Loading [MathJax]/jax/output/SVG/jax.js
Research article

An efficient method for 3D Helmholtz equation with complex solution

  • Received: 17 February 2023 Revised: 07 April 2023 Accepted: 12 April 2023 Published: 21 April 2023
  • MSC : 32W50, 65M70

  • The Helmholtz equation as an elliptic partial differential equation possesses many applications in the time-harmonic wave propagation phenomena, such as the acoustic cavity and radiation wave. In this paper, we establish a numerical method based on the orthonormal shifted discrete Chebyshev polynomials for finding complex solution of this equation. The presented method transforms the Helmholtz equation into an algebraic system of equations that can be easily solved. Four practical examples are examined to show the accuracy of the proposed technique.

    Citation: M. H. Heydari, M. Hosseininia, D. Baleanu. An efficient method for 3D Helmholtz equation with complex solution[J]. AIMS Mathematics, 2023, 8(6): 14792-14819. doi: 10.3934/math.2023756

    Related Papers:

    [1] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by $ \psi $-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
    [2] Luca Bisconti, Paolo Maria Mariano . Global existence and regularity for the dynamics of viscous oriented fluids. AIMS Mathematics, 2020, 5(1): 79-95. doi: 10.3934/math.2020006
    [3] Liangcai Mei, Boying Wu, Yingzhen Lin . Shifted-Legendre orthonormal method for high-dimensional heat conduction equations. AIMS Mathematics, 2022, 7(5): 9463-9478. doi: 10.3934/math.2022525
    [4] Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830
    [5] Ved Prakash Dubey, Jagdev Singh, Ahmed M. Alshehri, Sarvesh Dubey, Devendra Kumar . Analysis of local fractional coupled Helmholtz and coupled Burgers' equations in fractal media. AIMS Mathematics, 2022, 7(5): 8080-8111. doi: 10.3934/math.2022450
    [6] Ahmed Ayad Khudhair, Saeed Sohrabi, Hamid Ranjbar . Numerical solution of nonlinear complex integral equations using quasi- wavelets. AIMS Mathematics, 2024, 9(12): 34387-34405. doi: 10.3934/math.20241638
    [7] Xiaoyong Xu, Fengying Zhou . Orthonormal Euler wavelets method for time-fractional Cattaneo equation with Caputo-Fabrizio derivative. AIMS Mathematics, 2023, 8(2): 2736-2762. doi: 10.3934/math.2023144
    [8] Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182
    [9] Kazem Nouri, Milad Fahimi, Leila Torkzadeh, Dumitru Baleanu . Numerical method for pricing discretely monitored double barrier option by orthogonal projection method. AIMS Mathematics, 2021, 6(6): 5750-5761. doi: 10.3934/math.2021339
    [10] Shuqi He, Kun Wang . Exponential integrator method for solving the nonlinear Helmholtz equation. AIMS Mathematics, 2022, 7(9): 17313-17326. doi: 10.3934/math.2022953
  • The Helmholtz equation as an elliptic partial differential equation possesses many applications in the time-harmonic wave propagation phenomena, such as the acoustic cavity and radiation wave. In this paper, we establish a numerical method based on the orthonormal shifted discrete Chebyshev polynomials for finding complex solution of this equation. The presented method transforms the Helmholtz equation into an algebraic system of equations that can be easily solved. Four practical examples are examined to show the accuracy of the proposed technique.



    This paper is devoted to establishing a highly accurate method for solving the Helmholtz equation that has many applications in time-harmonic wave propagation phenomena, such as the acoustic cavity and radiation wave [1]. Some of the numerical methods that have been used to solve the Helmholtz equation in recent years are: Legendre wavelet method [2], least-squares finite element method [3], meshless Chebyshev collocation method [4], implicit finite difference method [5], staggered discontinuous Galerkin method [6], Fourier-Bessel method [7], radial basis function-generated finite difference scheme [8] and hybrid approach proposed in [9].

    Nowadays, researchers use orthogonal polynomials instead of the Fourier functions to solve various classes of equations numerically, because these types of basis functions have spectral accuracy property and their computational volume is less than other basis functions. For instance, see [10,11,12,13,14]. Orthogonal polynomials are defined into two categories based on the definition of their internal product [15], discrete and continuous. In numerical algorithms, the expansion coefficients for orthogonal continuous polynomials are achieved by integrating, but the expansion coefficients for orthogonal discrete polynomials are got using a finite summation. In recent years, researchers have been successfully used discrete polynomials to provide numerical methods for solving ordinary and fractional differential equations. Some differential equations that are solved using discrete polynomials are: variable-order fractional extended Fisher-Kolmogorov equation [16], time-delay fractional optimal control problems [17], fractional Volterra partial integro-differential equations [18], fractional viscoelastic model [19], fractional reaction-advection-diffusion equations [20], etc..

    In this paper, we utilize the orthonormal shifted discrete Chebyshev polynomials (OSDCPs) to obtain the numerical solution of the 3D Helmholtz equation.

    The main objectives of this study are briefly expressed in the following:

    ● Investigating the 1D and 2D OSDCPs and their derivative matrices.

    ● Establishing a computational method based on the 1D and 2D OSDCPs to obtain the numerical solution of the 3D Helmholtz equation.

    To solve the intended equation, we first approximate the unknown solution in the main problem by the 1D and 2D OSDCPs. Next, using these polynomials, we expand the second-order derivatives. So, the derivative matrices of the second order are obtained. In the following, we replace approximations obtained in the previous steps into the main problem. By this replacing and the collocation technique, the primary problem is turned into an algebraic equations system. Some of the most important advantages of the established method are listed in the following:

    ● The proposed method has spectral accuracy and low computational volume.

    ● A small number of the OSDCPs are required to obtain highly accurate results.

    ● The developed method transforms the solution of the main problem into the solution of a linear system of algebraic equations, which is easily solvable.

    In the sequel, we provide five sections as follows: the 1D and 2D OSDCPs and some of their properties are provided in Section 2. A numerical method is adopted by applying the 2D OSDCPs in Section 3. Section 4 provides some numerical examples for investigating the accuracy of the proposed method. Section 5 explains the conclusion of the article.

    Here, we review the 3D Helmholtz equation and introduce the 1D and 2D OSDCPs together with some of their attributes.

