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Abstract: We consider the dynamic behavior of solutions for a nonclassical diffusion equation with
memory

ut − ε(t)△ut − △u −
∫ ∞

0
κ(s)△u(t − s)ds + f (u) = g(x)

on time-dependent space for which the norm of the space depends on the time t explicitly, and the
nonlinear term satisfies the critical growth condition. First, based on the classical Faedo-Galerkin
method, we obtain the well-posedness of the solution for the equation. Then, by using the contractive
function method and establishing some delicate estimates along the trajectory of the solutions on the
time-dependent space, we prove the existence of the time-dependent global attractor for the problem.
Due to very general assumptions on memory kernel κ and the effect of time-dependent coefficient ε(t),
our result will include and generalize the existing results of such equations with constant coefficients.
It is worth noting that the nonlinear term cannot be treated by the common decomposition techniques,
and this paper overcomes the difficulty by dealing with it as a whole.
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1. Introduction

In this paper, we are concerned with the following nonclassical diffusion equation with memory:
ut − ε(t)△ut − △u −

∫ ∞
0
κ(s)△u(t − s)ds + f (u) = g(x), x ∈ Ω, t ≥ τ,

u|∂Ω = 0, t ≥ τ,
u(x, t) = uτ(x), x ∈ Ω, t ≤ τ, τ ∈ R,

(1.1)
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on time-dependent space, where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain. The model (1.1)
describes diffusion in solids of substances which behave as viscous fluid, where unknown function
u = u(x, t) : Ω × [τ,∞) → R represents the density of the fluid, τ ∈ R is an initial time, uτ(x, r) :
Ω× (−∞, τ] is the initial value function that characterizes the past time, g = g(·) ∈ H−1(Ω) represents a
forcing term, κ is a nonnegative non-increasing function describing memory effects in the material, the
term −△u concerns linear diffusion processes, the term −ε(t)△ut is used to model the effect of viscosity
of the diffusing substance, and ε(t) can be interpreted as the coefficient of viscosity. In addition,
ε(t) ∈ C1(R) is a decreasing bounded function satisfying

lim
t→+∞

ε(t) = 0, (1.2)

and there is a constant L > 0 such that

sup
t∈R

(|ε(t)| + |ε′(t)|) ≤ L. (1.3)

The nonlinear function f ∈ C1(R) with f (0) = 0 satisfies the critical growth condition

| f ′(s)| ≤ C(1 + |s|
4

N−2 ), ∀ s ∈ R, N ≥ 3, (1.4)

and the dissipation condition

lim inf
|s|→∞

f (s)
s

> −λ1, ∀ s ∈ R, (1.5)

where C is a positive constant and λ1 is the first eigenvalue of −△ with Dirichlet boundary condition in
H1

0(Ω).
The memory kernel κ is a nonnegative summable function satisfying

∫ ∞
0
κ(s)ds = 1 and having the

following form:

κ(s) =
∫ ∞

s
µ(r)dr, (1.6)

where µ ∈ L1(R+) is a decreasing piecewise absolutely continuous function and is allowed to have
infinitely many discontinuity points. We assume

κ(s) ≤ Θµ(s), ∀ s ∈ R+, Θ > 0. (1.7)

From [19], the above inequality (1.7) is equivalent to the following:

µ(r + s) ≤ Me−δrµ(s), (1.8)

where M ≥ 1, δ > 0 and r ≥ 0 are constants. As is well known, the nonclassical diffusion equation is an
important mathematical model used to describe several physical phenomena, such as heat conduction,
solid mechanics and non-Newtonian flows. In 1980, Aifantis [1] came up with a quite general approach
for establishing such partial differential equation models describing different physical phenomena
related to diffusion in solids. Among them, the author proposed a pseudo-parabolic equation

ϱt = D∇2ϱ + D̄∇2ϱt
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under a phenomenon, which is called the nonclassical diffusion equation, where D̄ is a non-negative
function. However, the research was focused on the nonclassical diffusion equation with constant
coefficient early on. In 1990, the diffusion equation with memory was proposed by Jäckle ( [21]) in the
study of heat conduction and relaxation of high viscosity liquids. The convolution term represents the
influence of past history on its future evolution and describes more accurately the diffusive process
in certain materials, such as high viscosity liquids at low temperatures and polymers. Hence, it
is necessary and scientifically significant to study the nonclassical diffusion equation with the time-
dependent coefficient (i.e., variable coefficient) and memory.

Provided that the function ε(t) is a positive constant in Eq (1.1), the long-time behavior of solutions
for this kind of problem has been widely studied, and a lot of excellent results have been obtained when
κ(s) = 0 or κ(s) , 0. Meanwhile, the research of the nonclassical diffusion equation with memory (i.e.,
κ(s) , 0) is relatively less. In 2009, Wang and Zhong [41] first considered the nonclassical diffusion
equation with memory and applied the condition of memory kernel

µ′(s) + δµ(s) ≤ 0, δ, s ≥ 0, µ ∈ C1(R+) ∩ L1(R+), (1.9)

introduced in [17]. They obtained the existence and regularity of a uniform attractor for the
problem (1.1) with critical growth restriction in H1

0(Ω) × L2
µ(R

+,H1
0(Ω)) (Ω ∈ RN , N ≥ 3). Since then,

the condition (1.9) has been used for this type of problem with memory; see [2–4, 6–10, 40, 42, 45].
Particularly, Wang et al. [42] proved the existence of a global attractor for the problem (1.1) with
critical growth restriction in H1

0(Ω) × L2
µ(R

+,H1
0(Ω)) (Ω ∈ RN , N ≥ 3). In [3, 6], the authors

obtained the existences of the uniform attractor and pullback attractors, respectively. The global
attractors were obtained for nonclassical diffusion equations with memory and singularly oscillating
external forces in [4, 7]. In [8], Conti et al. proved the existence of the global attractor for the
problem (1.1) lacking instantaneous damping. In 2014, Conti et al. [9] applied the memory kernel
condition (1.7) rather than (1.9) and proved the existence of a global attractor for the problem (1.1) in
H1

0(Ω)× L2
µ(R

+,H1
0(Ω)) (Ω ∈ R3). In 2016, the authors of [10] also got the existence of the exponential

attractor for the above problem. Later, the authors of [2] obtained the existence of the global attractor
for the nonclassical diffusion equations with memory and a new class of nonlinearity. It is worth
noting that (1.9) is weaker than (1.8), which shows (1.7) is more general in [2,9,10]. It is also obvious
that (1.8) with M = 1 boils down to (1.9). On the contrary, when (1.8) holds for some M > 1, then
it is far more general that (1.9). In fact, any compactly supported decreasing function µ satisfies the
condition (1.8) for some M > 1, but it does not satisfy (1.9).

