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1. Introduction

Mathematical modeling of various physical problems, such as elasticity, fluid mechanics, and
electromagnetic theory, typically leads to the formulation of different types of integral equations.
Additionally, many boundary and initial value problems can be expressed as integral equations. Among
these integral equations, the Fredholm linear equation and its nonlinear counterparts are frequently
investigated due to their wide applications in signal processing, fluid mechanics, linear forward
modeling, and inverse problems [28].

Our motivation in this paper is to consider the subsequent nonlinear integral equation

u(t) = f (t) +

∫ 2π

0
k(t, s)g(s, u(s))ds, t ∈ [0, 2π], (1.1)
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where u(t) is an unknown complex-valued function to be determined and f , k, and g are given
continuous complex-valued periodic functions. The initial study of the real form of Eq (1.1) dates
back to the 1920s when Hammerstein [12] considered the following boundary value problem:

u′′(x) + f (x, u) = 0, u(a) = 0, u(b) = β,

and transformed it into a nonlinear integral equation. This resulting equation is commonly known as
the Hammerstein integral equation. Equations of this type appear in many applications; for example,
the nonlinear two-point boundary value problem [2]

u′′(t) − exp(u(t)) = 0, t ∈ [0, 1], u(0) = u(1) = 0,

which is evidently of some interest in magnetohydrodynamics and can be reformulated as the following
nonlinear integral equation:

u(t) =

∫ 1

0
k(t, s) exp(u(s))ds, t ∈ [0, 1],

where the kernel

k(t, s) =

−s(1 − t), s ≤ t,

−t(1 − s), s > t,

is the Green’s function for the homogeneous problem u′′(t) = 0, t ∈ [0, 1], u(0) = u(1) = 0.
Equation (1.1) is a particular case of the general form of the nonlinear integral equations

u(t) = f (t) +

∫ b

a
k(t, s, u(s))ds, t ∈ [a, b], (1.2)

which has been initially introduced by Pavel Urysohn. The specific conditions concerning k and f
under which a solution exists for the nonlinear Fredholm integral Eq (1.2) are [28]:

(i) The function f (t) is bounded, | f (t)| < R, in a ≤ t ≤ b.

(ii) The function k(t, s, u(s)) is integrable and bounded where |k(t, s, u(s))| < K, in a ≤ t, s ≤ b.

(iii) The function k(t, s, u(s)) satisfies the Lipschitz condition

|k(t, s, z1) − k(t, s, z2)| < L|z1 − z2|.

Since then, several researchers have published papers that present numerical methods aimed
at approximating real-type Hammerstein integral equations. The numerical treatment of both
linear and nonlinear cases of (1.1) has been explored using various effective methods, such as
projection methods [1, 14, 16], spline collocation [7, 17], Adomian’s decomposition method [20], Sinc
collocation [21], and wavelet-based methods [3, 19, 28]. For example, the generalized Burgers’ (GB)
equation has been solved using a time-space two-grid method [25]. The authors demonstrated that
their proposed method offers several advantages over previous studies on the two-grid method, such
as lower computational cost and simpler mesh selection. In [29], the orthogonal Gauss collocation
method is introduced to approximate the solution of a two-dimensional (2D) fourth-order sub-diffusion
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model. The researchers also analyzed the stability and super convergence properties of the method.
Additionally, a new nonlinear finite-volume scheme, which preserves the discrete maximum principle
(DMP), is used to solve the two-dimensional sub-diffusion equation on distorted meshes [30]. They
showed that the proposed scheme is also applicable to distorted meshes without requiring stringent
constraints. The general characteristic of these classical methods is that they are both efficient
and effective for real-type integral equations. Furthermore, solving complex-type integral equations
is significantly more challenging than solving their real counterparts. Consequently, only a few
researchers have proposed numerical methods aimed at overcoming these difficulties [4, 5, 22].

On the other hand, the use of wavelet-based methods to solve integral equations is of significant
interest. The first work was proposed by G. Beylkin et al. [6], in which the authors applied the Haar
wavelet approach to solve an integral equation. Since then, many researchers have contributed to
solving various types of integral equations using wavelets. Continuing this trend, researchers have
introduced the concept of utilizing periodic quasi-wavelets, which trace their origins back to multi-
resolution analysis and orthogonal periodic spline functions [13]. In theory, B-spline functions have
been employed to generate periodic quasi-wavelets [8, 9, 13], with Han-Lin Chen [8, 9] being the first
to explore integral equations through periodic quasi-wavelets. Furthermore, second-kind Fredholm
integral equations can be accurately and easily solved in the complex plane by leveraging the rigorous
properties of periodic quasi-wavelets. Therefore, the aim of this paper is to utilize periodic quasi-
wavelets based on the collocation method for numerical solution of Eq (1.1). To do this, we start by
converting Eq (1.1) into a new linear integral equation. This transformation simplifies the computation
of integrals derived from the discretization technique and facilitates the process of solving the resulting
system. Next, we approximate the solution of the new integral equation using functions that resemble
the unknown function, which enhances the accuracy of our method. As a result, the accuracy of our
numerical method approaches double precision, indicating that the error tends to zero.

The subsequent sections of the paper are structured in the following manner. A concise overview
of the formulation of periodic quasi-wavelets is provided in Section 2. In Section 3, the standard
collocation method based on periodic quasi-wavelets for solving Hammerstein integral equations is
presented. The convergence rate of the method is studied in Section 4, and some numerical examples
are given in Section 5 to verify the high accuracy and the wide applicability of the periodic quasi-
wavelets method. Finally, some remarks conclude the paper in Section 6.

2. Construction of the periodic quasi-wavelets

The purpose of this section is to provide an overview of the basic formulation of the periodic quasi-
wavelets in terms of B-spline functions [10, 11, 22].

Let

L2
p[0,T ] :=

{
u :

∫ T

0
|u(t)|2dx < ∞, u(t) = u(t + T ), ∀t ∈ R

}
(2.1)

denote the set of all complex-valued periodic functions that are square integrable within the interval
[0,T ] with a period of T where T = hq, in which h is a positive real number and n, q ∈ N so that
q ≥ n + 1. The related inner product over the above space is defined by

〈u, v〉 =
1
T

∫ T

0
u(t)v(t)dt. (2.2)
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Furthermore, assume that hm = T
κm

, where κm = 2mq, (m ∈ Z, m ≥ 0). First, we introduce the periodic
spline functions.

The periodic B-spline function Bn,m
p (t) of degree n with period T is defined by

Bn,m
p (t) = (κm)n

∑
l∈Z

(
sin(lπ/κm)

lπ

)n+1

exp
(
i2πlt

T

)
, t ∈ R, (2.3)

where the related step size is hm. The following aspects are considered by taking into account the main
properties of spline functions (see [9, 23] for details):

(a) Vm ⊂ Vm+1, m ∈ Z,m ≥ 0, where

Vm = span
{
Bn,m

p (t − jhm), j = 0, . . . , κm − 1
}

(2.4)

pertains to the set of periodic spline functions generated by the B-splines Bn,m
p (·).

(b)
⋃

m∈Z,m≥0Vm = L2
p[0,T ], i.e., {Vm} is dense in L2

p[0,T ].

(c)
{
B

n,m
p (t − jhm), j = 0, . . . , κm − 1

}
generates a base forVm.

It is easy to verify that Bn,m
p (t− jhm), j = 0, . . . , κm − 1 forms a basis forVm. However, this basis is not

orthogonal, which prompts us to construct an orthogonal basis for Vm. To achieve this, we consider
the functionsAn,m

v (t) defined as follows:

An,m
v (t) = ηn,m

v

κm−1∑
l=0

exp
( i2πlv
κm

)
Bn,m

p (t − lhm), t ∈ R, (2.5)

where

ηn,m
ν =

{
x0 + 2

q∑
λ=1

xλ cos(λνhm)
}−1/2

, xλ = B2q+1,m
p (λhm). (2.6)

To determine the properties ofAn,m
v (t), we need to calculate its Fourier series. Using Eqs (2.3) and (2.5),

we can express the Fourier expansion ofAn,m
ν (t) as follows:

An,m
ν (t) = ηn,m

ν (κm)n+1
∑
λ∈Z

(
sin(νπ/(κm)
(ν + λκm)π

)n+1

exp
(
i2π(ν + λκm)t

T

)
. (2.7)

This representation leads to the following lemma and theorems:

Lemma 2.1 ( [9]). The set of functions {An,m
ν (t)}κm−1

ν=0 construct an orthonormal basis forVm, i.e.,

〈An,m
ν1
,An,m

ν2
〉 = δν1,ν2 , ν1, ν2 = 0, . . . , κm − 1, (2.8)

where δν1,ν2 is the well-known Kronecker delta defined by

δν1,ν2 =

0, for ν1 , ν2,

1, for ν1 = ν2.
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Proof. By (2.3), we attain 〈
B

n,m
l (·),Bn,m

k (·)
〉

= (κm)−1B2n+1,m
p ((l − k)hm), (2.9)

where Bn,m
l is an extension of the B-spline functions defined in [9]. In this position, using (2.7)

and (2.9), we get

〈
An,m

ν1
(·),An,m

ν2
(·)

〉
=

(
ηn,m
ν1

)2
δν1,ν2

κm−1∑
l=0

exp
(
i2πlν2

κm

)
B2n+1

p (lhm, hm), (2.10)

where B2n+1
p (·, hm) := B2n+1,m

p (·). Then according to properties of B-spline functions, we have [9]

B2n+1
p (ahm, hm) = B2n+1

p (ah, h),

and
B2n+1

p (−ah, h) = B2n+1
p (ah, h) = B2n+1

p (a, 1).

Define

E(n, ν,m) : =

κm−1∑
l=0

exp
( i2πlν
κm

)
B2n+1

p (lhm, hm)

=

n∑
l=0

exp
( i2πνlhm

T

)
B2n+1

p (l, 1) +

n∑
l=1

exp
( i2πν(−l)hm

T

)
B2n+1

p (l, 1)

= B2n+1
p (0, 1) + 2

n∑
l=1

cos
( i2πνlhm

T

)
B2n+1

p (l, 1)

= x0 + 2
n∑

l=1

cos
( i2πνlhm

T

)
xl =

(
ηn,m
ν1

)−2
. (2.11)

Therefore, E(n, ν,m)
(
ηn,m
ν1

)2
= 1, and by Eq (2.10), we have

〈An,m
ν1

(·),An,m
ν2

(·)〉 = δν1,ν2 , for 0 ≤ ν1, ν2 ≤ κm − 1.

�

In the following theorem, we provide an alternative representation of the refinable equation
associated withAn,m

ν (t). This form highlights the fundamental characteristics of this function.

Theorem 2.1. The functionAn,m
ν has the following two-scale representation:

An,m
ν = an,m+1

ν An,m+1
ν + bn,m+1

ν An,m+1
ν+κm

, (2.12)

where the constants an,m+1
ν and bn,m+1

ν are given by

an,m+1
ν =

ηn,m
ν

ηn,m+1
ν

(
cos

νπ

κm+1

)n+1
, (2.13)

bn,m+1
ν =

ηn,m
ν

ηn,m+1
ν+κm

(
sin

νπ

κm+1

)n+1
, (2.14)

ν = 0, . . . , κm − 1, and ηn,m
ν is given as in (2.6).
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Proof. See [9]. �

Now, we introduce functionsDn,m
ν (t), corresponding toAn,m

ν , as

Dn,m
ν (t) := bn,m+1

ν Dn,m+1
ν (t) − an,m+1

ν Dn,m+1
ν+κm

(t), ν = 0, . . . , κm − 1, t ∈ R, (2.15)

and prove that they are the wavelet functions. Initially, we recall the following properties of these
functions:

(i) 〈Dn,m
ν1 ,D

n,m
ν2 〉 = δν1,ν2 , ν1, ν2 = 0, . . . , κm − 1,

(ii) Dn,m
ν ∈ Vm+1, 0 ≤ ν ≤ κm − 1,

(iii) 〈Dn,m
ν1 ,A

n,m
ν2 〉 = 0, 0 ≤ ν1, ν2 ≤ κm − 1.

These properties lead to the following theorem.

Theorem 2.2. The functions {Dn,m
ν (t)}κm−1

ν=0 generate a basis set for Wm, which is orthonormal and
Vm+1 = Vm ⊕Wm, where

Wm = span
{
Dn,m

ν

∣∣∣ ν = 0, . . . , κm − 1
}
. (2.16)

Proof. The proof is given in [9]. �

The functions An,m
ν and Dn,m

ν are commonly referred to as the father and mother quasi-wavelets,
respectively. It is important to mention that using the word “quasi” before the term “wavelet” implies
a distinction between them in the concept of Meyer.

Proposition 2.1. Assume that Pmu(t) =
∑κm−1

l=0 〈u,A
n,m
l 〉A

n,m
l (t). Then, the following statements hold for

any u ∈ L2
p[0,T ]:

(1) ‖Pm‖2 ≤ 1,

(2) limm→∞ ‖u − Pmu‖2 = 0.

Proof. (1) Let Qmu(t) =
∑κm−1

l=0 〈u,D
n,m
l 〉D

n,m
l (t). It follows from (b) and Theorem 2.2 that

u(t) = Pmu(t) +
∑
m′≥m

Qm′u(t).

Hence,

‖u‖2 = 〈u, u〉 = 〈Pmu +
∑
m′≥m

Qm′u, Pmu +
∑
m′≥m

Qm′u〉 = 〈Pmu, Pmu〉 + 〈
∑
m′≥m

Qm′u,
∑
m′≥m

Qm′u〉 ≥ ‖Pmu‖2,

which indicates that ‖Pm‖ ≤ 1.
(2) Fix u and choose any ε > 0. From conditions (a) and (b), since {Vm} is dense in L2

p[0,T ], we can
find an n ∈ N and a function g ∈ Vn so that ‖u− g‖ < ε. In fact, g is automatically inVm for all m ≥ n;
Pnu is the closest function inVn to u, so that

‖u − Pmu‖ ≤ ‖u − g‖ < ε, for all m ≥ n.

