In this paper, we introduced a numerical approach for estimating the solutions of nonlinear Fredholm integral equations in the complex plane. The main problem was transformed into a novel integral equation, which simplified the computation of integrals derived from the discretization technique. The combination of the standard collocation method with periodic quasi-wavelets, as well as their fundamental properties, was utilized to convert the solution of the newly formulated integral equation into a nonlinear complex system of algebraic equations. The convergence properties of the scheme were also presented. Finally, several numerical examples were provided to demonstrate the efficiency and precision of our proposed approach, which also confirmed its superiority over polynomial collocation methods.
Citation: Ahmed Ayad Khudhair, Saeed Sohrabi, Hamid Ranjbar. Numerical solution of nonlinear complex integral equations using quasi- wavelets[J]. AIMS Mathematics, 2024, 9(12): 34387-34405. doi: 10.3934/math.20241638
In this paper, we introduced a numerical approach for estimating the solutions of nonlinear Fredholm integral equations in the complex plane. The main problem was transformed into a novel integral equation, which simplified the computation of integrals derived from the discretization technique. The combination of the standard collocation method with periodic quasi-wavelets, as well as their fundamental properties, was utilized to convert the solution of the newly formulated integral equation into a nonlinear complex system of algebraic equations. The convergence properties of the scheme were also presented. Finally, several numerical examples were provided to demonstrate the efficiency and precision of our proposed approach, which also confirmed its superiority over polynomial collocation methods.
[1] | M. Asif, I. Khan, N. Haider, Q. Al-Mdallal, Legendre multi-wavelets collocation method for numerical solution of linear and nonlinear integral equations, Alex. Eng. J., 59 (2020), 5099–5109. http://dx.doi.org/10.1016/j.aej.2020.09.040 doi: 10.1016/j.aej.2020.09.040 |
[2] | K. Atkinson, A survey of numerical methods for solving nonlinear integral equations, J. Integral Equ. Appl., 4 (1992), 15–47. http://dx.doi.org/10.1216/jiea/1181075664 doi: 10.1216/jiea/1181075664 |
[3] | E. Babolian, A. Shahsavaran, Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets, J. Comput. Appl. Math., 225 (2009), 89–95. http://dx.doi.org/10.1016/j.cam.2008.07.003 doi: 10.1016/j.cam.2008.07.003 |
[4] | H. Beiglo, M. Gachpazan, M. Erfanian, Solving nonlinear Fredholm integral equations with PQWs in complex plane, Int. J. Dyn. Syst. Diffe., 11 (2021), 18–30. http://dx.doi.org/10.1504/IJDSDE.2021.113901 doi: 10.1504/IJDSDE.2021.113901 |
[5] | H. Beiglo, M. Gachpazan, PQWs in complex plane: application to Fredholm integral equations, Appl. Math. Model., 37 (2013), 9077–9085. http://dx.doi.org/10.1016/j.apm.2013.04.018 doi: 10.1016/j.apm.2013.04.018 |
[6] | G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transform and numerical algorithms I, Commun. Pur. Appl. Math., 44 (1991), 141–183. http://dx.doi.org/10.1002/cpa.3160440202 doi: 10.1002/cpa.3160440202 |
[7] | I. Burova, Fredholm integral equation and splines of the fifth order of approximation, WSEAS Transactions on Mathematics, 21 (2022), 260–270. http://dx.doi.org/10.37394/23206.2022.21.31 doi: 10.37394/23206.2022.21.31 |
[8] | H. Chen, Periodic orthonormal quasi-wavelet bases, Chinese Sci. Bull., 41 (1996), 552–554. |
[9] | H. Chen, Complex harmonic splines, periodic quasi-wavelets: theory and applications, Dordrecht: Springer, 2000. http://dx.doi.org/10.1007/978-94-011-4251-9 |
[10] | H. Chen, S. Peng, A quasi-wavelet algorithm for second kind boundary integral equations, Adv. Comput. Math., 11 (1999), 355–375. http://dx.doi.org/10.1023/A:1018992413504 doi: 10.1023/A:1018992413504 |
[11] | H. Chen, S. Peng, Solving integral equations with logarithmic kernel by using periodic quasi-wavelet, J. Comput. Math., 18 (2000), 487–512. |
[12] | A. Hammerstein, Nichtlineare integralgleichungen nebst anwendungen, Acta Math., 54 (1930), 117–176. http://dx.doi.org/10.1007/BF02547519 doi: 10.1007/BF02547519 |
[13] | M. Kamada, K. Toraichi, R. Mori, Periodic spline orthonormal bases, J. Approx. Theory, 55 (1988), 27–34. http://dx.doi.org/10.1016/0021-9045(88)90108-6 doi: 10.1016/0021-9045(88)90108-6 |
[14] | N. Karamollahi, M. Heydari, G. Loghmani, Approximate solution of nonlinear Fredholm integral equations of the second kind using a class of Hermite interpolation polynomials, Math. Comput. Simulat., 187 (2021), 414–432. http://dx.doi.org/10.1016/j.matcom.2021.03.015 doi: 10.1016/j.matcom.2021.03.015 |
[15] | H. Keller, Geometrically isolated nonisolated solutions and their approximation, SIAM J. Numer. Anal., 18 (1981), 822–838. http://dx.doi.org/10.1137/0718056 doi: 10.1137/0718056 |
[16] | S. Kumar, A new collocation-type method for Hammerstein integral equations, Math. Comp., 48 (1987), 585–593. http://dx.doi.org/10.1090/S0025-5718-1987-0878692-4 doi: 10.1090/S0025-5718-1987-0878692-4 |
[17] | M. Lakestani, M. Razzaghi, M. Dehghan, Solution of nonlinear Fredholm-Hammerstein integral equations by using semiorthogonal spline wavelets, Math. Probl. Eng., 1 (2005), 113–121. http://dx.doi.org/10.1155/MPE.2005.113 doi: 10.1155/MPE.2005.113 |
[18] | Y. Mahmoudi, Wavelet Galerkin method for numerical solution of nonlinear integral equation, Appl. Math. Comput., 167 (2005), 1119–1129. http://dx.doi.org/10.1016/j.amc.2004.08.004 doi: 10.1016/j.amc.2004.08.004 |
[19] | K. Maleknejad, H. Derili, The collocation method for Hammerstein equations by Daubechies wavelets, Appl. Math. Comput., 172 (2006), 846–864. http://dx.doi.org/10.1016/j.amc.2005.02.042 doi: 10.1016/j.amc.2005.02.042 |
[20] | K. Maleknejad, M. Hadizadeh, The numerical analysis of Adomian's decomposition method for nonlinear Volterra integral and integro-differential equations, Int. J. Eng. Sci., 8 (1997), 33–48. |
[21] | K. Maleknejad, K. Nedaiasl, Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations, Comput. Math. Appl., 62 (2011), 3292–3303. http://dx.doi.org/10.1016/j.camwa.2011.08.045 doi: 10.1016/j.camwa.2011.08.045 |
[22] | K. Maleknejad, S. Sohrabi, H. Beiglo, PQWs method for Fredholm integral equations with convolution kernel in complex plane, Proceedings of the $4^th$ Iranian Conference on Applied Mathematics, 2010, 1–7. |
[23] | L. Schumaker, Spline functions: basic theory, Cambridge: Cambridge University Press, 2007. http://dx.doi.org/10.1017/CBO9780511618994 |
[24] | Z. Shen, Y. Xu, Degenerate kernel schemes by wavelets for nonlinear integral equations on the real line, Appl. Anal., 59 (1995), 163–184. http://dx.doi.org/10.1080/00036819508840397 doi: 10.1080/00036819508840397 |
[25] | Y. Shi, X. Yang, Z. Zhang, Construction of a new time-space two-grid method and its solution for the generalized Burgers' equation, Appl. Math. Lett., 158 (2024), 109244. http://dx.doi.org/10.1016/j.aml.2024.109244 doi: 10.1016/j.aml.2024.109244 |
[26] | S. Sohrabi, An efficient spectral method for high-order nonlinear integro-differential equations, U.P.B. Sci. Bull., Series A, 74 (2012), 75–88. |
[27] | X. Wang, W. Lin, ID-wavelets method for Hammerstein integral equations, J. Comp. Math., 16 (1998), 499–508. |
[28] | A. Wazwaz, Linear and nonlinear integral equations, Beijing: Higher Education Press and Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-21449-3 |
[29] | X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. http://dx.doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z |
[30] | X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. http://dx.doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7 |