In this paper, we investigate the existence of positive solutions of a system of Riemann-Liouville Hadamard differential equations with $ p $-Laplacian operators under various combinations of superlinearity and sublinearity. We apply the Guo-Krasnosel'skii fixed point theorem for the proof of the existence results.
Citation: Sabbavarapu Nageswara Rao, Abdullah Ali H. Ahmadini. Multiple positive solutions for system of mixed Hadamard fractional boundary value problems with $ (p_{1}, p_{2}) $-Laplacian operator[J]. AIMS Mathematics, 2023, 8(6): 14767-14791. doi: 10.3934/math.2023755
In this paper, we investigate the existence of positive solutions of a system of Riemann-Liouville Hadamard differential equations with $ p $-Laplacian operators under various combinations of superlinearity and sublinearity. We apply the Guo-Krasnosel'skii fixed point theorem for the proof of the existence results.
[1] | A. Alsaedi, R. Luca, B. Ahmad, Existence of positive solutions for a system of singular fractional boundary value problems with $p$-Laplacian operators, Mathematics., 8 (2020), 1890. https://doi.org/10.3390/math8111890 doi: 10.3390/math8111890 |
[2] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Switzerland: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1 |
[3] | B. Ahmad, R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Frac. Calc. Appl. Anal., 21 (2018), 423–441. https://doi.org/10.1515/fca-2018-0024 doi: 10.1515/fca-2018-0024 |
[4] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, A. Albideewi, A study of a coupled system of Hadamard fractional differential equations with nonlocal coupled initial-multipoint conditions, Adv. Differ. Equ., 2021 (2021), 33. https://doi.org/10.1186/s13662-020-03198-4 doi: 10.1186/s13662-020-03198-4 |
[5] | B. Ahmad, J. Henderson, R. Luca, Boundary value problems for fractional differential equations and systems, World Scientific, 2021. |
[6] | B. Ahmad, A. F. Albideewi, S. K. Ntouyas, A. Alsaedi, Existence results for a multi-point boundary value problem of nonlinear sequential Hadamard fractional differential equations, Cubo (Temuco), 23 (2021), 225–237. https://doi.org/10.4067/S0719-06462021000200225 doi: 10.4067/S0719-06462021000200225 |
[7] | M. Al-Refai, Y. Luchko, Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications, Fract. Calc. Appl. Anal., 17 (2014), 483–498. https://doi.org/10.2478/s13540-014-0181-5 doi: 10.2478/s13540-014-0181-5 |
[8] | S. Das, Functional fractional calculus for system identification and control, Berlin: Springer, 2008. |
[9] | X. Du, Y. Meng, H. Pang, Iterative positive solutions to a coupled Hadamard-type fractional differential system on infinite domain with the multistrip and multipoint mixed boundary conditions, J. Funct. Space., 2020 (2020), 6508075. https://doi.org/10.1155/2020/6508075 doi: 10.1155/2020/6508075 |
[10] | D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988. |
[11] | H. Huang, K. Zhao, X. Liu, On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses, AIMS Math., 7 (2022), 19221–19236. https://doi.org/10.3934/math.20221055 doi: 10.3934/math.20221055 |
[12] | J. Hadamard, Essai sur létude des fonctions donnees par leur développment de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186. |
[13] | J. Hristov, New trends in fractional differential equations with real-world applications in physics, Frontiers Media SA, 2020. |
[14] | X. Hao, H. Wang, L. Liu, Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and $p$-Laplacian operator, Bound. Value Probl., 2017 (2017), 182. https://doi.org/10.1186/s13661-017-0915-5 doi: 10.1186/s13661-017-0915-5 |
[15] | J. Jiang, D. O'Regan, J. Xu, Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019 (2019), 204. https://doi.org/10.1186/s13660-019-2156-x doi: 10.1186/s13660-019-2156-x |
[16] | J. Jiang, D. O'Regan, J. Xu, Y. Cui, Positive solutions for a Hadamard fractional $p$-Laplacian three-point boundary value problem, Mathematics., 7 (2019), 439. https://doi.org/10.3390/math7050439 doi: 10.3390/math7050439 |
[17] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[18] | M. Khuddush, K. R. Prasad, P. Veeraiah, Infinitely many positive solutions for an iterative system of fractional BVPs with multistrip Riemann-Stieltjes integral boundary conditions, Afr. Mat., 33 (2022), 91. https://doi.org/10.1007/s13370-022-01026-4 doi: 10.1007/s13370-022-01026-4 |
[19] | M. Khuddush, K. R. Prasad, D. Leela, Existence theory and stability analysis to the system of infinite point fractional order bvps by multivariate best proximity point theorem, Int. J. Nonlinear Anal. Appl., 13 (2022), 1713–1733. https://doi.org/10.22075/ijnaa.2022.25945.3167 doi: 10.22075/ijnaa.2022.25945.3167 |
[20] | M. Khuddush, K. R. Prasad, Iterative system of nabla fractional order difference equations with two-point boundary conditions, Appl. Math., 11 (2022), 57–74. https://doi.org/10.13164/ma.2022.06 doi: 10.13164/ma.2022.06 |
[21] | M. Khuddush, S. Kathun, Infinitely many positive solutions and Ulam-Hyers stability of fractional order two-point boundary value problems, J. Anal., 2023 (2023). https://doi.org/10.1007/s41478-023-00549-8 doi: 10.1007/s41478-023-00549-8 |
[22] | L. S. Leibenson, General problem of the movement of a compressible uid in a porous medium, Izv. Akad. Nauk Kirg. SSSR, 9 (1983), 7–10. |
[23] | M. Li, P. Guo, C. Ren, Water resources management models based on two-level linear fractional programming method under uncertainty, J. Water Res. Plan. Man., 141 (2015), 05015001. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000518 doi: 10.1061/(ASCE)WR.1943-5452.0000518 |
[24] | R. Luca, Positive solutions for a system of fractional differential equations with $p$-Laplacian operator and multi-point boundary conditions, Nonlinear Anal. Model., 23 (2018), 771–801. https://doi.org/10.15388/NA.2018.5.8 doi: 10.15388/NA.2018.5.8 |
[25] | R. Luca, Positive solutions for a system of Riemann-Liouville fractional differential equations with multi-point fractional boundary conditions, Bound. Value Probl., 2017 (2017), 102. https://doi.org/10.1186/s13661-017-0833-6 doi: 10.1186/s13661-017-0833-6 |
[26] | R. Luca, On a system of fractional boundary value problems with $p$-Laplacian operator, Dyn. Syst. Appl., 28 (2019), 691–713. |
[27] | S. Li, C. Zhai, Positive solutions for a new class of Hadamard fractional differential equations on infinite intervals, J. Inequal Appl., 2019 (2019), 150. https://doi.org/10.1186/s13660-019-2102-y doi: 10.1186/s13660-019-2102-y |
[28] | Y. Li, J. Xu, H. Luo, Approximate iterative sequences for positive solutions of a Hadamard type fractional differential system involving Hadamard type fractional derivatives, AIMS Math., 6 (2021), 7229–7250. https://doi.org/10.3934/math.2021424 doi: 10.3934/math.2021424 |
[29] | A. H. Msmali, Positive solutions for a system of Hadamard fractional $(\varrho_{1}, \varrho_{2}, \varrho_{3})$-Laplacian operator with a parameter in the boundary, AIMS Math., 7 (2022), 10564–10581. https://doi.org/10.3934/math.2022589 doi: 10.3934/math.2022589 |
[30] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[31] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[32] | K. R. Prasad, I. D. Leela, M. Khuddush, Existence and uniqueness of positive solutions for system of $(p, q, r)$-Laplacian fractional order boundary value problems, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 138–157. https://doi.org/10.31197/atnaa.703304 doi: 10.31197/atnaa.703304 |
[33] | S. Rekhviashvili, A. Pskhu, P. Agarwal, S. Jain, Application of the fractional oscillator model to describe damped vibrations, Turk. J. Phys., 43 (2019), 236–242. https://doi.org/10.3906/fiz-1811-16 doi: 10.3906/fiz-1811-16 |
[34] | S. N. Rao, A. Ahmadini, Multiple positive solutions for a system of $(p_{1}, p_{2}, p_{3})$-Laplacian Hadamard fractional order BVP with parameters, Adv. Differ. Equ., 2021 (2021), 436. https://doi.org/10.1186/s13662-021-03591-7 doi: 10.1186/s13662-021-03591-7 |
[35] | S. N. Rao, M. Singh, M. Z. Meetei, Multiplicity of positive solutions for Hadamard fractional differential equations with $p$-Laplacian operator, Bound. Value Probl., 2020 (2020), 43. https://doi.org/10.1186/s13661-020-01341-4 doi: 10.1186/s13661-020-01341-4 |
[36] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
[37] | A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives: Theory and applications, 1993. |