    In this work, we focus on the 3D Helmholtz equation

    2ϑ(ξ,γ,z)+η2ϑ(ξ,γ,z)=f(ξ,γ,z),(ξ,γ,z)[0,1]3, (2.1)

    with the boundary conditions

    {ϑ(0,γ,z)=h1(γ,z),(γ,z)[0,1]2,ϑ(1,γ,z)=h2(γ,z),(γ,z)[0,1]2,ϑ(ξ,0,z)=h3(ξ,z),(ξ,z)[0,1]2,ϑ(ξ,1,z)=h4(ξ,z),(ξ,z)[0,1]2,ϑ(ξ,γ,0)=h5(ξ,γ),(ξ,γ)[0,1]2,ϑ(ξ,γ,1)=h6(ξ,γ),(ξ,γ)[0,1]2, (2.2)

    or

    {ϑ(0,γ,z)=h1(γ,z),(γ,z)[0,1]2,ϑ(1,γ,z)ξ=iL1ϑ(1,γ,z),(γ,z)[0,1]2,ϑ(ξ,0,z)=h3(ξ,z),(ξ,z)[0,1]2,ϑ(ξ,1,z)γ=iL2ϑ(ξ,1,z),(ξ,z)[0,1]2,ϑ(ξ,γ,0)=h5(ξ,γ),(ξ,γ)[0,1]2,ϑ(ξ,γ,1)z=iL3ϑ(ξ,γ,1),(ξ,γ)[0,1]2,={ϑ(0,γ,z)=h1(γ,z),(γ,z)[0,1]2,ϑ(1,γ,z)=iL1ϑ(1,γ,z)ξh2(γ,z),(γ,z)[0,1]2,ϑ(ξ,0,z)=h3(ξ,z),(ξ,z)[0,1]2,ϑ(ξ,1,z)=iL2ϑ(ξ,1,z)γh4(ξ,z),(ξ,z)[0,1]2,ϑ(ξ,γ,0)=h5(ξ,γ),(ξ,γ)[0,1]2,ϑ(ξ,γ,1)=iL3ϑ(ξ,γ,1)zh6(ξ,γ),(ξ,γ)[0,1]2, (2.3)

    where η is the wave number, f and hς for ς=1,2,,6 are given complex functions, L1L3 are real constants. Also, ϑ is an unknown complex function.

    The 1D OSDCPs are defined over [0,zf] in the following form [21]:

    CPzf,(z,˜M)=c(,˜M)κ=0κr=0(1)κ(+κ)(˜Mκκ)κ!(˜Mzf)rS(r)κzr,=0,1,,˜M, (2.4)

    where S(r)κ is the first kind Stirling numbers and

    c(,˜M)=(2+1)(˜M)!(!)2(˜M++1)!. (2.5)

    The set {CPzf,(z,˜M)}˜M=0 produces an orthogonal set over [0,zf] based on the following internal product definition:

    φ,ψ=˜Mi=0φ(zf˜Mi)ψ(zf˜Mi). (2.6)

    So, we have

    CPzf,(z,˜M),CPzf,κ(z,˜M)={0,κ,1,=κ. (2.7)

    Any function ϑ(z)[0,zf] can be expanded by the 1D OSDCPs as follows:

    w(z)˜Mi=0wiCPzf,i(z;˜M)WTCPzf,˜M(z;˜M), (2.8)

    where

    W=[w0w1w˜M]T,

    in which

    wi=w(z),CPzf,i(z;˜M)=˜Mr=0ω(zf˜Mr)CPzf,i(zf˜Mr;˜M), (2.9)

    and

    CPzf,˜M(z)=[CPzf,0(z;˜M)CPzf,1(t;˜M)CPzf,˜M(z;˜M)]T. (2.10)

    Theorem 2.1. [21] Let CPzf,˜M(z) is the vector introduced in (2.10). Then, the ρth derivative of this vector can be gotten as

    dρCPzf,˜M(z)dzρ=D(ρ,zf)zCPzf,˜M(z), (2.11)

    where components of the square matrix D(ρ,zf)z=[d(ρ,zf)ij] are calculated by the following formula:

    d(ρ,zf)ij={c(i1,˜M)˜M=0(i1κ=ρκr=ρ(1)κ(i+κ1i1)(˜Mκiκ1)κ!×(˜Mzf)ρS(r)κr(r1)(rρ+1)rρ)CPzf,j1(zf˜M;˜M),ρ+1i˜M+1,1jiρ,0,otherwise. (2.12)

    The 2D OSDCPs are constructed over [0,1]×[0,1] by the 1D OSDCPs as

    CPκ(ξ,γ;N1,N2)=CPκ(ξ;N1)CP(γ;N2),κ=0,1,,N1,=0,1,,N2. (2.13)

    Utilizing the 2D OSDCPs, any continuous function ϑ(ξ,γ) can be expanded over [0,1]×[0,1] in the following form:

    ϑ(ξ,γ)N1κ=0N2=0λκCPκ(ξ,γ;N1,N2)ΛTCPN1N2(ξ,γ)=CPTN1N2(ξ,γ)Λ, (2.14)

    where

    Λ=[λ00λ01λ0N2|λ10λ11λ1N2||λN10λN11λN1N2]T, (2.15)

    with

    λ(κ1)(1)=N1i=0N2j=0ϑ(iN1,jN2)CP(κ1)(1)(iN1,jN2;N1,N2),κ=1,2,,N1+1,=1,2,,N2+1, (2.16)

    and

    CPN1N2(ξ,γ)=[CP00(ξ,γ)CP0N2(ξ,γ)|CP10(ξ,γ)CP1N2(ξ,γ)||CPN10(ξ,γ)CPN1N2(ξ,γ)]T. (2.17)

    Theorem 2.2. Suppose that CPN1N2(ξ,γ) is the 2D OSDCPs vector demonstrated in (2.17). Then, the ρth derivative of this vector can be calculated as follow:

    ρCPN1,N2(ξ,γ)ξρ=D(ρ)ξCPN1N2(ξ,γ), (2.18)

    where

    D(ρ)ξ=(ˊd(ρ)11Iˊd(ρ)12Iˊd(ρ)1(N1+1)Iˊd(ρ)21Iˊd(ρ)22Iˊd(ρ)2(N1+1)Iˊd(ρ)(N1+1)1Iˊd(ρ)(N1+1)2Iˊd(ρ)(N1+1)(N1+1)I),

    in which I(N2+1)×(N2+1)=diag(1,1,,1) and

    ˊd(ρ)ij={c(i1,N1)N1=0(i1κ=ρκr=ρ(1)κ(i+κ1i1)(N1κiκ1)κ!Nρ1S(r)κr(r1)(rρ+1)rρ)CPj1(N1;N1),ρ+1iN1+1,1jiρ,0,otherwise. (2.19)

    Proof. According to (2.13), the ρth derivative of the vector CPij(ξ,γ;N1,N2) (i=1,2,,N1, j = 1,2,,N2) can be written in the following form:

    ρξρCPij(ξ,γ;N1,N2)=ρξρCPi(ξ;N1)CPj(γ;N2)=CPj(γ;N2)dρdξρCPi(ξ;N1). (2.20)

    By computing dρdξρCPi(ξ;N1)(i=1,2,,N1) and substituting in the above relation, we get

    ρCPN1,N2(ξ,γ)ξρ=[CP1(γ;N2)dρdξρCP1(ξ;N1)CP2(γ;N2)dρdξρCP1(ξ;N1)CPN2+1(γ;N2)dρdξρCP1(ξ;N1)|CP1(γ;N2)dρdξρCP2(ξ;N1)CP2(γ;N2)dρdξρCP2(ξ;N1)CPN2+1(γ;N2)dρdξρCP2(ξ;N1)||CP1(γ;N2)dρdξρCPN1+1(ξ;N1)CP2(γ;N2)dρdξρCPN1+1(ξ;N1)CPN2+1(γ;N2)dρdξρCPN1+1(ξ;N1)]T.

    Then, by applying Theorem 2.1, we have

    ρCPN1,N2(ξ,γ)ξρ=D(ρ)ξCPN1N2(ξ,γ),

    where

    D(ρ)ξ=(ˊd(ρ)1100ˊd(ρ)1200ˊd(ρ)1(N1+1)000ˊd(ρ)1100ˊd(ρ)1200ˊd(ρ)1(N1+1)000ˊd(ρ)1100ˊd(ρ)1200ˊd(ρ)1(N1+1)ˊd(ρ)2100ˊd(ρ)2200ˊd(ρ)2(N1+1)000ˊd(ρ)2100ˊd(ρ)2200ˊd(ρ)2(N1+1)000ˊd(ρ)2100ˊd(ρ)2200ˊd(ρ)2(N1+1)ˊd(ρ)(N1+1)100ˊd(ρ)(N1+1)200ˊd(ρ)(N1+1)(N1+1)000ˊd(ρ)(N1+1)100ˊd(ρ)(N1+1)200ˊd(ρ)(N1+1)(N1+1)000ˊd(ρ)(N1+1)100ˊd(ρ)(N1+1)200ˊd(ρ)(N1+1)(N1+1)),

    or equivalently

    D(ρ)ξ=(ˊd(ρ)11I(N2+1)(N2+1)ˊd(ρ)12I(N2+1)(N2+1)ˊd(ρ)1(N1+1)I(N2+1)(N2+1)ˊd(ρ)21I(N2+1)(N2+1)ˊd(ρ)22I(N2+1)(N2+1)ˊd(ρ)2(N1+1)I(N2+1)(N2+1)ˊd(ρ)(N1+1)1I(N2+1)(N2+1)ˊd(ρ)(N1+1)2I(N2+1)(N2+1)ˊd(ρ)(N1+1)(N1+1)I(N2+1)(N2+1)).

    As a numerical example, we want to compute matrix D(1)ξ expressed in the Theorem 2.2. By assuming that N1=N2=3, we have

    [ˊd(1)ij]=(000065500001550017550650),

    and

    I=(1000010000100001).

    Then, we obtain

    D(1)ξ=(0×I0×I0×I0×I655×I0×I0×I0×I0×I155×I0×I0×I1755×I0×I65×I0×I.)=(000000000000000000000000000000000000000000000000000000000000000065500000000000000006550000000000000000655000000000000000065500000000000000001550000000000000000155000000000000000015500000000000000001550000000017550000000650000000017550000000650000000017550000000650000000017550000000650000).

    Similarly, the matrix D(2)ξ is computed as

    D(2)ξ=(0×I0×I0×I0×I0×I0×I0×I0×I18×I0×I0×I0×I0×I90×I0×I0×I.)=(000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001800000000000000001800000000000000001800000000000000001800000000000000009000000000000000009000000000000000009000000000000000009000000000).

    Theorem 2.3. Suppose that CPN1N2(ξ,γ) is the 2D OSDCPs vector demonstrated in (2.17). Then, the ρth derivative of this vector can be calculated as follow:

    ρCPN1N2(ξ,γ)γρ=D(ρ)γCPN1N2(ξ,γ), (2.21)

    where

    D(ρ)γ=(D(ρ)OOOD(ρ)OOOD(ρ)),

    such that O demonstrates the zero matrix of order (N2+1)×(N2+1) and

    ˊd(ρ)ij={c(i1,N2)N2=0(i1κ=ρκr=ρ(1)κ(i+κ1i1)(N2κiκ1)κ!×Nρ2S(r)κr(r1)(rρ+1)rρ)CPj1(N2;N2),ρ+1iN2+1,1jiρ,0,otherwise. (2.22)

    Proof. According to (2.13), the ρth derivative of the vector CPij(ξ,γ;N1,N2)(i=1,2,,N1, j = 1,2,,N2) can be written in the following form:

    ργρCPij(ξ,γ;N1,N2)=CPi(ξ;N1)ργρCPj(γ;N2)=CPi(ξ;N1)dρdγρCPj(γ;N2). (2.23)

    By computing dρdγρCPj(γ;N2)(j=1,2,,N2) and substituting in the above relation, we get

    ρCPN1,N2(ξ,γ)γρ=[CP1(ξ;N1)dρdγρCP1(γ;N2)CP1(ξ;N1)dρdγρCP2(γ;N2)CP1(ξ;N1)dρdγρCPN2+1(γ;N2)|CP2(ξ;N1)dρdγρCP1(γ;N2)CP2(ξ;N1)dρdγρCP2(γ;N2)CP2(ξ;N1)dρdγρCPN2+1(γ;N2)||CPN1+1(ξ;N1)dρdγρCP1(γ;N2)CPN1+1(ξ;N1)dρdγρCP2(γ;N2)CPN1+1(ξ;N1)dρdγρCPN2+1(γ;N2)]T.

    Then, by applying Theorem 2.1, we have

    ρCPN1,N2(ξ,γ)γρ=D(ρ)γCPN1N2(ξ,γ),

    where

    D(ρ)γ=(ˊd(ρ)11ˊd(ρ)12ˊd(ρ)1(N2+1)000000ˊd(ρ)21ˊd(ρ)22ˊd(ρ)2(N2+1)000000ˊd(ρ)(N2+1)1ˊd(ρ)(N2+1)2ˊd(ρ)(N2+1)(N2+1)000000000ˊd(ρ)11d12ˊd(ρ)1(N2+1)000000ˊd(ρ)21d22ˊd(ρ)2(N2+1)000000ˊd(ρ)(N2+1)1d(N2+1)2ˊd(ρ)(N2+1)(N2+1)000000000ˊd(ρ)11ˊd(ρ)12ˊd(ρ)1(N2+1)000000ˊd(ρ)21ˊd(ρ)22ˊd(ρ)2(N2+1)000000ˊd(ρ)(N2+1)1d(N2+1)2ˊd(ρ)(N2+1)(N2+1)),

    or equivalently

    D(ρ)γ=(D(N2+1)(N2+1)O(N2+1)(N2+1)O(N2+1)(N2+1)O(N2+1)(N2+1)D(N2+1)(N2+1)O(N2+1)(N2+1)O(N2+1)(N2+1)O(N2+1)(N2+1)D(N2+1)(N2+1)).

    As a numerical example, for (N1=N2=3), we get

    D(1)γ=(000000000000000065500000000000000001550000000000000017550650000000000000000000000000000000006550000000000000000155000000000000001755065000000000000000000000000000000000655000000000000000015500000000000000175506500000000000000000000000000000000065500000000000000001550000000000000017550650).