�

For the 2-dimensional case, the above methodology can be used to obtain a basis for L2
p([0,T ]2) by

the tensor product.
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3. Discretization of nonlinear integral equations

The aim of this section is to introduce a collocation method based on periodic quasi-wavelets for
solving Eq (1.1). Instead of applying the collocation approach to the original form of Eq (1.1), we use
the method to approximate the solution of an equivalent form of the equation. More precisely, we first
assume

v(t) := g(t, u(t)), t ∈ [0, 2π]. (3.1)

By substituting (3.1) into (1.1), we get

u(t) = f (t) +

∫ 2π

0
k(t, s)v(s)ds, t ∈ [0, 2π], (3.2)

which results that the new unknown function v(t) satisfies the following nonlinear integral equation:

v(t) = g
(
t, f (t) +

∫ 2π

0
k(t, s)v(s)ds

)
, t ∈ [0, 2π]. (3.3)

Now, we use periodic quasi-wavelets constructed on [0, 2π] (provided in Section 2) to approximate the
kernel function, and then get the numerical solutions using the degenerate kernel procedure combined
with the classical collocation method.

Suppose that
{
A

n,m
j

}
are the periodic quasi-wavelets described in Section 2. Then, the kernel

function k(t, s) can be evaluated by a degenerate combination as

km(t, s) =

κm−1∑
i, j=0

αm
i jA

n,m
i (t)An,m

j (s), (3.4)

where αm
i j are provided by

αm
i j =

〈
A

n,m
i (t), 〈k(t, s),An,m

j (s)〉
〉
. (3.5)

Also, we can approximate v(t) in terms of a linear combination of periodic quasi-wavelets as

vm(t) =

κm−1∑
l=0

am
l A

n,m
l (t), t ∈ [0, 2π], (3.6)

where am
l are unknown coefficients that need to be determined based on certain conditions.

Substituting (3.4) and (3.6) into (3.3) and using the orthonormality property of
{
A

n,m
l ; 0 ≤ l ≤ κm − 1

}
,

we find that
κm−1∑
l=0

am
l A

n,m
l (t) = g

t, f (t) +

κm−1∑
i, j=0

am
j α

m
i jA

n,m
i (t)

 , (3.7)

where the coefficients am
l , 0 ≤ l ≤ κm − 1 are evaluated by the κm collocation conditions

κm−1∑
l=0

am
l A

n,m
l (τm

i ) = g

τm
i , f (τm

i ) +

κm−1∑
i, j=0

am
j α

m
i jA

n,m
i (τm

i )

 , 0 ≤ i ≤ κm − 1, (3.8)

where τm
i are distinct points in [0, 2π].
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Equation (3.8) leads to a nonlinear system consisting of κm algebraic equations for am
l , which can

be solved using an appropriate iterative method. Finally, by substituting the approximation vm into
the righthand side of Eq (3.2), we obtain the estimated solution um(t) for our Hammerstein integral
Eq (1.1). This means that the approximate solution um can be resulted by

um(t) := f (t) +

∫ 2π

0
k(t, s)vm(s)ds. (3.9)

4. Convergence analysis

This section is dedicated to derive suitable assumptions in which, under these conditions the
approximation vm converges to an exact solution of (3.3). Our intention is to analyze the convergence
attributes of the suggested numerical method through the application of the ideas discussed in [24,27].

Let us assume that there is some ball B(u∗, δ) = {u ∈ L2
p[0,T ] : ‖u − u∗‖ ≤ δ}, δ > 0, such that

it contains only the solution u∗(t) of Eq (1.1) which is to be determined, that is, the solution u∗ is
geometrically isolated [15]. For convenience of presentation, we define the following operators:

(Ku)(t) :=
∫ 2π

0
k(t, s)u(s)ds, (Kmu)(t) :=

∫ 2π

0
km(t, s)u(s)ds,

T (u)(t) := f (t) + (Ku)(t), Tm(u)(t) := f (t) + (Kmu)(t),
G(u)(t) := g(t, u(t)).

With the above notations, Eqs (1.1), (3.3), and (3.8) can be written more compactly as

u = TG(u), u ∈ L2
p[0,T ], (4.1)

v = GT (v), v ∈ L2
p[0,T ], (4.2)

vm = PmGTm(vm), vm ∈ Vm. (4.3)

Before providing the methodology of the convergence phenomenon, we first make some
assumptions which are usually essential to derive the convergence results:

A1. f ∈ L2
p[0,T ].