[38] | A. Tudorache, R. Luca, System of Riemann-Liouville fractional differential equations with $p$-Laplacian operators and nonlocal coupled boundary conditions, Fractal Fract., 6 (2022), 610. https://doi.org/10.3390/fractalfract6100610 doi: 10.3390/fractalfract6100610 |
[39] | A. Tudorache, R. Luca, Positive solutions for a system of Riemann-Liouville fractional boundary value problems with $p$-Laplacian operators, Adv. Differ. Equ., 2020 (2020), 292. https://doi.org/10.1186/s13662-020-02750-6 doi: 10.1186/s13662-020-02750-6 |
[40] | A. Tudorache, R. Luca, Positive solutions of a singular fractional boundary value problem with $r$-Laplacian operators, Fractal Fract., 6 (2022), 18. https://doi.org/10.3390/fractalfract6010018 doi: 10.3390/fractalfract6010018 |
[41] | A. Tudorache, R. Luca, Positive solutions for a system of Riemann-Liouville fractional boundary value problems with $p$-Laplacian operators, Adv. Differ. Equ., 2020 (2020), 292. https://doi.org/10.1186/s13662-020-02750-6 doi: 10.1186/s13662-020-02750-6 |
[42] | Y. Tian, Z. Bai, S. Sun, Positive solutions for a boundary value problem of fractional differential equation with $p$-Laplacian operator, Adv. Differ. Equ., 2019 (2019), 349. https://doi.org/10.1186/s13662-019-2280-4 doi: 10.1186/s13662-019-2280-4 |
[43] | G. Wang, T. Wang, On a nonlinear Hadamard type fractional differential equation with $p$-Laplacian operator and strip condition, J. Nonlinear Sci. Appl., 9 (2016), 5073–5081. http://dx.doi.org/10.22436/jnsa.009.07.10 doi: 10.22436/jnsa.009.07.10 |
[44] | G. T. Wang, K. Pei, R. P. Agarwal, L. H. Zhang, B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230–239. https://doi.org/10.1016/j.cam.2018.04.062 doi: 10.1016/j.cam.2018.04.062 |
[45] | H. Wang, J. Jiang, Existence and multiplicity of positive solutions for a system of nonlinear fractional multi-point boundary value problems with $p$-Laplacian operator, J. Appl. Anal. Comput., 11 (2021), 351–366. https://doi.org/10.11948/20200021 doi: 10.11948/20200021 |
[46] | Y. Wang, Multiple positive solutions for mixed fractional differential system with $p$-Laplacian operators, Bound. Value Probl., 2019 (2019), 144. https://doi.org/10.1186/s13661-019-1257-2 doi: 10.1186/s13661-019-1257-2 |
[47] | Y. Wang, G. Zhao, A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy, Control Eng. Pract., 133 (2023), 105451. https://doi.org/10.1016/j.conengprac.2023.105451 doi: 10.1016/j.conengprac.2023.105451 |
[48] | Y. Wang, G. Gao, X. Li, Z. Chen, A fractional-order model-based state estimation approach for lithium-ion battery and ultra-capacitor hybrid power source system considering load trajectory, J. power sources, 449 (2020), 227543. https://doi.org/10.1016/j.jpowsour.2019.227543 doi: 10.1016/j.jpowsour.2019.227543 |
[49] | J. Xu, J. Jiang, D. O'Regan, Positive solutions for a class of $p$-Laplacian Hadamard fractional three-point boundary value problem, Mathematics., 8 (2020), 308. https://doi.org/10.3390/math8030308 doi: 10.3390/math8030308 |
[50] | J. Xu, D. O'Regan, Positive solutions for a fractional $p$-Laplacian boundary value problem, Filomat., 31 (2017), 1549–1558. |
[51] | J. Xu, L. Liu, S. Bai, Y. Wu, Solvability for a system of Hadamard fractional multi-point boundary value problems, Nonlinear Anal. Model., 26 (2021), 502–521. https://doi.org/10.15388/namc.2021 doi: 10.15388/namc.2021 |
[52] | F. Yan, M. Zuo, X. Hao, Positive solution for a fractional singular boundary value problem with $p$-Laplacian operator, Bound. Value Probl., 2018 (2018), 51. https://doi.org/10.1186/s13661-018-0972-4 doi: 10.1186/s13661-018-0972-4 |
[53] | W. Yang, Monotone iterative technique for a coupled system of nonlinear Hadamard fractional differential equations, J. Appl. Math. Comput., 59 (2019), 585–596. https://doi.org/10.1007/s12190-018-1192-x doi: 10.1007/s12190-018-1192-x |
[54] | K. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z |
[55] | W. Zhang, J. Ni, New multiple positive solutions for Hadamard type fractional differential equations with nonlocal conditions on an infinite interval, Appl. Math. Lett., 118 (2021), 107165. https://doi.org/10.1016/j.aml.2021.107165 doi: 10.1016/j.aml.2021.107165 |