When ε(t) is a decreasing function and satisfies (1.2)–(1.3), the equation

ut − ε(t)△ut − △u + λu + f (u) = g(x) (1.10)

has been investigated by some authors. The characteristic of this kind of problem is that the phase
space depends on time, that is, its norm depends on time t explicitly. So, the problem (1.10) is still
non-autonomous although the forcing term g is independent of t. If not, the time-dependent coefficient
leads to the loss of the dissipation of the natural energy as t → ±∞, which affects the existence of
an absorbing set in the general sense. Thereby, in order to overcome the above difficulty, the relevant
definitions and theories of the time-dependent global attractor first were introduced in [35]. Then,
Conti et al. [11] improved the work in [35] and proved the existence of the time-dependent global
attractor for a wave equation. Moreover, Meng et al. [27, 28] obtained a new method (i.e., contractive
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function method) to verify compactness and also got a necessary and sufficient condition for the
existence of time-dependent attractors. In recent years, some researchers have extensively studied this
type of problem with time-dependent coefficient. In [12,29,36], the authors obtained the corresponding
results for wave equations. Liu and Ma [23,24] proved the corresponding results of the time-dependent
global attractor for plate equations on the bounded and unbounded domain, respectively. In [30, 39],
the authors investigated the beam equation and a nonlinear viscoelastic equation with time-dependent
memory kernel on time-dependent spaces, respectively. In addition, it should be mentioned that there is
a class of studies on variable coefficient equations devoted to studying different solutions or dynamical
behavior using numerical simulation methods, which makes the problem more intuitive by graphs. For
example, the authors [22, 26, 32, 33] considered, respectively, multiple soliton and M-lump solutions
of the variable coefficients Kadomtsev-Petviashvili equation, nonlinear dynamics of different non-
autonomous wave structures solutions for a 3D variable-coefficient generalized shallow water wave
equation, the stability of the corresponding dynamical system and invariant solutions for a (2+1)-
dimensional Kadomtsev-Petviashvili equation with competing dispersion effect and novel multiple
soliton solutions of (3+1)-dimensional generalized variable-coefficient B-type Kadomtsev-Petviashvili
(VC B-type KP) equation. In [5,18], the authors studied the soliton solutions of the nonlinear diffusive
predator-prey system and the diffusion-reaction equations and the Tikhonov regularization method and
the inverse source problem for time fractional heat equation, respectively. In [34], various solitons
and solutions of the fractional fifth-order Korteweg-de Vries equations were realized. These articles
mentioned above, further explained the solutions and dynamics of systems by depicting graphs. In
short, it can be seen that the study of variable coefficient partial differential equations has attracted
much attention in various fields.

Compared to the studies of the aforementioned other equations, the relevant results of the
nonclassical diffusion equations on time-dependent spaces are not abundant. When the forcing term
g ∈ L2(Ω) (Ω ⊂ R3) and the nonlinearity f (u) satisfies | f ′(u)| ≤ C(1+ |u|), Ding and Liu [16] recognized
the existence of a time-dependent global attractor for (1.10) by using the decomposition technique.
Using the same method, Ma et al. [31] proved the existence, regularity and asymptotic structure of the
time-dependent global attractor for (1.10), when the forcing term g ∈ H−1(Ω) (Ω ⊂ RN ,N ≥ 3)
and the nonlinear term f (u) satisfies the critical exponential growth condition. By applying the
contractive function method, the authors of [43,46] recognized almost simultaneously the existence of
the time-dependent global attractor for (1.10), when the nonlinearity f (u) satisfies a polynomial growth
condition of arbitrary order. However, the authors also proved the regularity and asymptotic structure of
the time-dependent global attractor in [43]. In [37], Qin and Yang proved the existence and regularity of
time-dependent pullback attractors for non-autonomous nonclassical diffusion equations with nonlocal
diffusion when the nonlinear term satisfies critical exponential growth and the external force term
g ∈ L2

loc(R,H
−1(Ω)). Recently, Xie et al. [44] recognized the existence and regularity of time-dependent

pullback global attractors for the problem (1.10) with memory and lacking instantaneous damping by
using the contractive process and new analytical technique, when the nonlinearity satisfies a polynomial
growth condition of arbitrary order and the external force term g ∈ L2(Ω).

However, we find that the studies of nonclassical diffusion equations with memory are extremely
rare on time-dependent spaces. In this paper, based on the idea of [10, 27, 31] and using the theory
framework provided in [27], we discuss the existence of the time-dependent global attractor in Ut for
problem (1.1). When the nonlinearity and the external force term satisfy the same condition, our result
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will generalize the result obtained in [42] because of the generality of memory kernel condition and
the time-dependent nature of ε.

In order to obtain the corresponding results for problem (1.1), we need to overcome two difficulties.
On the one hand, the weaker memory kernel condition (1.7) makes the energy functional obtained
unavailable. On the other hand, due to the influence of the nonlinear term with critical growth condition
and the term −ε(t)△ut, it is not easy to get relative compactness of the solution in L2([τ,T ],H1

0(Ω))
when we prove the asymptotic compactness by the contractive function method. To deal with above
problems, we construct a new energy functional by introducing a new function related to the memory
kernel, and obtain the existence of the time-dependent absorbing set. Then, when applying the
contractive function method, we treat the nonlinear term as a whole, which will yield the asymptotic
compactness for the corresponding process of the problem (1.1).

The paper is organized as follows. In Section 2, we introduce notations of function spaces involved,
some abstract results for the time-dependent global attractor and important lemmas. In Section 3,
we will prove the well-posedness of the solution. Based on the existence of the solution, we obtain
the process generated by the weak solution. In Section 4, we investigate the existence of the time-
dependent global attractor. In Section 5, conclusions and discussion are given.

2. Preliminaries

As in [17], we introduce a new variable which shows the past history of Eq (1.1), that is,

ηt(x, s) = η(x, t, s) =
∫ s

0
u(x, t − r)dr, s ≥ 0, (2.1)

and
ηt

t(x, s) = u(x, t) − ηt
s(x, s), s ≥ 0, (2.2)

where ηt =
∂
∂tη, ηs =

∂
∂sη.

Therefore, according to (1.6), (2.1) and (2.2), the problem (1.1) can be transformed into the
following system: {

ut − ε(t)△ut − △u −
∫ ∞

0
µ(s)△ηt(s)ds + f (u) = g,

ηt
t = −η

t
s + u,

(2.3)

with the corresponding initial conditions
u(x, t) = 0, x ∈ ∂Ω, t ≥ τ,
ηt(x, s) = 0, (x, s) ∈ ∂Ω × R+, t ≥ τ,
u(x, τ) = uτ(x), x ∈ Ω, τ ∈ R,
η(x, τ, s) = ητ(x, s) =

∫ s

0
uτ(x, τ − r)dr, (x, s) ∈ Ω × R+, τ ∈ R.

(2.4)

First, we give some spaces and the corresponding norms used in the paper. Usually, let ∥·∥Lp(Ω) be the
norm of Lp(Ω) (p ≥ 1). In particularly, let ⟨·, ·⟩ and ∥ · ∥ be the scalar product and norm of H = L2(Ω),
respectively. The Laplacian A = −△ with Dirichlet boundary conditions is a positive operator on H
with domain H2(Ω) ∩ H1

0(Ω). Then, we consider the family of Hilbert spaces Hs = D(As/2), ∀s ∈ R,
with the standard inner products and norms, respectively,

⟨·, ·⟩s = ⟨·, ·⟩D(As/2) = ⟨As/2·, As/2·⟩, ∥ · ∥s = ∥As/2 · ∥.
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Especially, H−1 = H−1(Ω), H0 = H, H1 = H1
0(Ω), H2 = H2(Ω) ∩ H1

0(Ω).
Therefore, we define the spaceHt with the time-dependent norm

∥u∥2
Ht
= ∥u∥2 + ε(t)∥u∥21.

According to the definition of memory kernel, we introduce the Hilbert (history) space

M1 = L2
µ(R

+; H1) = {ηt : R+ → H1 :
∫ ∞

0
µ(s)∥ηt(s)∥1ds < ∞}

with the corresponding inner product and norm

⟨ηt, ξt⟩µ,1 = ⟨η
t, ξt⟩M1 =

∫ ∞

0
µ(s)⟨ηt(s), ξt(s)⟩1ds,

∥ηt∥2µ,1 = ∥η
t∥2
M1 =

∫ ∞

0
µ(s)∥ηt(s)∥21ds.

Now, combining the above spaces, we have the time-dependent space

Ut = Ht ×M
1

endowed with the norm
∥z∥2Ut

= ∥u∥2 + ε(t)∥u∥21 + ∥η
t∥2µ,1.

Note that the dual space of X is denoted as X∗. As a convenience, we choose C as a positive constant
depending on the subscript that may be different from line to line or in the same line throughout the
paper.

Second, we recall some notations, some abstract results and standard conclusions in order to obtain
compactness; see [11,13,20,25,27]. For every t ∈ R, let Xt be a family of normed spaces, and we
introduce the R−ball of Xt:

BXt(R) = {u ∈ Xt : ∥u∥2Xt
≤ R}.

Definition 2.1. [11] Let {Xt}t∈R be a family of normed spaces. A process is a two-parameter family of
mappings {U(t, τ) : Xτ → Xt, t ≥ τ ∈ R} with properties

(i) U(τ, τ) = Id is the identity on Xτ, τ ∈ R;
(ii) U(t, s)U(s, τ) = U(t, τ), ∀ t ≥ s ≥ τ.

Definition 2.2. [11] A family D = {Dt}t∈R of bounded sets Dt ⊂ Xt is called uniformly bounded if there
exists a constant R > 0 such that Dt ⊂ BXt(R), ∀ t ∈ R.
Definition 2.3. [11] A time-dependent absorbing set for the process {U(t, τ)}t≥τ is a uniformly bounded
family B = {Bt}t∈R with the following property: For every R > 0 there exists a t0 such that

U(t, τ)BXτ(R) ⊂ Bt, for all τ ≤ t − t0.

Definition 2.4. [11] The time-dependent global attractor for {U(t, τ)}t≥τ is the smallest family A =
{At}t∈R such that

(i) each At is compact in Xt;
(ii) A is pullback attracting, i.e., it is uniformly bounded, and the limit

AIMS Mathematics Volume 8, Issue 6, 14820–14841.



14826

lim
τ→−∞

distXt(U(t, τ)Dτ, At) = 0

holds for every uniformly bounded family D = {Dt}t∈R and every fixed t ∈ R.
Definition 2.5. [11] We say A = {At}t∈R is invariant if

U(t, τ)Aτ = At, ∀ t ≥ τ.

Definition 2.6. [27] We say that a process {U(t, τ)}t≥τ in a family of normed spaces {Xt}t∈R is pullback
asymptotically compact if and only if for any fixed t ∈ R, bounded sequence {xn}

∞
n=1 ⊂ Xτn and any

{τn}
∞
n=1 ⊂ R

−t with τn → −∞ as n → ∞, the sequence {U(t, τn)xn}
∞
n=1 has a convergent subsequence,

where R−t = {τ : τ ∈ R, τ ≤ t}.
Definition 2.7. [27] Let {Xt}t∈R be a family of Banach spaces and C = {Ct}t∈R be a family of uniformly
bounded subsets of {Xt}t∈R. We call a function ψt

τ(·, ·) defined on Xt × Xt a contractive function on
Cτ × Cτ if for any fixed t ∈ R and any sequence {xn}

∞
n=1 ⊂ Cτ, there is a subsequence {xnk}

∞
n=1 ⊂ {xn}

∞
n=1

such that
lim
k→∞

lim
l→∞

ψt
τ(xnk , xnl) = 0.

Theorem 2.8. [27] Let {U(t, τ)}t≥τ be a process {Xt}t∈R and have a pullback absorbing family B =
{Bt}t∈R. Moreover, assume that for any ϵ > 0 there exist T (ϵ) ≤ t, ψt

T ∈ C(BT ) such that

∥U(t,T )x − U(t,T )y∥Xt ≤ ϵ + ψ
t
T (x, y), ∀x, y ∈ BT ,

for any fixed t ∈ R. Then, {U(t, τ)}t≥τ is pullback asymptotically compact.
Theorem 2.9. [27] Let {U(t, τ)}t≥τ be a process in a family of Banach spaces {Xt}t∈R. Then, U(·, ·) has
a time-dependent global attractorA = {At}t∈R satisfying At =

⋂
s≤t

⋃
τ≤s

U(t, τ)Bτ if and only if

(i) {U(t, τ)}t≥τ has a pullback absorbing family B = {Bt}t∈R;
(ii) {U(t, τ)}t≥τ is pullback asymptotically compact.

Lemma 2.10. [13,20] Assume that the memory function κ satisfies (1.6)–(1.8), and then for any T > τ,
ηt ∈ C([τ,T ], L2

µ(R
+; H1)) such that

−⟨ηt
s, η

t⟩µ,1 = −
1
2

∫ ∞

0
µ(s)

d
ds
∥∇ηt(s)∥2ds

=

[
−

1
2
µ(s)∥∇ηt(s)∥2

]∞
0
+

1
2

∫ ∞

0
µ′(s)∥∇ηt(s)∥2ds

≤0.

(2.5)

Lemma 2.11. [25] (Aubin-Lions Lemma) Assume that X, B and Y are three Banach spaces with X ↪→↪→

B and B ↪→ Y. Let fn be bounded in Lp([0,T ], B) (1 ≤ p < ∞). Suppose fn satisfies
(i) fn is bounded in Lp([0,T ], X);
(ii) ∂ fn

∂t is bounded in Lp([0,T ],Y).
Then, fn is relatively compact in Lp([0,T ], B).
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3. Well-posedness

Next, we give the definition of a weak solution and prove well-posedness of the weak solution for
the problem (2.3)–(2.4) by using the Faedo-Galerkin method from [14, 38].
Definition 3.1. The function z = (u, ηt) = (u(x, t), ηt(x, s)) defined in Ω × [τ,T ] is said to be a weak
solution for the problem (2.3)–(2.4) with the initial data zτ ∈ BUτ

(R0) ⊂ Uτ, −∞ < τ < T < +∞ if z
satisfies

(i) z ∈ C([τ,T ],Ut), (x, t) ∈ Ω × [τ,T ];
(ii) for any θ = (v, ξt) ∈ Ht × L2

µ(R
+; H1), the equality

⟨ut, v⟩ + ε(t)⟨∇ut,∇v⟩ + ⟨∇u,∇v⟩ + ⟨ηt, v⟩µ,1 + ⟨ f (u), v⟩ = ⟨g, v⟩

and
⟨ηt

t, ξ
t⟩µ,1 = −⟨η

t
s, ξ

t⟩µ,1 + ⟨u, ξt⟩µ,1

hold for a.e. [τ,T ].
Theorem 3.2. Assume that (1.2)–(1.8) hold and g ∈ H−1(Ω), and then for any initial data zτ = (uτ, ητ) ∈
BUτ

(R0) ⊂ Uτ and any τ ∈ R, there exists a unique solution z for the problem (2.3)–(2.4) such that
z = (u, ηt) ∈ C([τ,T ],Ut) for any fixed T > τ. Furthermore, the solution depends on the initial data
continuously in Ut.
Proof. Assume that ωk is the eigenfunction of A = −△ with Dirichlet boundary value in H1, and then
{ωk}

∞
k=1 is a standard orthogonal basis of H and is also an orthogonal basis in H1. The corresponding

eigenvalues are denoted by 0 < λ1 ≤ λ2 ≤ · · · ≤ λ j ≤ · · · , λ j → ∞ with Aωk = λkωk, ∀k ∈ N. Our
proof will be finished through the following four steps.
⋆ Faedo-Galerkin scheme.

Given an integer m, we denote by Pm the projection on the subspace span{ω1, · · · , ωm} in H1
0(Ω)

and Qm the projection on the subspace span{e1, · · · , em} ⊂ L2
µ(R

+,H1) in L2
µ(R

+,H1). For every fixed
m, we look for function um(t) = Pmu = Σm

k=1ak
m(t)ωk and ηt,m(s) = Qmη

t = Σm
k=1bk

m(t)ek(s) satisfying the
following system:

⟨um
t , ωk⟩ + ⟨ε(t)Aum

t , ωk⟩ + ⟨Aum, ωk⟩ + ⟨η
t,m, ωk⟩µ,1 = ⟨g, ωk⟩ − ⟨ f (um), ωk⟩,

⟨ηt,m
t , ek⟩µ,1 = −⟨η

t,m
s , ek⟩µ,1 + ⟨um, ek⟩µ,1,

zm
τ = ⟨Pmuτ,Qmη

τ⟩.

(3.1)

Applying the divergence theorem to the term ⟨
∫ ∞

0
∆ηt,mds, ωk⟩, we obtain a system of ordinary

differential equations in the variables ak
m(t) and bk

m(t) of the form d
dt a

j
m + λ jε(t) d

dt a
j
m + λ ja

j
m + Σ

m
k=1bk

m⟨ek, ω j⟩µ,1 = ⟨g, ω j⟩ − ⟨ f (um), ω j⟩,
d
dt b

j
m = Σ

m
k=1ak

m⟨ωk, e j⟩µ,1 − Σ
m
k=1bk

m⟨e
′
k, e j⟩µ,1,

with initial conditions

a j
m(τ) = ⟨uτ, ω j⟩, b j

m(τ) = ⟨ητ, e j⟩µ,1, j, k = 0, 2 · · · ,m,

which satisfy
Σm

k=1ak
m(τ)ω j → uτ inHt,
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Σm
k=1bk

m(τ)e j → ητ inM1.

Thereby, there exists a continuous solution of the problem (2.3)–(2.4) on an interval [τ,T ] by the
standard existence theory for ordinary differential equations. Then, we will prove the convergence of
zm(t) = (um, ηt,m).
⋆ Energy estimates.

Multiplying the first and the second equation of (3.1) by ak
m and bk

m respectively and summing from 1
to m about k, we have

d
dt

(∥um∥2 + ε(t)∥um∥21 + ∥η
t,m∥2µ,1) + (2 − ε′(t))∥um∥21

= − 2⟨ηt,m, ηt,m
s ⟩µ,1 − 2⟨ f (um), um⟩ + 2⟨g, um⟩.

(3.2)

It follows from (1.5) and Poincaré’s inequality that there exist c > 0 and ν > 0 such that

⟨ f (um), um⟩ ≥ −
1
2

(1 − ν)∥um∥21 − c. (3.3)

According to (2.5), Hölder’s inequality and Young’s inequality, we have

⟨g, um⟩ ≤
1
ν
∥g∥2−1 +

ν

4
∥um∥21, (3.4)

⟨ηt,m, ηt,m
s ⟩µ,1 ≥ 0. (3.5)

By (3.2)–(3.5) and the decreasing property of ε(t), we get

d
dt

(∥um∥2 + ε(t)∥um∥21 + ∥η
t,m∥2µ,1) +

ν

2
∥um∥21 ≤

2
ν
∥g∥2−1 + 2c. (3.6)

Integrating from τ to t at the sides of (3.6), we obtain

∥zm∥2Ut
+
ν

2

∫ t

τ

∥um(s)∥21ds ≤ R, (3.7)

where
R = ∥zm

τ ∥
2
Uτ
+ (t − τ)(

2
ν
∥g∥2−1 + 2c).

Therefore, we deduce from (3.7) that for any fixed T > t,

{um}∞m is bounded in L∞([τ,T ],Ht)) ∩ L2([τ,T ],H1), (3.8)

{ηt,m}∞m is bounded in L∞([τ,T ], L2
µ(R

+,H1)). (3.9)

Combining (1.2), (3.7) and the embedding inequality (c1 is embedding constant), we arrive at∫ T

τ

∫
Ω

| f (um)|
2N

N+2 dxdt ≤ CN,c1

∫ T

τ

∥um(s)∥
2N

N−2
1 ds +CN,(T−τ),|Ω|

≤ CN,c1,ε(T ),NR
N

N−2 (T − τ) +CN,(T−τ),|Ω|.

(3.10)
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So, we infer from (3.10) that

{ f (um)}∞m=1 is bounded in L
2N

N+2 ([τ,T ], L
2N

N+2 (Ω)). (3.11)

Next, we verify the uniform estimate for um
t . Multiplying the first equation of (3.1) by ∂tak

m and
summing from 1 to m yields

d
dt

E(t) = −⟨ηt,m, um
t ⟩µ,1 − ∥u

m
t ∥

2 − ε(t)∥um
t ∥

2
1, (3.12)

where
E(t) =

1
2
∥um∥21 + ⟨F(um), 1⟩ − ⟨g, um⟩.

Applying (1.4), (1.5) and embedding inequality, we have

⟨F(um), 1⟩ ≥ −
1
2

(1 − ν)∥um∥21 − c, (3.13)

|⟨F(um), 1⟩| ≤ C(∥um∥2 + ∥um∥
2N

N−2

L
2N

N−2 (Ω)
)

≤ C(∥um∥2 + c1∥um∥
2N

N−2
1 ).

(3.14)

Thereby, due to (3.4), (3.13) and (3.14),

E(t) ≥
ν

4
∥um∥21 −

1
ν
∥g∥2−1 − c, (3.15)

E(t) ≤ (
1
2
+
ν

4
)∥um∥21 +C∥um∥2 +Cc1∥um∥

2N
N−2
1 +

1
ν
∥g∥2−1. (3.16)

Moreover,

|⟨ηt,m, um
t ⟩µ,1| ≤

κ(0)
2ε(t)

∥ηt,m∥2µ,1 +
ε(t)
2
∥um

t ∥
2
1. (3.17)

Hence, it follows from (3.7), (3.12) and (3.17) that

d
dt

E(t) +
1
2
∥um

t ∥
2 +

ε(t)
2
∥um

t ∥
2
1 ≤

Rκ(0)
2ε(t)

≤
Rκ(0)
2ε(T )

(3.18)

for t ∈ [τ,T ]. Integrating from s to t at the sides of (3.18) and combining with (3.7) yield

E(t) +
1
2

∫ t

s
(∥um

t (r)∥2 + ε(r)∥um
t (r)∥21)dr

≤E(s) +
Rκ(0)
2ε(T )

(t − s)

≤
2 + ν
4ε(T )

R +CR +
Cc1

ε(T )
N

N−2

R
N

N−2 +
1
ν
∥g∥2−1 +

Rκ(0)
2ε(T )

(t − s)

(3.19)

for any s ∈ (τ,T ]. By (3.15) and (3.19), we arrive at

ν

4
∥um∥21 +

1
2

∫ T

τ

(∥um
t (r)∥2 + ε(r)∥um

t (r)∥21)dr ≤ ρ1 (3.20)
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for fixed T > t and s→ τ, where

ρ1 = (
2 + ν
4ε(T )

+C)R +
Cc1

ε(T )
N

N−2

R
N

N−2 + +
Rκ(0)
2ε(T )

(T − τ) +
2
ν
∥g∥2−1 + c.

So, (3.20) implies
{um

t }
∞
m=1 is bounded in L2([τ,T ],Ht). (3.21)

⋆ Existence of solutions.
Step 1. Combining (3.8), (3.9) and (3.21), we find that there are u ∈ L∞([τ,T ],Ht) ∩ L2([τ,T ],H1),

ηt ∈ L∞([τ,T ], L2
µ(R

+,H1)), χ ∈ L
2N

N+2 ([τ,T ], L
2N

N+2 (Ω)), ut ∈ L2([τ,T ],Ht) and a subsequence of {um}∞m=1
(still denoted as {um}∞m=1) such that

um → u weak-star in L∞([τ,T ],Ht)), (3.22)

um → u weakly in L2([τ,T ],H1), (3.23)

ηt,m → ηt weakly in L∞([τ,T ],M1), (3.24)

f (um)→ χ weakly in L
2N

N+2 ([τ,T ], L
2N

N+2 (Ω)), (3.25)

um
t → ut weakly in L2([τ,T ],Ht). (3.26)

Applying (3.7), (3.20) and Lemma 2.11, we can know that there exists a subsequence of {um}∞m=1
(still denoted as {um}∞m=1) such that

um → u in L2([τ,T ], L2(Ω)),

which shows
um → u, a.e. in Ω × [τ,T ]. (3.27)

From (3.27) and the continuity of f , we get

f (um)→ f (u), a.e. in Ω × [τ,T ],

which combines with Lebesgue term by term integral theorem and the uniqueness of the limit, and we
get χ = f (u).

Next, we have
um

t − un
t − ε(t)△(um

t − un
t ) − △(um − un)

=

∫ ∞

0
µ(s)△(ηt,m(s) − ηt,n(s))ds − ( f (um) − f (un)).

(3.28)

Multiplying Eq (3.28) by um − un and integrating on Ω, we get

d
dt

(
∥um − un∥2 + ε(t)∥um − un∥21 + ∥η

t,m − ηt,n∥2µ,1

)
+ (2 − ε′(t))∥um − un∥21

= − 2⟨ηt,m − ηt,n, ηt,m
s − η

t,n
s ⟩ − ⟨ f (um) − f (un), 2(um − un)⟩.

(3.29)
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It follows from (1.4), (2.5), (3.20) and the monotonicity of ε(t) that

d
dt

(
∥um − un∥2 + ε(t)∥um − un∥21 + ∥η

t,m − ηt,n∥2µ,1

)
≤C(1 + ∥um∥

4
N−2
1 + ∥un∥

4
N−2
1 )∥um − un∥21

≤Cρ1,ν,N
L + 1
ε(T )

(
∥um − un∥2 + ε(t)∥um − un∥21 + ∥η

t,m − ηt,n∥2µ,1

) (3.30)

for any t ∈ [τ,T ]. Using Gronwall’s lemma yields

∥zm − zn∥2Ut
≤ eCρ1 ,ν,N,ε(T ),L(t−τ)∥zm(τ) − zn(τ)∥2Uτ

, (3.31)

which implies
{zm}∞m=1 is a Cauchy sequence in C([τ,T ],Ut).

From the uniqueness of the limit, we know that

zm → z uniformly in C([τ,T ],Ut), for all T > τ.

Therefore, we have the following conclusion:

z ∈ C([τ,T ],Ut). (3.32)

Thus, when m→ ∞, zm(τ)→ zτ in Ut.
Step 2. Choose a test function θ(t) = (v, ξt) = (ΣN̄

k=1ak
m(t)ωk,Σ

N̄
k=1bk

m(t)ek) ∈ C([τ,T ],Ut) for fixed N̄.
For m ≥ N̄, multiplying the first and the second equation of (3.1) by ak

m and bk
m respectively, summing

from 1 to N̄ and integrating from τ to T , we get
∫ T

τ
[⟨um

t , v⟩ + ε(t)⟨∇um
t ,∇v⟩]dt +

∫ T

τ
⟨∇um,∇v⟩dt +

∫ T

τ
⟨ηt,m, v⟩µ,1dt

+
∫ T

τ
⟨ f (um), v⟩dt =

∫ T

τ
⟨g, v⟩dt,∫ T

τ
⟨ηt,m

t , ξt⟩µ,1dt = −
∫ T

τ
⟨ηt,m

s , ξt⟩µ,1dt +
∫ T

τ
⟨um, ξt⟩µ,1dt.

(3.33)

By (3.22)–(3.26), (3.33), we have
∫ T

τ
[⟨ut, v⟩ + ε(t)⟨∇ut,∇v⟩]dt +

∫ T

τ
⟨∇u,∇v⟩dt +

∫ T

τ
⟨ηt, v⟩µ,1dt

+
∫ T

τ
⟨ f (u), v⟩dt =

∫ T

τ
⟨g, v⟩dt,∫ T

τ
⟨ηt

t, ξ
t⟩µ,1dt = −

∫ T

τ
⟨ηt

s, ξ
t⟩µ,1dt +

∫ T

τ
⟨u, ξt⟩µ,1dt.

(3.34)

Owing to the arbitrariness of T , for a.e. [τ,T ],

⟨ut, v⟩ + ε(t)⟨∇ut,∇v⟩ + ⟨∇u,∇v⟩ + ⟨ηt, v⟩µ,1 + ⟨ f (u), v⟩ = ⟨g, v⟩, (3.35)

⟨ηt
t, ξ

t⟩µ,1 = −⟨η
t
s, ξ

t⟩µ,1 + ⟨u, ξt⟩µ,1. (3.36)
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Step 3. We now verify z(τ) = zτ. Indeed, it is obvious that z(τ) is meaningful according to z ∈
C([τ,T ],Ut). Choose the function θ(t) ∈ C1([τ,T ],Ut) with (v(T ), ξT ) = (0, 0), and then

−
∫ T

τ
[⟨u, vt⟩ + ε(t)⟨∇ut,∇v⟩]dt +

∫ T

τ
⟨∇u,∇v⟩dt +

∫ T

τ
⟨ηt, v⟩µ,1dt

+
∫ T

τ
⟨ f (u), v⟩dt =

∫ T

τ
⟨g, v⟩dt + ⟨u(τ), v(τ)⟩,

−
∫ T

τ
⟨ηt, ξt

t⟩µ,1dt = −
∫ T

τ
⟨ηt

s, ξ
t⟩µ,1dt +

∫ T

τ
⟨u, ξt⟩µ,1dt + ⟨η(τ), ξ(τ)⟩µ,1,

(3.37)

by (3.34). From (3.33), we can have
−
∫ T

τ
[⟨um, vt⟩ − ε(t)⟨∇um

t ,∇v⟩]dt +
∫ T

τ
⟨∇um,∇v⟩dt +

∫ T

τ
⟨ηt,m, v⟩µ,1dt

+
∫ T

τ
⟨ f (um), v⟩dt =

∫ T

τ
⟨g, v⟩dt + ⟨ητ, ξ(τ)⟩,

−
∫ T

τ
⟨ηt,m, ξt

t⟩µ,1dt = −
∫ T

τ
⟨ηt,m

s , ξt⟩µ,1dt +
∫ T

τ
⟨um, ξt⟩µ,1dt + ⟨ηm(τ), ξ(τ)⟩.

(3.38)

Because of zm(τ)→ zτ (m→ ∞), it follows from (3.38) that
−
∫ T

τ
[⟨u, vt⟩ + ε(t)⟨∇ut,∇v⟩]dt +

∫ T

τ
⟨∇u,∇v⟩dt +

∫ T

τ
⟨ηt, v⟩µ,1dt

+
∫ T

τ
⟨ f (u), v⟩dt =

∫ T

τ
⟨g, v⟩dt + ⟨uτ, v(τ)⟩,

−
∫ T

τ
⟨ηt, ξt

t⟩µ,1dt = −
∫ T

τ
⟨ηt

s, ξ
t⟩µ,1dt +

∫ T

τ
⟨u, ξt⟩µ,1dt + ⟨ητ, ξτ⟩µ,1.

(3.39)

Combining (3.37), (3.39) and the arbitrariness of θ(τ) = (v(τ), ξ(τ)) yields

z(τ) = zτ. (3.40)

Hence, the existence of the weak solution is obtained by (3.32), (3.35), (3.36) and (3.40).
⋆ Uniqueness and continuity of solutions.

Assume that zi = (ui, ηt,i) (i = 1, 2) are two solutions of the problem (2.3)–(2.4) with the initial
data zi

τ = (ui
τ, η

τ,i), respectively. For convenience, define ū = u1 − u2, η̄t = ηt,1 − ηt,2, and then
z̄(t) = z1(t) − z2(t) = (ū, η̄t) satisfies the following equation:{

ūt − ε(t)△ūt − ∆ū −
∫ ∞

0
µ(s)△η̄t(s)ds + f (u1) − f (u2) = 0,

η̄t
t = −η̄

t
s + ū,

with initial data
z̄(x, τ) = z̄τ = z1

τ − z2
τ.

Repeating the proof of (3.31) yields

∥z̄(t)∥2Ut
≤ eCρ1 ,ν,N,ε(T ),L(t−τ)∥z̄τ∥2Uτ

. (3.41)

Thereby, (3.41) implies the uniqueness of the solution as well as the property of continuous dependence
of the solution on initial data. □

According to Theorem 3.2, we can define a continuous process {U(t, τ)}t≥τ generated by the solution
of the problem (2.3)–(2.4), where the mapping

U(t, τ) : Uτ → Ut, t ≥ τ ∈ R,

and U(t, τ)zτ = z(t), zτ ∈ Uτ.
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4. Time-dependent global attractor

At first, we consider the existence of time-dependent absorbing sets for the solution process
{U(t, τ)}t≥τ in Ut.
Lemma 4.1. Assume that (1.2), (1.3), (1.5)–(1.8) hold, g ∈ H−1(Ω), and zτ = (uτ, ητ) ∈ BUτ

(R0) ⊂ Uτ,
and then there exists R1 > 0 such that B = {Bt}t∈R = {BUt(R1)}t∈R is a time-dependent absorbing set
in Ut for the process {U(t, τ)}t≥τ corresponding to the problem (2.3)–(2.4).
Proof. Multiplying the first equation of (2.3) by u and repeating the estimate of Theorem 3.2, we
conclude that

d
dt

E1(t) + (1 − ε′(t))∥u∥21 +
ν

2
∥u∥21 ≤

2
ν
∥g∥2−1 + 2c, (4.1)

where
E1(t) = ∥u∥2 + ε(t)∥u∥21 + ∥η

t∥2µ,1.

According to (1.2), (1.3), (4.1) and Poincaré’s inequality, we get

d
dt

E1(t) +
ε(t)
L
∥u∥21 +

ν

4
∥u∥21 +

νλ1

4
∥u∥2 ≤

2
ν
∥g∥2−1 + 2c. (4.2)

To reconstruct E1(t), we introduce a new function

Ψ1(t) =
∫ ∞

0
κ(s)∥ηt(s)∥21ds (4.3)

by using the idea of [15]. Due to (1.7), we have

Ψ1(t) ≤ Θ∥ηt∥2µ,1 ≤ ΘE1(t). (4.4)

In addition, taking the derivative with respect to t at the sides of (4.3) and combining (1.6) and (1.7),
we find that

d
dt
Ψ1(t) = − ∥ηt∥2µ,1 + 2

∫ ∞

0
κ(s)⟨∇ηt(s),∇u(s)⟩ds

≤ −
1
2
∥ηt∥2µ,1 + 2Θ2κ(0)∥u∥21.

(4.5)

Therefore, for fixed ν > 0, we define the function

Φ1(t) = E1(t) +
ν

8Θ2κ(0)
Ψ1(t). (4.6)

Combining (4.2), (4.5) and (4.6), we have

d
dt
Φ1(t) +

ε(t)
L
∥u∥21 +

νλ1

4
∥u∥2 +

ν

16Θ2κ(0)
∥ηt∥2µ,1 ≤

2
ν
∥g∥2−1 + 2c.

Choose σ1 = min{ 1
2L ,

νλ1
8L ,

ν
32Θ2κ(0) } > 0, and then

d
dt
Φ1(t) + 2σ1E1(t) ≤

2
ν
∥g∥2−1 + 2c. (4.7)
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For small enough ν, we have
E1(t) ≤ Φ1(t) ≤ 2E1(t). (4.8)

It follows from (4.7) and (4.8) that

d
dt
Φ1(t) + σ1Φ1(t) ≤

2
ν
∥g∥2−1 + 2c. (4.9)

By Gronwall’s lemma, we see that

Φ1(t) ≤ e−σ1(t−τ)Φ1(τ) +
1
σ1

(
2
ν
∥g∥2−1 + 2c). (4.10)

Hence, we conclude from (4.8) and (4.10) that

E1(t) ≤ 2e−σ1(t−τ)E1(τ) +
1
σ1

(
2
ν
∥g∥2−1 + 2c),

which shows
∥u∥2 + ε(t)∥u∥21 + ∥η

t∥2µ,1 ≤ R1

for any t ≥ t∗ = τ + 1
σ1

ln 4E1(τ)
R1

, where

R1 =
2
σ1

(
2
ν
∥g∥2−1 + 2c).

So, Bt = {z = (u, ηt) ∈ Ut : ∥z(t)∥2Ut
≤ R1} is a time-dependent absorbing set in Ut for the solution

process {U(t, τ)}t≥τ. The proof is finished. □
We next verify the pullback asymptotical compactness for the process {U(t, τ)}t≥τ corresponding to

the problem (2.3)–(2.4).
Theorem 4.2. Assume that (1.2), (1.3) and (1.5)–(1.8) hold, and then the process {U(t, τ)}t≥τ of the
problem (2.3)–(2.4) is pullback asymptotic compact in Ut.
Proof. Assume that zn = (un, ηt,n), zm = (um, ηt,m) are two solutions of the problem (2.3)–(2.4) with
initial data zn

τ, zm
τ ∈ BUτ

(R0), respectively. Without loss of generality, we assume τ ≤ T1 < t for every
fixed T1. As a convenience, let w(t) = un(t) − um(t), ζ t = ηt,n − ηt,m, and then (w(t), ζ t) satisfies the
following equation:{

wt − ε(t)△wt − △w −
∫ ∞

0
µ(s)△ζ t(s)ds + f (un) − f (um) = 0,

ζ t
t = −ζ

t
s + w, t ≥ τ,

(4.11)

with
w(x,T1) = wT1 = un

T1
− um

T1
, ζT1 = ηT1,n − ηT1,m.

Multiplying the first Eq (4.11) by w and integrating in Ω, we can get

d
dt

E2(t) + (1 − ε′(t))∥w∥21 + ∥w∥
2
1 ≤ −2⟨ f (un) − f (um),w⟩, (4.12)

where
E2(t) = ∥w∥2 + ε(t)∥w∥21 + ∥ζ

t∥2µ,1.
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By (1.2), (1.3) and Poincaré’s inequality, we have

d
dt

E2(t) +
ε(t)
L
∥w∥21 +

1
2
∥w∥21 +

λ1

2
∥w∥2 ≤ −2⟨ f (un) − f (um),w⟩. (4.13)

Set

Ψ2(t) =
∫ ∞

0
κ(s)∥ζ t(s)∥21ds,

Φ2(t) = E2(t) +
ν

4Θ2κ(0)
Ψ2(t).

Then, applying similar arguments as used in the proof of Theorem 4.1, we get

d
dt
Φ2(t) + 2σ2E2(t) ≤ −2⟨ f (un) − f (um),w⟩, (4.14)

E2(t) ≤ Φ2(t) ≤ 2E2(t), (4.15)

where 0 < σ2 = min{ 1
2L ,

λ1
4 ,

ν
16Θ2κ(0) } and ν is small enough. Combining (4.14) and (4.15), we find that

d
dt
Φ2(t) + σ2Φ2(t) ≤ −2⟨ f (un) − f (um),w⟩. (4.16)

Integrating from s to t at both sides of (4.16), we arrive

Φ2(t) ≤ Φ2(s) − 2
∫ t

s
⟨ f (un(r)) − f (um(r)),w(r)⟩dr. (4.17)

At the same time, integrating from T1 to t at both sides of (4.16), we have∫ t

T1

Φ2(r)dr ≤
1
σ2
Φ2(T1) −

2
σ2

∫ t

T1

⟨ f (un(r)) − f (um(r)),w(r)⟩dr. (4.18)

Then, integrating over [T1, t] about variable s at both sides of (4.17), we obtain that

(t − T1)Φ2(t) ≤
∫ t

T1

Φ2(r)dr − 2
∫ t

T1

∫ t

s
⟨ f (un(r)) − f (um(r)),w(r)⟩drds. (4.19)

Due to (4.18) and (4.19), we get

Φ2(t) ≤
Φ2(T1)

σ2(t − T1)
−

2
σ2(t − T1)

∫ t

T1

⟨ f (un(r)) − f (um(r)),w(r)⟩dr

−
2

t − T1

∫ t

T1

∫ t

s
⟨ f (un(r)) − f (um(r)),w(r)⟩drds.

(4.20)

By (4.15) and (4.20), we can see

E2(t) ≤
2E2(T1)
σ2(t − T1)

+ ψt
T1

(um
T1
, um

T1
),
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where

ψt
T1

(um
T1
, um

T1
) = −

2
σ2(t − T1)

∫ t

T1

⟨ f (un(r)) − f (um(r)),w(r)⟩dr

−
2

t − T1

∫ t

T1

∫ t

s
⟨ f (un(r)) − f (um(r)),w(r)⟩drds.

For some fixed t, let t > T1 ≥ τ such that, with t − T1 large enough, we conclude that 2E2(T1)
σ2(t−T1) ≤ ϵ

for any ϵ > 0. Next, we will prove ψt
T1
∈ C(BT1) for each fixed T1. Indeed, assume that zk = (uk, ηt,k)

is a solution of the problem (2.3)–(2.4) with initial data zk
τ ∈ BUτ

(R0). Then, uk
t ∈ L2([T1, t],Ht),

and uk ∈ L2([T1, t],H1
0(Ω)) by using the same arguments of Theorem 3.2. Hence, it follows from

Lemma 2.11 that there is a convergent subsequence of uk (denoted as uki) such that

lim
i→∞

lim
j→∞

∫ t

T1

∥uki(r) − uk j(r)∥2dr = 0.

This shows

uki → uk j , a.e. (x, t) ∈ Ω × [T1, t]. (4.21)

In view of (3.25), (4.21) and the continuity of f ,

f (uki)→ f (uk j), a.e. (x, t) ∈ Ω × [T1, t]. (4.22)

Hence, by (4.21) and (4.22), we have

lim
i→∞

lim
j→∞

∫ t

T1

⟨ f (uki(r)) − f (uk j(r)), (uki − uk j)⟩dr = 0. (4.23)

For some fixed t,
∫ t

s
⟨ f (uki(r)) − f (uk j(r)), (uki − uk j)⟩dr (s ∈ [T1, t]) is bounded. Using the Lebesgue

dominated convergence theorem yields

lim
i→∞

lim
j→∞

∫ t

T1

∫ t

s
⟨ f (uki(r)) − f (uk j(r)), (uki − uk j)⟩drds = 0. (4.24)

According to (4.23) and (4.24), we conclude that ψt
T1
∈ C(BT1). Consequently,

∥U(t,T1)|un
T1
− U(t,T1)um

T1
∥ ≤ ϵ + ψt

T1
(un

T1
, um

T1
).

Thereby, it follows from Theorem 2.8 that the process {U(t, τ)}t≥τ is pullback asymptotic compact in
Ut. □

Theorem 4.3. The process {U(t, τ)}t≥τ generated by the problem (2.3)–(2.4) has an invariant time-
dependent global attractor A = {At}t∈R in Ut.
Proof. Combining Lemma 4.1 and Theorem 4.2, we get easily the existence of the invariant time-
dependent global attractor A = {At}t∈R for the problem (2.3)–(2.4). □
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5. Conclusions and discussion

This research examines the nonclassical diffusion equation with memory and time-dependent
coefficient. Using the contractive function method and some delicate estimates, we obtained the
existence and uniqueness of the time-dependent global attractor for the problem (1.1). It is well
known that attractors, as a powerful tool for studying dynamical systems, can well characterize long-
term behaviors. The time-dependent global attractor obtained can describe the asymptotic behavior of
Eq (1.1). This study is helpful to more accurately observe the sensitivity of the physical model to the
disturbance, the external force and the internal friction, and it provides a better theoretical basis for the
study of solid mechanics, heat conduction and relaxation of high viscosity liquids and non-Newtonian
fluids.

At present, the study of nonlinear development equations has become one of the important topics
in the intersection of dynamic systems, differential equations and nonlinear analysis, while it is a hot
topic to explore the dynamic behavior of dissipative partial differential equations with time-dependent
coefficients and their related problems in the field of infinite dimensional dynamic systems in recent
years. Although some theoretical results and applications on time-dependent space have been obtained,
the time-dependent global attractor alone is not a good way to describe the dynamic behavior of the
system. Moreover, it is expected that our results will help to describe the observability of attractors
in numerical simulation more clearly. Naturally, there are two interesting problems: Can we establish
the existence and stability theory of the time-dependent exponential attractor? How does one study
the long-term behavior for the nonclassical diffusion equation model by combining with numerical
simulation methods, because the nonclassical diffusion equation model we studied is particular and
complex?
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regularization method for the inverse source problem of time fractional heat equation in the
view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. http://dx.doi.org/10.1088/1402-
4896/ac0867

19. S. Gatti, A. Miranville, V. Pata, S. Zelik, Attractors for semilinear equations of
viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117–1138.
http://dx.doi.org/10.1216/RMJ-2008-38-4-1117

20. M. Grasselli, V. Pata, Uniform attractors of nonautonomous systems with memory,
Evolution Equations, Semigroups and Functional Analysis, 50 (2002), 155–178.
https://dx.doi.org/10.1007/978-3-0348-8221-7 9
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