Research article

Attractor of the nonclassical diffusion equation with memory on time- dependent space

  • Received: 21 February 2023 Revised: 27 March 2023 Accepted: 31 March 2023 Published: 21 April 2023
  • MSC : 35B25, 35B40, 35B41, 35K57, 45K05

  • We consider the dynamic behavior of solutions for a nonclassical diffusion equation with memory

    $ u_{t}-\varepsilon(t) \triangle u_{t}- \triangle u-\int_{0}^{\infty}\kappa(s)\triangle u(t-s)ds+f(u) = g(x) $

    on time-dependent space for which the norm of the space depends on the time $ t $ explicitly, and the nonlinear term satisfies the critical growth condition. First, based on the classical Faedo-Galerkin method, we obtain the well-posedness of the solution for the equation. Then, by using the contractive function method and establishing some delicate estimates along the trajectory of the solutions on the time-dependent space, we prove the existence of the time-dependent global attractor for the problem. Due to very general assumptions on memory kernel $ \kappa $ and the effect of time-dependent coefficient $ \varepsilon(t) $, our result will include and generalize the existing results of such equations with constant coefficients. It is worth noting that the nonlinear term cannot be treated by the common decomposition techniques, and this paper overcomes the difficulty by dealing with it as a whole.

    Citation: Jing Wang, Qiaozhen Ma, Wenxue Zhou. Attractor of the nonclassical diffusion equation with memory on time- dependent space[J]. AIMS Mathematics, 2023, 8(6): 14820-14841. doi: 10.3934/math.2023757

    Related Papers:

  • We consider the dynamic behavior of solutions for a nonclassical diffusion equation with memory

    $ u_{t}-\varepsilon(t) \triangle u_{t}- \triangle u-\int_{0}^{\infty}\kappa(s)\triangle u(t-s)ds+f(u) = g(x) $

    on time-dependent space for which the norm of the space depends on the time $ t $ explicitly, and the nonlinear term satisfies the critical growth condition. First, based on the classical Faedo-Galerkin method, we obtain the well-posedness of the solution for the equation. Then, by using the contractive function method and establishing some delicate estimates along the trajectory of the solutions on the time-dependent space, we prove the existence of the time-dependent global attractor for the problem. Due to very general assumptions on memory kernel $ \kappa $ and the effect of time-dependent coefficient $ \varepsilon(t) $, our result will include and generalize the existing results of such equations with constant coefficients. It is worth noting that the nonlinear term cannot be treated by the common decomposition techniques, and this paper overcomes the difficulty by dealing with it as a whole.