A2. The kernel function k ∈ L2
p([0,T ]2), and satisfies

lim
t→t′

∫ 2π

0
|k(t, s) − k(t′, s)|2ds = 0, t′ ∈ [0, 2π].

A3. The function g(t, u) is continuous on [0, 2π] × C and Lipschitz continuous with respect to u, i.e.,
|g(t, u1) − g(t, u2)| ≤ C1|u1 − u2| for some constant C1 > 0, t ∈ [0, 2π], and all u1, u2 ∈ B(u∗, δ).

A4. The partial derivative g(0,1)(t, u) := (∂/∂u)g(t, u) is a continuous function on [0, 2π] with respect to
t and is Lipschitz continuous with respect to u around u∗.

A5. The Fréchet derivative of the operator GT has a regular value of 1 at the point v∗, i.e., the inverse
(I − (GT )′(v∗))−1 exists and is a bounded linear operator.
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A6. v∗ ∈ L2
p[0,T ] is a unique local solution for Eq (4.3).

In the remaining of this part, we attempt to obtain the convergence property of the suggested scheme
step-by-step.
Step 1. In this step, we demonstrate that the convergence rate of um to u∗ is strongly dependent on the
convergence rate of vm to v∗.

Proposition 4.1.
‖u∗ − um‖ ≤ M ‖v∗ − vm‖, (4.4)

where

M =

(∫ 2π

0

∫ 2π

0
|k(t, s)|2dsdt

)1/2

< ∞.

Proof. Given the definitions of u∗ and um, we obtain

u∗(t) = f (t) +

∫ 2π

0
k(t, s)v∗(s)ds, t ∈ [0, 2π],

and

um(t) = f (t) +

∫ 2π

0
k(t, s)vm(s)ds, t ∈ [0, 2π].

With the above equations, we get

u∗(t) − um(t) =

∫ 2π

0
k(t, s)

(
v∗(s) − vm(s)

)
ds, t ∈ [0, 2π].

Therefore, we have

‖u∗(t) − um(t)‖ =

∥∥∥∥∥∥
∫ 2π

0
k(t, s)

(
v∗(s) − vm(s)

)
ds

∥∥∥∥∥∥ = ‖K
(
v∗ − vm

)
‖, t ∈ [0, 2π]. (4.5)

Finally, by using the Cauchy-Schwarz inequality, we obtain

‖K
(
v∗ − vm

)
‖2 =

∫ 2π

0

∣∣∣∣∣∣
∫ 2π

0
k(t, s)

(
v∗ − vm

)
(s)ds

∣∣∣∣∣∣2 dt

≤

∫ 2π

0

(∫ 2π

0
|k(t, s)|2ds

) (∫ 2π

0

∣∣∣(v∗ − vm)(s)
∣∣∣2ds

)
dt

= M2‖v∗ − vm‖
2,

or
‖u∗ − um‖ ≤ M ‖v∗ − vm‖, (4.6)

and the proof is complete. �

The above proposition implies that the rate of convergence of um to u∗ is determined by the rate of
convergence of vm to v∗.
Step 2. In this position, we demonstrate that v∗ converges to v, and we also derive an error bound for
the method presented.
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Lemma 4.1. Suppose that the assumptions A1 to A6 hold. Then, for a sufficiently large m,
I − (PmGTm)′(v∗) is invertible and [I − (PmGTm)′(v∗)]−1 is uniformly bounded, where the projection
operators Pm and Qm are defined as in Proposition 2.1.

Proof. According to assumption A3, the inverse of (I − (GT )′(v∗)) exists and, thus,(
I − (PmGTm)′(v∗)

)(
I − (GT )′(v∗)

)−1
= I +

(
(GT )′(v∗) − (PmGTm)′(v∗)

)(
I − (GT )′(v∗)

)−1
. (4.7)

Since
‖K − Km‖

m→∞
−→ 0, ‖I − Pm‖

m→∞
−→ 0,

we thus deduce that for a sufficiently large m,

‖
(
(GT )′(v∗) − (PmGTm)′(v∗)

)(
I − (GT )′(v∗)

)−1
‖

= ‖
(
(GT )′(v∗) − (PmGT )′(v∗) + (PmGT )′(v∗) − (PmGTm)′(v∗)

)(
I − (GT )′(v∗)

)−1
‖

=
(
‖I − Pm‖.‖(GT )′(v∗)‖ + ‖G′(T v∗).T v∗ − G′(Tmv∗).Tmv∗‖

)
.‖
(
I − (GT )′(v∗)

)−1
‖

≤ C2‖I − Pm‖ + C3‖G
′(T v∗).T v∗ − G′(T v∗).Tmv∗ + G′(T v∗).Tmv∗ − G′(Tmv∗).Tmv∗‖

≤ C4‖I − Pm‖ + C5‖K − Km‖

≤
1
2
.

This implies that for a sufficiently large m, the operator

I +
(
(GT )′(v∗) − (PmGTm)′(v∗)

)(
I − (GT )′(v∗)

)−1

is invertible, and, therefore, for all such m we have(
I +

(
(GT )′(v∗) − (PmGTm)′(v∗)

)(
I − (GT )′(v∗)

)−1
)−1
≤ C6,

for some constant C6. This inequality, together with (4.7), implies that for a sufficiently large m,
I − (PmGTm)′(v∗) is invertible and then

‖
(
I − (PmGTm)′(v∗)

)−1
‖

= ‖
(
I − (GT )′(v∗)

)−1
.
(
I +

(
(GT )′(v∗) − (PmGTm)′(v∗)

)(
I − (GT )′(v∗)

)−1
)−1
‖

≤ C6‖
(
I − (GT )′(v∗)

)−1
‖.

This completes the proof of Lemma 4.1. �

The above lemma allows us to obtain the convergence rate of vm for an exact solution of (4.3).

Theorem 4.1. Let the assumptions of Lemma 4.1 hold. Then, there exists a neighborhood of v∗ so
that for sufficiently large m, there exists a unique approximation vm defined by the unique solution
of the linear algebraic complex systems (4.3) and the periodic quasi-wavelets representations (3.8).
Moreover, we have the estimate

‖v∗ − vm‖ ≤ α‖v∗ − Pmv∗‖ + β‖(K −Km)v∗‖, (4.8)

where α, β are independent of m.
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Proof. Let
B(v∗, δ) = {v ∈ L2

p[0,T ] : ‖v − v∗‖ ≤ δ},

be a neighborhood of v∗ where δ < 1/
(
C1C6‖

(
I − (GT )′(v∗)

)−1
‖.‖k‖L2

p[0,T ]
)
. Assuming

Um = v∗ +
(
I − (PmGTm)′(v∗)

)−1
(
PmGTmv − GT v∗ − (PmGTm)′(v∗)(v − v∗)

)
,

and using the Lipschitz continuity of g(0,1), it is apparent that Um acts as a contraction mapping over
the ball B(z∗, δ), provided that m is sufficiently large [24]. This together with the contraction mapping
theorem implies that for any u in the ball B(v∗, δ), the operator equation u = Umu has a unique solution
um for a sufficiently large m. Hence, Eq (4.3) has a local unique solution.

In order to obtain the estimate (4.8), using v∗ = GT (v∗) and vm = PmGTm(vm), we get

v∗ − vm = v∗ − Pmv∗ + PmGT (v∗) − PmGTm(v∗) + PmGTm(v∗) − PmGTm(vm)

=
(
I − (PmGTm)′(v∗)

)−1
(
v∗ − Pmv∗ + PmGT (v∗) − PmGTm(v∗) + ωm

)
,

where ωm = PmGTm(v∗) − PmGTm(vm) − (PmGTm)′(v∗)(v∗ − vm). Therefore, it follows from
Proposition 2.1, assumption A3, and Lemma 4.1 that

‖v∗ − vm‖ ≤ C7‖v∗ − Pmv∗ + PmGT (v∗) − PmGTm(v∗) + ωm‖

≤ C7

(
‖v∗ − Pmv∗‖ + ‖PmGT (v∗) − PmGTm(v∗)‖ + ‖ωm‖

)
≤ C7‖v∗ − Pmv∗‖ + C8‖T (v∗) − Tm(v∗)‖ + C7‖ωm‖

= C7‖v∗ − Pmv∗‖ + C9‖(K −Km)(v∗)‖ + C7‖ωm‖.

To complete the proof, we need to show that ‖ωm‖ = O(‖v∗−vm‖). For this purpose, by Proposition 2.1,
we have

‖ωm‖ = ‖PmGTm(v∗) − PmGTm(vm) − (PmGTm)′(v∗)(v∗ − vm)‖
≤ ‖GTm(v∗) − GTm(vm) − (GTm)′(v∗)(v∗ − vm)‖

=
∥∥∥[(GTm)′(v∗ + α∆v) − (GTm)′(v∗)

]
(v∗ − vm)

∥∥∥ , 0 < α < 1, ∆v := v∗ − vm

≤ C10 ‖Tm(v∗) − Tm(vm)‖ · ‖∆v‖

= C10 ‖Km(v∗) − Km(vm)‖ · ‖∆v‖

= C10 ‖Km∆v‖ · ‖∆v‖

≤ C10 ‖Km‖L2
p([0,T ])2 · ‖∆v‖2

= O(‖v∗ − vm‖) (m→ ∞).

�

Corollary 4.1. Suppose that v∗ ∈ H s[0, 2π], and r is the Holder index of the functions An,m,Dn,m

defined in Section 2. Then, with the L2-norm, we have

‖v∗ − vm‖ = O
(
2−ms), (4.9)

where s < r.
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Proof. By the definitions of Pm and Qm in Proposition 2.1, we have

‖v∗ − Pmv∗‖2 =

∥∥∥∥∥∥ ∑
m′≥m

Qm′v∗
∥∥∥∥∥∥2

=

∥∥∥∥∥∥ ∑
m′≥m

κm′−1∑
l=0

〈v∗,Dn,m′

l 〉D
n,m′

l v∗
∥∥∥∥∥∥2

=
∑
m′≥m

κm′−1∑
l=0

∣∣∣〈v∗,Dn,m′

l 〉
∣∣∣2

≤
∑
m′≥m

κm′−1∑
l=0

(
C112−m′(s+1/2))2

=
∑
m′≥m

C122m′ .2−2m′s−m′ =
∑
m′≥m

C122−2m′s

< C132−2ms.

Therefore, ‖v∗ − Pmv∗‖ ≤ C142−ms. In a similar manner, we have ‖(K − Km)v∗‖ ≤ C152−ms. Then, the
proof is completed by appealing Theorem 4.1. �

At the conclusion of this section, it is important to highlight that all results obtained earlier are still
applicable within the context of the following norm:

‖ f ‖C = max
0≤t≤2π

| f (t)|, ∀ f ∈ C[0, 2π],

and one can easily show that
‖u∗ − um‖C ≤ M ‖v∗ − vm‖C,

where

M = max
0≤t≤2π

∫ 2π

0
|k(t, s)|ds.

5. Numerical examples

In this section, we numerically solve some nonlinear integral equations by our new method in which
the basis functions

{A
n,m
i }, i = 0, . . . , κm − 1

are taken as periodic quasi-wavelets where n denotes the degree of quasi-wavelets. We choose τm
i as

collocation points where they belong to the following uniform grid

I =
{
τm

i : τm
i =

2π
κm − 1

i, i = 0, . . . , κm − 1
}
.

To demonstrate the efficiency and accuracy of the proposed method, we compute the difference
between the numerical and exact solution of the underlying problem at the following equidistant points

ti =
2π
9

i, i = 0, . . . , 9,

and outline absolute errors (AEs) by employing established results. Moreover, we display the
numerical and exact solutions for each example, and graph the AEs in a logarithmic scale for different
values of m and n to validate the theoretical findings. It is important to mention that there are no
limitations on selecting the value of n, which can be any positive integer. However, selecting the value
of m requires practical expertise and should be carried out in a manner that facilitates the solution of
the resulting system of nonlinear algebraic equations as effortlessly as possible. The implementation of
all numerical computations was carried out using Mathematica software on a common PC computer.
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Example 5.1. As the first example, take into account the subsequent nonlinear complex integral
equation

u(t) = f (t) + i
∫ 2π

0

sin(s)
3√
e1+sin(t)

u2(s)ds, (5.1)

where f (t) is determined in such a way that it yields the exact solution u(t) = 5 cos(t) + 2 sin(5t) +

i
(
5 sin(t) + 2 cos(5t)

)
. We solve this integral equation by our method with the periodic quasi-wavelets

of order n = 2 and list the AEs at points ti, i = 0, . . . , 9 for m = 1, 2 in Table 1. Figure 1 illustrates the
errors detailed in Table 1 using a logarithmic scale. Table 1 as well as Figure 1 indicates that the AEs
at points ti decay rapidly as m increases. In order to demonstrate the high accuracy of the proposed
method, the comparison between the analytic and approximate solutions for m = 1, 2 are shown in
Figure 2. Figure 2 confirms that the proposed scheme gives almost the same solution as the analytic
method.

Table 1. The AEs at points ti, i = 0, . . . , 9 for m = 1, 2 in Example 5.1.

ti m = 1 m = 2
t0 = 0 3.32029 × 10−01 4.96507 × 10−15

t1 = 2π
9 2.67993 × 10−01 4.31133 × 10−15

t2 = 4π
9 2.39117 × 10−01 4.09430 × 10−15

...
...

...

t7 = 14π
9 4.61043 × 10−01 3.55271 × 10−15

t8 = 16π
9 4.11366 × 10−01 4.09430 × 10−15

t9 = 2π 3.32029 × 10−01 4.57353 × 10−15

Figure 1. The logarithmic error associated with the proposed method in Example 5.1 with
m = 1, 2.
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Figure 2. Parametric plot of the approximate and exact solutions for m = 1 (left) and m = 2
(right) in Example 5.1.

Example 5.2. As the second example, consider the following complex integral equation:

u(t) =
67
40

cos3(t) + i sin3(t) +
8

5πi

∫ 2π

0
cos3(t) sin3(s)u3(s)ds. (5.2)

It is straightforward to confirm that the analytical solution for this integral equation is u(t) = cos3(t) +

i sin3(t). Similar to the previous example, we solve the above equation with the periodic quasi-wavelets
of order n = 2, obtain the AEs at points ti, i = 0, . . . , 9 for m = 1, 2, and report them in Table 2. The
experimental results indicate that better approximation is expected by choosing m = 2, which we get

‖u∗ − um‖ = 4.58300 × 10−17.

Table 2. The AEs at points ti, i = 0, . . . , 9 for m = 1, 2 in Example 5.2.

ti m = 1 m = 2
t0 = 0 1.90067 × 10−02 4.58300 × 10−17

t1 = 2π
9 8.54413 × 10−03 3.87800 × 10−17

t2 = 4π
9 9.95214 × 10−05 2.25200 × 10−17

...
...

...

t7 = 14π
9 9.95214 × 10−05 2.25200 × 10−17

t8 = 16π
9 8.54413 × 10−03 3.87800 × 10−17

t9 = 2π 1.90067 × 10−02 4.58300 × 10−17

To demonstrate the exceptional accuracy of the proposed method, we present a logarithmic scale
representation of the resulting errors for m = 1, 2 in Figure 3. We also compare the analytic and
approximation solutions for m = 1, 2 in Figure 4. Figure 4 again shows the high accuracy of the
proposed scheme and verifies theoretical results.
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Figure 3. The logarithmic error associated with the proposed method for Example 5.2 with
m = 1, 2.
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Figure 4. Parametric plot of the approximate and exact solutions for m = 1 (left) and m = 2
(right) in Example 5.2.

Example 5.3. As the final example, consider the following nonlinear integral equation:

u(t) =
(
1 −

3π
4

)
sin(t) +

∫ 2π

0
cos(t − s)u3(s)ds. (5.3)

One can readily verify that the analytical solution to this integral equation is u(t) = sin(t). In a manner
consistent with the earlier examples, we calculate the AEs at the specified points ti, i = 0, . . . , 9 for
m = 1, 2, and present the results in Table 3. In addition, Figure 5 provides a graphical depiction of the
results contained in Table 3. The numerical results consistently reveal that the error of the proposed
approach decreases as m increases, which supports the theoretical findings.
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Table 3. The AEs at points ti, i = 0, . . . , 9 for m = 1, 2 in Example 5.3.

ti m = 1 m = 2
t0 = 0 3.42082 × 10−03 9.66200 × 10−16

t1 = 2π
9 1.02350 × 10−04 9.74700 × 10−16

t2 = 4π
9 1.56809 × 10−04 9.96400 × 10−16

...
...

...

t7 = 14π
9 1.56809 × 10−04 1.00900 × 10−15

t8 = 16π
9 1.02350 × 10−04 9.84000 × 10−16

t9 = 2π 3.42082 × 10−03 9.68000 × 10−16

Figure 5. The logarithmic error associated with the proposed method for Example 5.3 with
m = 1, 2.

This problem has been addressed through the application of the Legendre wavelets method in [18]
with M = 3, k = 3, 4, 5 and the Legendre polynomials method given in [26] with N = 4, 6, 8. The
comparison of periodic quasi-wavelets using n = 2, m = 1, 2, 3 with the methods of [18] and [26] are
presented in Table 4, which confirms that the periodic quasi-wavelets method in Section 3 gives almost
the same solution of the analytic method.

Table 4. Comparison between the periodic quasi-wavelets, the Legendre wavelets, and the
Legendre polynomials methods for Example 5.3.

m periodic quasi-wavelets k Legendre wavelets N Legendre polynomials
1 3.42 × 10−03 3 2.43 × 10−02 4 5.27 × 10−01

2 1.00 × 10−15 4 3.77 × 10−03 6 1.04 × 10−02

3 0 5 4.96 × 10−04 8 7.01 × 10−04
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6. Conclusions

A collocation method that employs periodic quasi-wavelets has been introduced to effectively
approximate solutions to complex nonlinear Fredholm-Hammerstein integral equations. A thorough
examination of the method’s convergence, along with numerical results and the uniform error norm,
has been conducted. The findings have demonstrated strong agreement with analytical solutions.
Notably, adjustable parameters n and m are offered by periodic quasi-wavelets, facilitating more
accurate numerical solutions for integral equations. This approach is also easily extendable to general
nonlinear Volterra and Fredholm integral equations in the complex plane.
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