    In this section, a numerical scheme is provided for the 3D Helmholtz Eq (2.1) by utilizing the OSDCPs. To this end, we represent the complex function ϑ(ξ,γ,z) as follow:

    ϑ(ξ,γ,z)=ω(ξ,γ,z)+iν(ξ,γ,z), (3.1)

    where ω and ν are real functions. Moreover, we consider the complex functions f(ξ,γ,z), g(ξ,γ) and h(.,.)(=1,2,3,4) in the following forms:

    {f(ξ,γ,z)=f1(ξ,γ,z)+if2(ξ,γ,z),h1(γ,z)=h11(γ,z)+ih12(γ,z),h2(γ,z)=h21(γ,z)+ih22(γ,z),h3(ξ,z)=h31(ξ,z)+ih32(ξ,z),h4(ξ,z)=h41(ξ,z)+ih42(ξ,z),h5(ξ,γ)=h51(ξ,γ)+ih52(ξ,γ),h6(ξ,γ)=h61(ξ,γ)+ih62(ξ,γ), (3.2)

    where fk(.,.,.), and hlk(.,.) for l=1,2,3,4,5,6,k=1,2 are given real functions. By putting (3.1) into (2.1), we obtain

    {Δω(ξ,γ,z)+η2ω(ξ,γ,z)=f1(ξ,γ,z),(ξ,γ,z)[0,1]3,Δν(ξ,γ,z)+η2ν(ξ,γ,z)=f2(ξ,γ,z),(ξ,γ,z)[0,1]3. (3.3)

    Also, by replacing (3.2) into (2.2) or (2.3), the boundary conditions are obtained as follows:

    {ω(0,γ,z)=h11(γ,z),ν(0,γ,z)=h12(γ,z),ω(1,γ,z)=h21(γ,z),ν(1,γ,z)=h22(γ,z),ω(ξ,0,z)=h31(ξ,z),ν(ξ,0,z)=h32(ξ,z),ω(ξ,1,z)=h41(ξ,z),ν(ξ,1,z)=h42(ξ,z),ω(ξ,γ,0)=h51(ξ,γ),ν(ξ,γ,0)=h52(ξ,γ),ω(ξ,γ,1)=h61(ξ,γ),ν(ξ,γ,1)=h62(ξ,γ), (3.4)

    or

    {ω(0,γ,z)=h11(γ,z),ν(0,γ,z)=h12(γ,z),ω(1,γ,z)=1L1ν(1,γ,z)ξh21(γ,z),ν(1,γ,z)=1L1ω(1,γ,z)ξh22(γ,z),ω(ξ,0,z)=h31(ξ,z),ν(ξ,0,z)=h32(ξ,z),ω(ξ,1,z)=1L2ν(ξ,1,z)γh41(ξ,z),ν(ξ,1,z)=1L2ω(ξ,1,z)γh42(ξ,z),ω(ξ,γ,0)=h51(ξ,γ),ν(ξ,γ,0)=h52(ξ,γ),ω(ξ,γ,1)=1L3ν(ξ,γ,1)zh61(ξ,γ),ν(ξ,γ,1)=1L3ω(ξ,γ,1)zh62(ξ,γ). (3.5)

    In the following, using (2.8) and (2.14), we expand the unknown functions ω(ξ,γ,z) and ν(ξ,γ,z) as follows:

    {ω(ξ,γ,z)CPTN1N2(ξ,γ)ΥCPzf,˜M(z),ν(ξ,γ,z)CPTN1N2(ξ,γ)ΛCPzf,˜M(z), (3.6)

    where Υ and Λ are matrices with (N1+1)(N2+1)×(˜M+1) unknown elements. Regarding Theorems 2.1–2.3, we have

    {2ω(ξ,γ,z)ξ2CPTN1N2(ξ,γ)(D(2)ξ)TΥCPzf,˜M(z),2ω(ξ,γ,z)γ2CPTN1N2(ξ,γ)(D(2)γ)TΥCPzf,˜M(z),2ω(ξ,γ,z)z2CPTN1N2(ξ,γ)ΥD(1,zf)zCPzf,˜M(z), (3.7)

    and

    {2ν(ξ,γ,z)ξ2CPTN1N2(ξ,γ)(D(2)ξ)TΛCPzf,˜M(z),2ν(ξ,γ,z)γ2CPTN1N2(ξ,γ)(D(2)γ)TΛCPzf,˜M(z),2ν(ξ,γ,z)z2CPTN1N2(ξ,γ)ΛD(1,zf)zCPzf,˜M(z). (3.8)

    The functions expressed in (3.4) or (3.5) can be expanded by the OSDCPs as

    {h11(γ,z)H11(γ)CPzf,˜M(z),h12(γ,z)H12(γ)CPzf,˜M(z),h21(γ,z)H21(γ)CPzf,˜M(z),h22(γ,z)H22(γ)CPzf,˜M(z),h31(ξ,z)H31(ξ)CPzf,˜M(z),h32(ξ,z)H32(ξ)CPzf,˜M(z),h41(ξ,z)H41(ξ)CPzf,˜M(z),h42(ξ,z)H42(ξ)CPzf,˜M(z),h51(ξ,γ)CPTN1N2(ξ,γ)G11,h52(ξ,γ)CPTN1N2(ξ,γ)G12,h61(ξ,γ)CPTN1N2(ξ,γ)G21,h62(ξ,γ)CPTN1N2(ξ,γ)G22, (3.9)

    where Gkj and Hij(.) for k=1,2,i=1,2,3,4,j=1,2 are given vectors. Using (2.3), (3.6) and (3.9), we obtain the following relations:

    [CPTN1N2(0,γ)ΥH11(γ)]CPzf,˜M(z)˜H11(γ,z)0,[CPTN1N2(0,γ)ΛH12(γ)]CPzf,˜M(z)˜H12(γ,z)0,[CPTN1N2(1,γ)ΥH21(γ)]CPzf,˜M(z)˜H21(γ,z)0,[CPTN1N2(1,γ)ΛH22(γ)]CPzf,˜M(z)˜H22(γ,z)0,[CPTN1N2(ξ,0)ΥH31(ξ)]CPzf,˜M(z)˜H31(ξ,z)0,[CPTN1N2(ξ,0)ΛH32(ξ)]CPzf,˜M(z)˜H32(ξ,z)0,[CPTN1N2(ξ,1)ΥH41(ξ)]CPzf,˜M(z)˜H41(ξ,z)0,[CPTN1N2(ξ,1)ΛH42(ξ)]CPzf,˜M(z)˜H42(ξ,z)0,CPTN1N2(ξ,γ)[ΥCPzf,˜M(0)GT11]CPTN1N2(ξ,γ)˜G110,CPTN1N2(ξ,γ)[ΥCPzf,˜M(1)GT21]CPTN1N2(ξ,γ)˜G120,CPTN1N2(ξ,γ)[ΛCPzf,˜M(0)GT21]CPTN1N2(ξ,γ)˜G210,CPTN1N2(ξ,γ)[ΛCPzf,˜M(1)GT22]CPTN1N2(ξ,γ)˜G220. (3.10)

    The residual functions can be defined via (2.1) and (3.6)–(3.8) as follows:

    {Res1(ξ,γ,z)CPTN1N2(ξ,γ)(D(2)ξ)TΥCPzf,˜M(z)+CPTN1N2(ξ,γ)(D(2)γ)TΥCPzf,˜M(z)+CPTN1N2(ξ,γ)ΥD(2)zCPzf,˜M(z)+η2CPTN1N2(ξ,γ)ΥCPzf,˜M(z)f1(ξ,γ,z)0,Res2(ξ,γ,z)CPTN1N2(ξ,γ)(D(2)ξ)TΛCPzf,˜M(z)+CPTN1N2(ξ,γ)(D(2)γ)TΛCPzf,˜M(z)+CPTN1N2(ξ,γ)ΛD(2)zCPzf,˜M(z)+η2CPTN1N2(ξ,γ)ΛCPzf,˜M(z)f2(ξ,γ,z)0. (3.11)

    Finally, we get a system containing 2(N1+1)(N2+1)×(M+1) equations by (3.10) and (3.11) as

    {Res1(ξκ,γ,zm)=0,κ=2,3,4,N1,=2,3,,N2,m=2,3,,˜M,Res2(ξκ,γ,zm)=0,κ=2,3,4,N1,=2,3,,N2,m=2,3,,˜M,[˜Gij]κ=0,i,j=1,2,κ=1,2,N1+1,=1,2,N2+1,˜Hij(γ,zm)=0,i,j=1,2,=1,2,N2+1,m=2,3,˜M,˜Hij(ξκ,zm)=0,i=3,4,j=1,2,κ=2,3,N1,m=2,3,˜M, (3.12)

    where (ξκ,γ,zm) are defined as follows:

    ξκ=κ1N1+1,κ=1,2,,N1+1,γ=1N2+1,=1,2,,N2+1,zm=m1˜M+1,m=1,2,,˜M+1.

    By solving (3.12), we determine the elements of the matrices Υ and Λ, and subsequently using (3.6), we derive a solution for primary problem (2.1). In this work, we have used the "linsolve" command of Matlab R2020b to solve this system.

    The step-by-step algorithm of the proposed method is given in the following:

    Algorithm
    Input. The positive integer numbers ˜M, N1 and N2.
    Step 1. Generate the points ξκ=κ1N1+1 for κ=1,2,,N1+1, γ=1N2+1 for =1,2,,N2+1 and zm=m1˜M+1 for m=1,2,,˜M+1.
    Step 2. Define the first kind Stirling numbers S(r)κ using Eq (2.5).
    Step 3. Define the 1D polynomials CPzf,(z,˜M) for 1˜M by Eq (2.4) and 2D polynomials
    CPκ(ξ,γ;N1,N2) for 1κN1,1N2 by Eq (2.13).
    Step 4. Compute the vectors CPzf,˜M(z) and CPTN1N2(ξ,γ) by Eqs (2.10) and (2.17).
    Step 5. Compute the matrices D(2,zf)z, D(2)ξ and D(2)γ using Theorems 2.1–2.3.
    Step 6. Introduce the vectors Υ and Λ with unknown elements.
    Step 7. Compute the residual functions Res1(ξ,γ,z) and Res2(ξ,γ,z) in Eq (3.11).
    Step 8. Extract a linear system of algebraic equations using Eqs (3.10) and (3.11).
    Step 9. Solve the system expressed in Step 8 and calculate vectors Υ and Λ.
    Output. The approximate solutions: ω(ξ,γ,z)CPTN1N2(ξ,γ)ΥCPzf,˜M(z) and ν(ξ,γ,z)CPTN1N2(ξ,γ)ΛCPzf,˜M(z).

    This section presents four test problems to demonstrate the validity of the suggested method.

    We evaluate the precision of our algorithm using L norm as follows:

    {Lreal=max1iN1+1max1jN2+1|ω(ξi,γj,1)˜ω(ξi,γj,1)|,Limage=max1iN1+1max1jN2+1|ν(ξi,γj,1)˜ν(ξi,γj,1)|,|L|=(Lreal)2+(Limage)2,

    where ˜ω and ˜ν are the approximations of ω and ν, respectively. In addition, we compute the convergence order (CO) as

    CO=logN1N2L(N2)L(N1),

    where N1 and N2 are the number of the 2D OSDCPs applied in the first and second implementations, respectively. It should be noted that in all examples we assume that N1=N2.

    Example 4.1. Consider the 3D Helmholtz equation

    Δϑ(ξ,γ,z)+η2ϑ(ξ,γ,z)=0,(ξ,γ,z)[0,1]3,

    with the boundary conditions

    {ϑ(0,γ,z)=exp(i(L2γ+L3z)),(γ,z)[0,1]2,ϑ(1,γ,z)=exp(i(L1+L2γ+L3z)),(γ,z)[0,1]2,ϑ(ξ,0,z)=exp(i(L1ξ+L3z)),(ξ,z)[0,1]2,ϑ(ξ,1,z)=exp(i(L1ξ+L2+L3z)),(ξ,z)[0,1]2,ϑ(ξ,γ,0)=exp(i(L1ξ+L2γ)),(ξ,γ)[0,1]2,ϑ(ξ,γ,1)=exp(i(L1ξ+L2γ+L3)),(ξ,γ)[0,1]2,

    where (L1,L2,L3)=(ηcosμcosϖ,ηsinμcosϖ,ηsinϖ). The true solution of this example is

    ϑ(ξ,γ,z)=ei(L1ξ+L2γ+L3z).

    We apply the method proposed in Section 3 for solving this example with some values (μ,ϖ), (N,˜M) and η. The obtained results are presented in Tables 1 and 2 and Figures 13. These results indicate that the proposed method is sufficiently accurate.

    Table 1.  The values of L at z=0.5 with η=3, ˜M=9 and some values of (μ,ϖ) and N for Example 4.1.
    N (μ=π32,ϖ=π16) (μ=3π32,ϖ=3π16) (μ=5π32,ϖ=5π16)
    Lreal Limage |L| Lreal Limage |L| Lreal Limage |L|
    4 5.5570E-4 4.6427E-4 7.2412E-4 4.7169E-4 3.3362E-4 5.7775E-4 3.1603E-4 1.9379E-4 3.7071E-4
    6 6.8299E-6 5.3973E-6 8.7051E-6 5.4661E-6 3.5644E-6 6.5256E-6 3.1504E-6 1.8635E-6 3.6603E-6
    8 4.2722E-8 3.2964E-8 5.3961E-8 3.1874E-8 2.0441E-8 3.7865E-8 1.5717E-8 9.0795E-9 1.8151E-8
    10 1.6709E-10 1.2795E-10 2.1045E-10 1.1668E-10 7.3901E-11 7.4816E-10 4.9133E-11 2.8366E-11 5.6733E-11
    12 4.5254E-13 3.4379E-13 5.6832E-13 2.9349E-13 1.8428E-13 3.4655E-13 1.0530E-13 6.1587E-14 6.2481E-13

     | Show Table
    DownLoad: CSV
    Table 2.  The values of L and CO at z=0.5 with η=23,33, (μ=5π32,ϖ=5π16) and some values of N for Example 4.1.
    N η=23 η=33
    Lreal CO Limage CO |L| Lreal CO Limage CO |L|
    4 1.5005E-2 - 1.4972E-2 - 2.1197E-2 1.6803E-1 - 1.6758E-1 - 2.3731E-1
    6 4.7165E-4 8.5332 4.6907E-4 8.5413 6.6519E-4 8.1850E-3 7.4528 1.1423E-2 6.6241 1.4053E-2
    8 8.2620E-6 14.0590 8.7443E-6 1.8430 1.2030E-5 3.0222E-4 11.4670 4.7133E-4 11.0810 5.5990E-4
    10 1.0487E-7 19.5690 1.0403E-7 19.8590 1.4772E-7 7.7584E-6 16.4130 1.2296E-5 16.3410 1.4539E-5
    12 8.8228E-10 26.2060 8.7339E-10 26.2180 8.8659E-9 1.5564E-7 21.4400 2.2843E-7 21.8610 2.7641E-7

     | Show Table
    DownLoad: CSV
    Figure 1.  Results achieved at z=0.5 with η=3, N=12 and (μ=5π32,ϖ=5π16) for Example 4.1.
    Figure 2.  Results achieved at z=0.5 with η=23, N=12 and (μ=5π32,ϖ=5π16) for Example 4.1.
    Figure 3.  Results achieved at z=0.5 with η=33, N=12 and (μ=5π32,ϖ=5π16) for Example 4.1.

    Example 4.2. Consider the 3D Helmholtz equation

    Δϑ(ξ,γ,z)+η2ϑ(ξ,γ,z)=0,(ξ,γ,z)[0,1]3,

    with the boundary conditions

    {ϑ(0,γ,z)=h1(γ,z),(γ,z)[0,1]2,ϑ(1,γ,z)ξ=iL1ϑ(1,γ,z),(γ,z)[0,1]2,ϑ(ξ,0,z)=h3(ξ,z),(ξ,z)[0,1]2,ϑ(ξ,1,z)γ=iL2ϑ(ξ,1,z),(ξ,z)[0,1]2,ϑ(ξ,γ,0)=h5(ξ,γ),(ξ,γ)[0,1]2,ϑ(ξ,γ,1)z=iL3ϑ(ξ,γ,1),(ξ,γ)[0,1]2,

    where (L1,L2,L3)=(ηcosμcosϖ,ηsinμcosϖ,ηsinϖ). The analytic solution of this example is

    ϑ(ξ,γ,z)=ei(L1ξ+L2γ+L3z),

    that is a plane wave. Using the above analytic solution, we can determine functions h(.,.),=1,3,5. We apply the method proposed in Section 3 for solving this example with (μ,ϖ)=(π4,0). Results obtained for η=2,52,102,152 are presented in Tables 3 and 4, Figures 47. The results listed in Tables 3 and 4 indicate that the proposed method is sufficiently accurate even for large wave numbers. Figure 8 shows the logarithm of errors for various values of wave number that decrease with increasing N.

    Table 3.  The values of L and the CO with η=2, η=52 and some values of N for Example 4.2.
    N η=2 η=52
    Lreal CO Limage CO |L| Lreal CO Limage CO |L|
    3 2.4080E-03 - 3.6760E-03 - 4.3945E-04 1.5280 - 6.2590E-01 - 1.6526
    5 3.2660E-06 12.9502 4.4055E-06 13.1683 5.4604E-06 9.6405E-01 0.9016 4.8246E-01 0.5208 1.0780
    7 3.3233E-09 20.4416 5.1757E-09 20.0511 6.1026E-09 2.2086E-02 11.2230 6.4915E-03 12.8046 2.3020E-02
    9 2.2094E-12 29.1109 3.0378E-12 29.6067 3.7563E-12 3.8518E-04 16.1113 1.2590E-04 15.6886 4.0523E-04
    11 1.0184E-15 38.2828 1.4821E-15 37.9997 1.7983E-15 5.2881E-06 21.3696 1.6748E-06 21.5268 4.2002E-06
    13 3.3151E-19 48.0688 4.5715E-19 48.3913 5.6470E-19 4.6430E-08 28.3457 1.4938E-08 28.2516 4.8774E-08
    15 2.3274E-20 15.9009 3.7306E-20 15.0003 4.3971E-20 3.4047E-10 34.3490 1.1216E-10 34.1839 3.5847E-10

     | Show Table
    DownLoad: CSV
    Table 4.  The values of L and CO with η=102, η=152 and some values of N for Example 4.2.
    N η=102 η=152
    Lreal CO Limage CO |L| Lreal CO Limage CO |L|
    3 3.9050 - 5.3276 - 6.6055 5.9586 - 5.9515 - 8.4217
    5 1.7718 1.5470 2.3754 1.5812 2.9634 3.3894 1.04453 3.2673 1.1739 4.7078
    7 5.6250E-1 3.4100 6.2821E-1 3.9530 8.4324E-1 2.1202 1.3943 2.3651 0.9604 3.1763
    9 2.7280E-2 12.0417 2.8424E-2 12.3183 3.9397E-2 1.6842 0.9161 1.7351 1.2325 2.4181
    11 1.1852E-3 15.6288 1.5255E-3 14.5750 1.9318E-3 1.3744 1.0130 1.2816 1.5097 1.8792
    13 5.2001E-5 18.7149 6.6344E-5 18.7677 8.4295E-5 1.1920E-2 28.4193 1.3800E-2 27.1241 1.8235E-2
    15 1.2452E-6 26.0793 1.6798E-6 25.6894 2.0910E-6 8.9276E-4 18.1107 1.0043E-3 18.1314 1.3437E-3

     | Show Table
    DownLoad: CSV
    Figure 4.  Results achieved with η=2, N=15 and (μ=π4,ϖ=0) for Example 4.2.
    Figure 5.  Results achieved with η=52, N=23 and (μ=π4,ϖ=0) for Example 4.2.
    Figure 6.  Results achieved with η=102, N=29 and (μ=π4,ϖ=0) for Example 4.2.
    Figure 7.  Results achieved with η=152, N=33 and (μ=π4,ϖ=0) for Example 4.2.
    Figure 8.  Logarithm of the absolute errors for different values of η and N in Example 4.2.

    Example 4.3. Consider the 3D Helmholtz equation

    Δϑ(ξ,γ,z)+η2ϑ(ξ,γ,z)=0,(ξ,γ,z)[0,1]3,

    with the boundary conditions

    {ϑ(0,γ,z)=exp(i(L2γ+L3z)),(γ,z)[0,1]2,ϑ(1,γ,z)=exp(i(L1+L2γ+L3z)),(γ,z)[0,1]2,ϑ(ξ,0,z)=exp(i(L1ξ+L3z)),(ξ,z)[0,1]2,ϑ(ξ,1,z)=exp(i(L1ξ+L2+L3z)),(ξ,z)[0,1]2,ϑ(ξ,γ,0)=exp(i(L1ξ+L2γ)),(ξ,γ)[0,1]2,ϑ(ξ,γ,1)=exp(i(L1ξ+L2γ+L3)),(ξ,γ)[0,1]2,

    where (L1,L2,L3)=(ηcosμcosϖ,ηsinμcosϖ,ηsinϖ). The analytic solution of this example is ϑ(ξ,γ,z)=ei(L1ξ+L2γ+L3z). We apply the method proposed in Section 3 for solving this example with (μ=π8,ϖ=0) and some values of (N,˜M) and η. The obtained results are presented in Tables 5, 6 and Figures 912. These results indicate that the proposed method is sufficiently accurate.

    Table 5.  The values of L and CO with η=2,3 and some values of N for Example 4.3.
    N η=2 η=3
    Lreal CO Limage CO |L| Lreal CO Limage CO |L|
    3 3.3098E-3 - 7.4487E-3 - 8.1509E-3 3.1269E-2 - 5.3151E-2 - 6.1667E-2
    4 8.5322E-4 4.7122 4.6445E-4 9.6459 9.7144E-4 7.7571E-3 4.8457 6.3093E-3 7.4079 9.9990E-3
    5 6.2661E-5 11.7020 1.4818E-4 5.1197 1.6088E-4 1.2314E-3 8.2479 2.1290E-3 4.8685 2.4595E-3
    6 1.2525E-5 8.8306 6.0859E-6 17.5100 1.3925E-5 2.3630E-4 9.0544 1.6522E-4 14.0199 2.8833E-4
    7 5.7241E-7 20.0169 1.3519E-6 9.7252 1.4747E-6 2.3448E-5 14.9874 4.1441E-5 8.9717 4.7615E-5
    8 9.1367E-8 13.7419 4.2548E-8 25.9410 1.0079E-7 3.7416E-6 13.7441 2.4626E-6 21.1415 4.4793E-6
    9 3.1008E-9 28.7242 7.3886E-9 14.8640 8.0129E-9 2.8188E-7 21.9538 4.8832E-7 13.7371 5.6384E-7
    10 4.1402E-10 19.1106 1.8960E-10 34.7642 4.5537E-10 3.7671E-8 19.1019 2.4596E-8 28.3634 4.4990E-8
    11 1.1572E-11 37.5335 2.6875E-11 20.4985 2.9260E-11 2.2964E-9 29.3520 3.8934E-9 19.3400 4.5202E-9
    12 1.2974E-12 25.1487 6.0059E-13 43.6844 1.4297E-12 2.6247E-10 24.9273 1.7160E-10 35.8789 3.1359E-10

     | Show Table
    DownLoad: CSV
    Table 6.  The values of L and CO with η=4,5 and some values of N for Example 4.3.
    N η=4 η=5
    Lreal CO Limage CO |L| Lreal CO Limage CO |L|
    3 6.0417E-1 - 3.8960E-1 - 7.1889E-1 4.5872E-1 - 3.7373E-1 - 5.9169E-1
    4 6.6147E-2 7.6889 5.7464E-2 6.6530 8.7622E-2 2.5479E-1 7.6809 1.5532E-1 3.0521 2.9840E-1
    5 3.0496E-2 3.4698 1.8676E-2 5.0368 3.5760E-2 1.1164E-1 3.4698 2.9700E-2 7.4138 1.1552E-1
    6 2.2562E-3 13.6620 2.4021E-3 11.2488 3.2955E-3 1.0991E-2 13.6620 1.1495E-2 5.2064 1.5904E-2
    7 1.1182E-3 4.5537 6.7140E-4 8.2694 1.3043E-3 6.1771E-3 4.5537 1.4321E-3 13.5113 6.3409E-3
    8 5.3904E-5 22.7083 6.0476E-5 18.0277 8.1006E-5 3.5283E-4 22.7083 4.9562E-4 7.9464 6.0838E-4
    9 2.4291E-5 6.7675 1.4451E-5 12.1523 2.8265E-5 2.1461E-5 6.7675 4.3630E-5 20.6317 4.8623E-5
    10 8.6966E-7 31.6035 1.0273E-6 25.0932 1.3460E-6 7.8944E-6 31.6035 1.3407E-5 11.1993 1.5559E-5
    11 3.5421E-7 9.4241 2.0970E-7 16.6720 4.1163E-7 4.9461E-6 9.4241 9.6286E-7 27.6321 5.0389E-6
    12 1.0167E-8 40.8078 1.2275E-8 32.6177 1.5939E-8 1.3022E-7 40.8078 2.5241E-7 15.3871 2.8402E-7

     | Show Table
    DownLoad: CSV
    Figure 9.  Results achieved with η=2, N=12 and (μ=π8,ϖ=0) for Example 4.3.
    Figure 10.  Results achieved with η=3, N=12 and (μ=π8,ϖ=0) for Example 4.3.
    Figure 11.  Results achieved with η=4, N=12 and (μ=π8,ϖ=0) for Example 4.3.
    Figure 12.  Results achieved with η=5, N=12 and (μ=π8,ϖ=0) for Example 4.3.

    Example 4.4. Consider the 3D Helmholtz equation

    Δϑ(ξ,γ,z)+η2ϑ(ξ,γ,z)=f(ξ,γ,z),(ξ,γ,z)[0,1]3,

    with

    f(ξ,γ,z)=2sin(ηξ)sin(ηγ)sin(ηz),

    where the exact solution is ϑ(ξ,γ,z)=sin(ηξ)sin(ηγ)sin(ηz)η2. Other required information can be derived from the expressed exact solution. We apply the method proposed in Section 3 for solving this example with some values of (N,˜M) and η. The obtained results are presented in Table 7, Figures 13 and 14. These results indicate that the proposed method is sufficiently accurate.

    Table 7.  The values of L and CO with η=π2,π,2π,3π and some values of N for Example 4.4.
    N η=π2 η=π η=2π η=3π
    Lreal CO Lreal CO Lreal CO Lreal CO
    4 1.0805E4 - 1.4439E3 - 1.5450E2 - 1.8589E1 -
    6 1.2378E6 11.0225 3.6391E5 9.0779 2.0078E3 5.0327 4.5350E3 9.1582
    8 6.5440E8 18.2234 4.9688E7 14.9253 1.6308E4 8.7268 3.8311E3 0.5863
    10 2.1336E11 25.6602 5.0409E9 20.5731 8.5400E6 13.2179 2.0592E4 13.1011
    12 4.7472E14 33.5013 3.7234E11 26.9201 3.1128E7 18.1647 1.5229E5 14.2845
    14 1.1144E15 24.1664 2.0899E13 33.6209 8.2027E9 50.9515 7.9471E7 19.1564

     | Show Table
    DownLoad: CSV
    Figure 13.  Results achieved with η=π2,π and N=14 for Example 4.4.
    Figure 14.  Results achieved with η=π2,π,2π,3π and N=14 for Example 4.4.

    In this paper, we provided a numerical scheme using the orthonormal shifted discrete Chebyshev polynomials. Using the proposed method, we convert the 3D Helmholtz equation into a system of algebraic equations which can be easily solved. The results obtained of solving some numerical examples confirmed the high accuracy of the presented algorithm. Note that the proposed scheme can be developed for other types of partial differential equations, such as the Kdv-Burgers-Kuramoto equation, the Schrödinger equation, and the Benjamin-Bona-Mahony equation.