    加载中


    [1] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265–296.
    [2] C. T. Anh, D. T. P. Thanh, N. D. Toan, Global attractors for nonclassical diffusion equations with hereditary memory and a new class of nonlinearities, Ann. Pol. Math., 119 (2017), 1–21. http://dx.doi.org/10.4064/ap4015-2-2017 doi: 10.4064/ap4015-2-2017
    [3] C. T. Anh, D. T. P. Thanh, N. D. Toan, Averaging of nonclassical diffusion equations with memory and singularly oscillating forces, Z. Anal. Anwend., 37 (2018), 299–314. http://dx.doi.org/10.4171/ZAA/1615 doi: 10.4171/ZAA/1615
    [4] C. T. Anh, N. D. Toan, Nonclassical diffusion equations on $\mathbb{R}^{N}$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20–26. http://dx.org/10.1016/j.aml.2014.06.008 doi: 10.1016/j.aml.2014.06.008
    [5] M. S. Aktar, M. A. Akbar, M. S. Osman, Spatio-temporal dynamic solitary wave solutions and diffusion effects to the nonlinear diffusive predator-prey system and the diffusion-reaction equations, Chaos Soliton. Fract., 160 (2022), 112212. https://dx.doi.org/10.1016/j.chaos.2022.112212 doi: 10.1016/j.chaos.2022.112212
    [6] T. Caraballo, A. M. Marquez-Durán, F. Rivero, Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1817–1833. http://dx.doi.org/10.3934/dcdsb.2017108 doi: 10.3934/dcdsb.2017108
    [7] T. Chen, Z. Chen, Y. Tang, Finite dimensionality of global attractors for a non-classical reaction-diffusion equation with memory, Appl. Math. Lett., 25 (2012), 357–362. http://dx.doi.org/10.1016/j.aml.2011.09.014 doi: 10.1016/j.aml.2011.09.014
    [8] M. Conti, F. Dell'Oro, V. Pata, Nonclassical diffusion equations with memory lacking instantaneous damping, Commun. Pure Appl. Anal., 19 (2020), 2035–2050. http://dx.doi.org/10.3934/cpaa.2020090 doi: 10.3934/cpaa.2020090
    [9] M. Conti, E. M. Marchini, V. Pata, Nonclassical diffusion with memory, Math. Method. Appl. Sci., 38 (2014), 948–958. http://dx.doi.org/10.1002/mma.3120 doi: 10.1002/mma.3120
    [10] M. Conti, E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1–21. http://dx.doi.org/10.1007/s00245-015-9290-8 doi: 10.1007/s00245-015-9290-8
    [11] M. Conti, V. Pata, R. Temam, Attractors for the process on time-dependent spaces, Applications to wave equation, J. Differ. Equations, 255 (2013), 1254–1277. http://dx.doi.org/10.1016/j.jde.2013.05.013 doi: 10.1016/j.jde.2013.05.013
    [12] M. Conti, V. Pata, On the time-dependent Cattaneo law in space dimension one, Appl. Math. Comput., 259 (2015), 32–44. http://dx.doi.org/10.1016/j.amc.2015.02.039 doi: 10.1016/j.amc.2015.02.039
    [13] V. V. Chepyzhov, V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251–273. http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2008.08.007 doi: 10.1016/j.jstrokecerebrovasdis.2008.08.007
    [14] V. V. Chepyzhov, M. I. Vishik, Attractor for equations of mathematical physics, Providence: American Mathematical Society, 2002.
    [15] V. V. Chepyzhov, E. Mainini, V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory, Asymptot. Anal., 50 (2006), 269–291. http://dx.doi.org/10.1007/3-7908-1701-5-10 doi: 10.1007/3-7908-1701-5-10
    [16] T. Ding, Y. Liu, Time-dependent global attractor for the nonclassical diffusion equations, Appl. Anal., 94 (2015), 1439–1449. http://dx.doi.org/10.1080/00036811.2014.933475 doi: 10.1080/00036811.2014.933475
    [17] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297–308. http://dx.doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609
    [18] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. G$\acute{o}$mez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. http://dx.doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
    [19] S. Gatti, A. Miranville, V. Pata, S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117–1138. http://dx.doi.org/10.1216/RMJ-2008-38-4-1117 doi: 10.1216/RMJ-2008-38-4-1117
    [20] M. Grasselli, V. Pata, Uniform attractors of nonautonomous systems with memory, Evolution Equations, Semigroups and Functional Analysis, 50 (2002), 155–178. https://dx.doi.org/10.1007/978-3-0348-8221-7_9 doi: 10.1007/978-3-0348-8221-7_9
    [21] J. Jäckle, Heat conduction and relaxation in liquids of high viscosity, Physica A, 162 (1990), 377–404. http://dx.doi.org/10.1016/0378-4371(90)90424-Q doi: 10.1016/0378-4371(90)90424-Q
    [22] H. F. Ismael, T. A. Sulaiman, H. R. Nabi, W. Mahmoud, M. S. Osman, Geometrical patterns of time variable Kadomtsev-Petviashvili (Ⅰ) equation that models dynamics of waves in thin films with high surface tension, Nonlinear Dyn., 111 (2023), 9457–9466. http://dx.doi.org/10.1007/s11071-023-08319-8 doi: 10.1007/s11071-023-08319-8
    [23] T. Liu, Q. Ma, Time-dependent asymptotic behavior of the solution for plate equations with linear memory, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4595–4616. http://dx.doi.org/10.3934/dcds-b.2018178 doi: 10.3934/dcds-b.2018178
    [24] T. Liu, Q. Ma, Time-dependent attractor for plate equations on $R^n$, J. Math. Anal. Appl., 479 (2019), 315–332. http://dx.doi.org/10.1016/j.jmaa.2019.06.028 doi: 10.1016/j.jmaa.2019.06.028
    [25] J. L. Lions, Quelques m$\acute{e}$thodes de r$\acute{e}$solutions des probl$\grave{e}$ms aus limites nonlin$\acute{e}$aries, Paris: Dunod, 1969.
    [26] J. Liu, M. S. Osman, Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water, Chinese J. Phys., 77 (2022), 1618–1624. http://dx.doi.org/10.1016/j.cjph.2021.10.026 doi: 10.1016/j.cjph.2021.10.026
    [27] F. Meng, M. Yang, C. Zhong, Attractors for wave equations with nonlinear damping on time-dependent, Discrete Contin. Dyn. Syst. Ser. B, 21 (2015), 205–225. http://dx.doi.org/10.3934/dcds-b.2016.21.205 doi: 10.3934/dcds-b.2016.21.205
    [28] F. Meng, C. Liu, Necessary and sufficient condition for the existence of time-dependent global attractor and application, J. Math. Phys., 58 (2017), 032702. http://dx.doi.org/10.1063/1.4978329 doi: 10.1063/1.4978329
    [29] Q. Ma, J. Wang, T. Liu, Time-dependent asymptotic behavior of the solution for wave equations with linear memory, Comput. Math. Appl., 76 (2018), 1372–1387. http://dx.doi.org/10.1016/j.camwa.2018.06.031 doi: 10.1016/j.camwa.2018.06.031
    [30] F. Meng, R. Wang, C. Zhao, Attractor for a model of extensible beam with damping on time-dependent space, Topol. Methods Nonlinear Anal., 57 (2021), 365–393. http://dx.doi.org/10.12775/TMNA.2020.037 doi: 10.12775/TMNA.2020.037
    [31] Q. Ma, X. Wang, L. Xu, Existence and regularity of time-dependent global attractors for the nonclassical reaction-diffusion equations with lower forcing term, Bound. Value Probl., 2016 (2016), 10. http://dx.doi.org/10.1186/s13661-015-0513-3 doi: 10.1186/s13661-015-0513-3
    [32] S. Malik, H. Almusawa, S. Kumar, A. M. Wazwaz, M. S. Osman, A (2+1)-dimensional Kadomtsev-Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions, Results Phys., 23 (2021), 104043. http://dx.doi.org/10.1016/j.rinp.2021.104043 doi: 10.1016/j.rinp.2021.104043
    [33] K. S. Nisar, O. A. Ilhan, S. T. Abdulazeez, J. Manafian, S. A. Mohammed, M. S. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method, Results Phys., 21 (2021), 103769. http://dx.doi.org/10.1016/j.rinp.2020.103769 doi: 10.1016/j.rinp.2020.103769
    [34] C. Park, R. I. Nuruddeen, K. K. Ali, L. Muhammad, M. S. Osman, D. Baleanu, Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations, Adv. Differ. Equ., 2020 (2020), 627. http://dx.doi.org/10.1186/s13662-020-03087-w doi: 10.1186/s13662-020-03087-w
    [35] F. D. Plinio, G. Duan, R. Temam, Time dependent attractor for the oscillon equation, Discrete Cont. Dyn. A, 29 (2011), 141–167. http://dx.doi.org/10.3934/dcds.2011.29.141 doi: 10.3934/dcds.2011.29.141
    [36] V. Pata, M. Conti, Asymptotic structure of the attractor for process on time-dependent spaces, Nonlinear Anal. Real, 19 (2014), 1–10. http://dx.doi.org/10.1016/j.nonrwa.2014.02.002 doi: 10.1016/j.nonrwa.2014.02.002
    [37] Y. Qin, B. Yang, Existence and regularity of time-dependent pullback attractors for the non-autonomous nonclassical diffusion equations, P. Roy. Soc. Edinb. A, 152 (2022), 1533–1550. http://dx.doi.org/10.1017/prm.2021.65 doi: 10.1017/prm.2021.65
    [38] J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge: Cambridge University Press, 2011.
    [39] Y. Sun, Z. Yang, Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel, Nonlinear Anal. Real, 64 (2022), 1–26. http://dx.doi.org/10.1016/j.nonrwa.2021.103432 doi: 10.1016/j.nonrwa.2021.103432
    [40] N. D. Toan, Optimal control of nonclassical diffusion equations with memory, Acta Appl. Math., 169 (2020), 533–558. http://dx.doi.org/10.1007/s10440-020-00310-4 doi: 10.1007/s10440-020-00310-4
    [41] X. Wang, C. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory, Nonlinear Anal., 71 (2009), 5733–5746. http://dx.doi.org/10.1016/j.na.2009.05.001 doi: 10.1016/j.na.2009.05.001
    [42] X. Wang, L. Yang, C. Zhong, Attractors for the nonclassical diffusion equations with fading memory, J. Math. Anal. Appl., 362 (2010), 327–337. http://dx.doi.org/10.1016/j.jmaa.2009.09.029 doi: 10.1016/j.jmaa.2009.09.029
    [43] J. Wang, Q. Ma, Asymptotic dynamic of the nonclassical diffusion equation with time-dependent coefficient, J. Appl. Anal. Comput., 11 (2021), 445–463. http://dx.doi.org/10.11948/20200055 doi: 10.11948/20200055
    [44] Z. Xie, J. Zhang, Y. Xie, Asymptotic behavior of quasi-linear evolution equations on time-dependent product spaces, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 2316–2334. http://dx.doi.org/10.3934/dcdsb.2022171 doi: 10.3934/dcdsb.2022171
    [45] J. Yuan, S. Zhang, Y. Xie, J. Zhang, Attractors for a class of perturbed nonclassical diffusion equations with memory, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 4995–5007. http://dx.doi.org/10.3934/dcdsb.2021261 doi: 10.3934/dcdsb.2021261
    [46] K. Zhu, Y. Xie, F. Zhou, Attractors for the nonclassical reaction-diffusion equations on time-dependent spaces, Bound. Value Probl., 2020 (2020), 95. http://dx.doi.org/10.1186/s13661-020-01392-7 doi: 10.1186/s13661-020-01392-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1155) PDF downloads(46) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog