

Table 1. max|u(x) − un(x)|, (n = 20, 40, 60, 80) of Example 1.

n max |u(x) − un(x)| C.R. Times

20 1.27924E-03 - 6.126s
40 4.23309E-04 1.59551 38.609s
60 2.05152E-04 1.78647 128.937s
80 1.20373E-04 1.85327 296.078s

u(x) - u20(x)

u(x) - u40(x)

u(x) - u60(x)

u(x) - u80(x)

0.2 0.4 0.6 0.8 1.0
x

0.0005

0.0010

0.0015

u(x)-un(x)

Figure 1. en(x) of Example 1.

Example 2. Consider the following equation

u(4)(x) − u2(x) − cos(u(x)) = f(x), 0 ≤ x ≤ 1

where f (x) = −cos(cos(πx)sin(πx)) + 16π4cos(πx)sin(πx) − cos(πx)2sin(πx)2. The exact solution of
Example 2 is u(x) = cos(πx)sin(πx). When n = 100, we also calculate the absolute errors en(x) =

|u(i)(x) − u(i)
n (x)|, (i = 0, 1, 2, 3, 4), the results are shown in Table 2.

AIMS Mathematics Volume 8, Issue 11, 25371–25381.
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Table 2. Absolute errors e100(x) = |u(i)(x) − u(i)
100(x)|, (i = 0, 1, 2, 3, 4).

x e(0)
100(x) e(1)

100(x) e(2)
100(x) e(3)

100(x) e(4)
100(x)

1/100 9.02632E-06 9.1378E-04 3.68894E-04 4.18474E-02 2.80605E-07
11/100 9.47289E-05 7.54092E-04 3.44446E-03 3.28231E-02 3.04321E-05
21/100 1.47926E-04 2.82366E-04 5.74113E-03 1.21911E-02 7.41203E-05
31/100 1.46764E-04 3.05592E-04 5.72732E-03 1.23501E-02 7.12108E-05
41/100 9.13207E-05 7.76891E-04 3.47212E-03 3.16309E-02 2.57648E-05
51/100 2.94973E-06 9.48553E-04 1.18033E-04 3.8452E-02 4.58561E-08
61/100 8.43218E-05 7.55831E-04 3.63901E-03 3.02826E-02 2.60113E-05
71/100 1.37122E-04 2.76229E-04 5.71491E-03 1.02046E-02 6.80514E-05
81/100 1.35792E-04 2.99746E-04 5.51299E-03 1.42456E-02 6.66736E-05
91/100 8.22946E-05 7.4009E-04 3.05495E-03 3.38999E-02 2.43126E-05

Example 3. Consider the nonlinear differential equation [7]

u(4)(x) = u2(x) − x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x − 48

subject to the boundary conditions

u(0) = u′(0) = 0, u(1) = u′(1) = 1.

The exact solution of Example 3 is u(x) = x5 − 2x4 + 2x2. The obtained numerical results for this
problem are presented in Table 3. The maximum absolute error obtained by the proposed method is
4.39328 × 10−5. This is far more encouraging than the maximum error of 1.73 × 10−2 by Mustafa
et al. [7].

Table 3. Comparison of exact and computed solution of Example 3.

x Exact solution Computed solution Error in [7] Error (ε-best approximate)
0.0 0.0000000 0.0000000 0.000000e+00 0.000000e+00
0.1 0.1981000 0.0198358 0.0004095 2.58282E-05
0.2 0.0771200 0.0771616 0.0025752 4.16382E-05
0.3 0.1662300 0.1662730 0.0066432 4.29637E-05
0.4 0.2790400 0.2790740 0.0115595 3.36519E-05
0.5 0.4062500 0.4062680 0.0156708 1.78605E-05
0.6 0.5385600 0.5385600 0.0173246 4.07436E-08
0.7 0.6678700 0.6678550 0.0154706 1.50789E-05
0.8 0.7884800 0.7884570 0.0102612 2.25306E-05
0.9 0.8982900 0.8982730 0.0036517 1.71761E-05
1.0 1.0000000 1.0000000 0.000000e+00 0.000000e+00
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5. Conclusions

In this work, the algorithm combined the ε-best approximate solution and the theory of reproducing
kernel space. According to the linear equations given by boundary conditions, we construct
reproducing kernel space and solve reproducing kernel function and give the exact solution, denoted
by series, of the nonlinear fourth-order BVPs in reproducing kernel spaces. Truncating the series, the
approximate solution is obtained. The u(i)

n (x) converges uniformly to u(i)(x), (i = 0, 1, 2, 3, 4). The
numerical examples illustrate the advantages of the algorithm, whose proposed algorithm can be used
to deal with more complex models.
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