    The authors declare that they have no competing interests.



    [1] Z. He, P. Li, G. Zhao, H. Chen, A meshless Galerkin least-square method for the Helmholtz equation, Eng. Anal. Bound. Elem., 35 (2011), 868–878. https://doi.org/10.1016/j.enganabound.2011.01.010. doi: 10.1016/j.enganabound.2011.01.010
    [2] M. Heydari, M. Hooshmandasl, F. Maalek Ghaini, M. Fatehi Marji, R. Dehghan, M. Memarian, A new wavelet method for solving the Helmholtz equation with complex solution, Numer. Meth. Part. D. E., 32 (2016), 741–756. http://dx.doi.org/10.1002/num.22022 doi: 10.1002/num.22022
    [3] N. Song, E. Lee, Dual system least squares finite element method for the Helmholtz equation, Results in Applied Mathematics, 9 (2021), 100138. http://dx.doi.org/10.1016/j.rinam.2020.100138 doi: 10.1016/j.rinam.2020.100138
    [4] L. Cao, Y. Gu, C. Zhang, Q. Qin, A meshless chebyshev collocation method for eigenvalue problems of the Helmholtz equation, Eng. Anal. Bound. Elem., 125 (2021), 80–109. http://dx.doi.org/10.1016/j.enganabound.2021.01.006 doi: 10.1016/j.enganabound.2021.01.006
    [5] R. Balam, M. Zapata, A new eighth-order implicit finite difference method to solve the three-dimensional Helmholtz equation, Comput. Math. Appl., 80 (2020), 1176–1200. http://dx.doi.org/10.1016/j.camwa.2020.06.011 doi: 10.1016/j.camwa.2020.06.011
    [6] L. Zhao, E. Park, E. Chung, Staggered discontinuous Galerkin methods for the Helmholtz equation with large wave number, Comput. Math. Appl., 80 (2020), 2676–2690. http://dx.doi.org/10.1016/j.camwa.2020.09.019 doi: 10.1016/j.camwa.2020.09.019
    [7] D. Zhang, F. Sun, Y. Ma, Y. Guo, A Fourier-Bessel method with a regularization strategy for the boundary value problems of the Helmholtz equation, J. Comput. Appl. Math., 368 (2020), 112562. http://dx.doi.org/10.1016/j.cam.2019.112562 doi: 10.1016/j.cam.2019.112562
    [8] M. Londono, H. Montegranario, Radial basis function-generated finite differences with Bessel weights for the 2D Helmholtz equation, Eng. Anal. Bound. Elem., 105 (2019), 257–266. http://dx.doi.org/10.1016/j.enganabound.2019.04.026 doi: 10.1016/j.enganabound.2019.04.026
    [9] J. Fang, J. Qian, L. Zepeda-Núñez, H. Zhao, A hybrid approach to solve the high-frequency Helmholtz equation with source singularity in smooth heterogeneous media, J. Comput. Phys., 371 (2018), 261–279. http://dx.doi.org/10.1016/j.jcp.2018.03.011 doi: 10.1016/j.jcp.2018.03.011
    [10] Y. Youssri, A. Atta, Spectral collocation approach via normalized shifted Jacobi polynomials for the nonlinear Lane-Emden equation with fractal-fractional derivative, Fractal Fract., 7 (2023), 133. http://dx.doi.org/10.3390/fractalfract7020133 doi: 10.3390/fractalfract7020133
    [11] A. Atta, Y. Youssri, Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel, Comput. Appl. Math., 41 (2022), 381. http://dx.doi.org/10.1007/s40314-022-02096-7 doi: 10.1007/s40314-022-02096-7
    [12] R. Hafez, Y. Youssri, Shifted Gegenbauer-Gauss collocation method for solving fractional neutral functional-differential equations with proportional delay, Kragujev. J. Math., 46 (2022), 981–996. http://dx.doi.org/10.46793/KgJMat2206.981H doi: 10.46793/KgJMat2206.981H
    [13] Y. Youssri, Two Fibonacci operational matrix pseudo-spectral schemes for nonlinear fractional Klein-Gordon equation, Int. J. Mod. Phys. C, 33 (2022), 2250049. http://dx.doi.org/10.1142/S0129183122500498 doi: 10.1142/S0129183122500498
    [14] Y. Youssri, Orthonormal ultraspherical operational matrix algorithm for fractal-fractional Riccati equation with generalized Caputo derivative, Fractal Fract., 5 (2021), 100. http://dx.doi.org/10.3390/fractalfract5030100 doi: 10.3390/fractalfract5030100
    [15] M. Heydari, Z. Avazzadeh, C. Cattani, Orthonormal shifted discrete Hahn polynomials for a new category of nonlinear variable‐order fractional 2D optimal control problems, Asian J. Control, 24 (2022), 1986–1997. http://dx.doi.org/10.1002/asjc.2573 doi: 10.1002/asjc.2573
    [16] M. Hosseininia, M. Heydari, Z. Avazzadeh, Orthonormal shifted discrete Legendre polynomials for the variable-order fractional extended Fisher-Kolmogorov equation, Chaos Soliton. Fract., 155 (2022), 111729. http://dx.doi.org/10.1016/j.chaos.2021.111729 doi: 10.1016/j.chaos.2021.111729
    [17] L. Moradi, F. Mohammadi, A comparative approach for time-delay fractional optimal control problems: discrete versus continuous Chebyshev polynomials, Asian J. Control, 22 (2020), 204–216. http://dx.doi.org/10.1002/asjc.1858 doi: 10.1002/asjc.1858
    [18] H. Dehestani, Y. Ordokhani, An efficient approach based on Legendre-Gauss-Lobatto quadrature and discrete shifted Hahn polynomials for solving Caputo-Fabrizio fractional Volterra partial integro-differential equations, J. Comput. Appl. Math., 403 (2022), 113851. http://dx.doi.org/10.1016/j.cam.2021.113851 doi: 10.1016/j.cam.2021.113851
    [19] J. Cao, Y. Chen, Y. Wang, G. Cheng, T. Barrière, Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model, Chaos Soliton. Fract., 141 (2020), 110342. http://dx.doi.org/10.1016/j.chaos.2020.110342 doi: 10.1016/j.chaos.2020.110342
    [20] M. Heydari, Z. Avazzadeh, A. Atangana, Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations, Appl. Numer. Math., 161 (2021), 425–436. http://dx.doi.org/10.1016/j.apnum.2020.11.020 doi: 10.1016/j.apnum.2020.11.020
    [21] M. Heydari, M. Razzaghi, Z. Avazzadeh, Orthonormal shifted discrete Chebyshev polynomials: application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system, Chaos Soliton. Fract., 143 (2021), 110570. http://dx.doi.org/10.1016/j.chaos.2020.110570 doi: 10.1016/j.chaos.2020.110570
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1655) PDF downloads(80) Cited by(0)

Figures and Tables

Figures(14)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog