Citation: Luca Bisconti, Paolo Maria Mariano. Global existence and regularity for the dynamics of viscous oriented fluids[J]. AIMS Mathematics, 2020, 5(1): 79-95. doi: 10.3934/math.2020006
[1] | R. A. Adams, J. J. F. Fournier, Sobolev Spaces, 2 Eds., Amsterdam: Elsevier, 2003. |
[2] | S. Agmon, Lectures on Elliptic Boundary Value Problems, Providence: American Mathematical Society, 2010. |
[3] | J. Benameur, R. Selmi, Long time decay to the Leray solution of the two-dimensional NavierStokes equations, Bull. London Math. Soc., 44 (2012), 1001-1019. doi: 10.1112/blms/bds033 |
[4] | L. C. Berselli, T. Iliescu, W. J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Berlin: Springer-Verlag, 2006. |
[5] | L. C. Berselli, R. Lewandowski, Convergence of approximate deconvolution models to the mean Navier-Stokes equations, Ann. Inst. H. Poincaré-Non Linéaire Anal., 29 (2012), 171-198. |
[6] | L. C. Berselli, L. Bisconti, On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models, Nonlinear Anal., 75 (2012), 117-130. doi: 10.1016/j.na.2011.08.011 |
[7] | L. Bisconti, On the convergence of an approximate deconvolution model to the 3D mean Boussinesq equations, Math. Methods Appl. Sci., 38 (2015), 1437-1450. doi: 10.1002/mma.3160 |
[8] | L. Bisconti, D. Catania, Remarks on global attractors for the 3D Navier-Stokes equations with horizontal filtering, Commun. Pure Appl. Anal., 16 (2015), 1861-1881. |
[9] | L. Bisconti, D. Catania, Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region, Discrete Contin. Dyn. Syst. Ser. B, 20 (2017), 59-75. |
[10] | L. Bisconti, D. Catania, On the existence of an inertial manifold for a deconvolution model of the 2D mean Boussinesq equations, Math. Methods Appl. Sci., 41 (2018), 4923-4935. doi: 10.1002/mma.4939 |
[11] | L. Bisconti, P. M. Mariano, Existence results in the linear dynamics of quasicrystals with phason diffusion and non-linear gyroscopic effects, Multiscale Mod. Sim., 15 (2017), 745-767. doi: 10.1137/15M1049580 |
[12] | L. Bisconti, P. M. Mariano, V. Vespri, Existence and regularity for a model of viscous oriented fluid accounting for second-neighbor spin-to-spin interactions, J. Math. Fluid Mech., 20 (2018), 655-682. doi: 10.1007/s00021-017-0339-0 |
[13] | S. Bosia, Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows, Commun. Pure Appl. Anal., 11 (2012), 407-441. |
[14] | B. Climent-Ezquerra, F. Guillen-González, M. Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys. ZAMP, 71 (2006), 984-998. |
[15] | P. Constantin, C. Foias, Navier-Stokes Equations, Chicago: University of Chicago Press, 1988. |
[16] | P. D'Ancona, D. Foschi, S. Sigmund, Atlas of products for wave-Sobolev spaces on $\R^{1+3}$, Trans. Amer. Math. Soc., 364 (2012), 31-63. |
[17] | L. C. Evans, Partial Differential Equations, 2 Eds., Providence: American Mathematical Society, 2010 |
[18] | C. Foias, O. Manley, R. Rosa, et al. Navier-Stokes Equations and Turbulence, Cambridge: Cambridge University Press, 2001. |
[19] | T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704 |
[20] | C. E. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. doi: 10.1090/S0894-0347-1991-1086966-0 |
[21] | O. A. Ladyzhenskaya, Solution in the large of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Comm. Pure Appl. Math., 12 (1959), 427-433. doi: 10.1002/cpa.3160120303 |
[22] | O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, New York: Gordon & Breach, 1969. |
[23] | F. H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503 |
[24] | J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéeaires, Paris: Dunod, Gauthier-Villars, 1969. |
[25] | P. M. Mariano, Multifield theories in mechanics of solids, Adv. Appl. Mech., 38 (2002), 1-93. doi: 10.1016/S0065-2156(02)80102-8 |
[26] | P. M. Mariano, Mechanics of material mutations, Adv. Appl. Mech., 47 (2014), 1-91 doi: 10.1016/B978-0-12-800130-1.00001-1 |
[27] | P. M. Mariano, Trends and challenges in the mechanics of complex materials: A view, Phil. Trans. Royal Soc. A, 374 (2016), 20150341. |
[28] | P. M. Mariano, F. L. Stazi, Strain localization due to crack-microcrack interactions: X-FEM for a multifield approach, Comput. Meth. Appl. Mech. Eng., 193 (2004), 5035-5062. doi: 10.1016/j.cma.2003.08.010 |
[29] | R. Selmi, Global well-posedness and convergence results for 3D-regularized Boussinesq system, Canad. J. Math., 64 (2012), 1415-1435. doi: 10.4153/CJM-2012-013-5 |
[30] | M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Boston: Birkhäuser Boston Inc., 1991. |
[31] | J. Wu, Inviscid limits and regularity estimates for the solutions of the 2-D dissipative quasigeostrophic equations, Indiana Univ. Math. J., 46 (1997), 1113-1124. |
[32] | V. G. Zvyagin, D. A. Vorotnikov, Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, Berlin: Walter de Gruyter & Co., 2008. |