This paper is devoted to dealing with a kind of new Kirchhoff-type problem in $ \mathbb{R}^N $ that involves a general double-phase variable exponent elliptic operator $ \mathit{\boldsymbol{\phi}} $. Specifically, the operator $ \mathit{\boldsymbol{\phi}} $ has behaviors like $ |\tau|^{q(x)-2}\tau $ if $ |\tau| $ is small and like $ |\tau|^{p(x)-2}\tau $ if $ |\tau| $ is large, where $ 1 < p(x) < q(x) < N $. By applying some new analytical tricks, we first establish existence results of solutions for this kind of Kirchhoff-double-phase problem based on variational methods and critical point theory. In particular, we also replace the classical Ambrosetti–Rabinowitz type condition with four different superlinear conditions and weaken some of the assumptions in the previous related works. Our results generalize and improve the ones in [Q. H. Zhang, V. D. Rădulescu, J. Math. Pures Appl., 118 (2018), 159–203.] and other related results in the literature.
Citation: Wei Ma, Qiongfen Zhang. Existence of solutions for Kirchhoff-double phase anisotropic variational problems with variable exponents[J]. AIMS Mathematics, 2024, 9(9): 23384-23409. doi: 10.3934/math.20241137
This paper is devoted to dealing with a kind of new Kirchhoff-type problem in $ \mathbb{R}^N $ that involves a general double-phase variable exponent elliptic operator $ \mathit{\boldsymbol{\phi}} $. Specifically, the operator $ \mathit{\boldsymbol{\phi}} $ has behaviors like $ |\tau|^{q(x)-2}\tau $ if $ |\tau| $ is small and like $ |\tau|^{p(x)-2}\tau $ if $ |\tau| $ is large, where $ 1 < p(x) < q(x) < N $. By applying some new analytical tricks, we first establish existence results of solutions for this kind of Kirchhoff-double-phase problem based on variational methods and critical point theory. In particular, we also replace the classical Ambrosetti–Rabinowitz type condition with four different superlinear conditions and weaken some of the assumptions in the previous related works. Our results generalize and improve the ones in [Q. H. Zhang, V. D. Rădulescu, J. Math. Pures Appl., 118 (2018), 159–203.] and other related results in the literature.
[1] | Q. H. Zhang, V. D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl., 118 (2018), 159–203. http://doi.org/10.1016/j.matpur.2018.06.015 doi: 10.1016/j.matpur.2018.06.015 |
[2] | G. W. Dai, R. F. Hao, Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. http://doi.org/10.1016/j.jmaa.2009.05.031 doi: 10.1016/j.jmaa.2009.05.031 |
[3] | J. Lee, J. M. Kim, Y. H. Kim, Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving $p(x)$-Laplacian on the entire space $ \mathbb{R}^N$, Nonlinear Anal.-Real World Appl., 45 (2019), 620–649. http://doi.org/10.1016/j.nonrwa.2018.07.016 doi: 10.1016/j.nonrwa.2018.07.016 |
[4] | X. C. Hu, H. B. Chen, Multiple positive solutions for a $p(x)$-Kirchhoff problem with singularity and critical exponent, Mediterr. J. Math., 20 (2023), 200. http://doi.org/10.1007/s00009-023-02314-4 doi: 10.1007/s00009-023-02314-4 |
[5] | Y. P. Zhang, D. D. Qin, Existence of solutions for a critical Choquard-Kirchhoff problem with variable exponents, J. Geom. Anal., 33 (2023), 200. http://doi.org/10.1007/s12220-023-01266-1 doi: 10.1007/s12220-023-01266-1 |
[6] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269. |
[7] | V. Bögelein, F. Duzaar, P. Marcellini, Parabolic equations with $p, q$-growth, J. Math. Pures Appl., 100 (2013), 535–563. http://doi.org/10.1016/j.matpur.2013.01.012 doi: 10.1016/j.matpur.2013.01.012 |
[8] | V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997), 105–116. |
[9] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izvestiya, 29 (1987), 33–66. https://doi.org/10.1070/im1987v029n01abeh000958 doi: 10.1070/im1987v029n01abeh000958 |
[10] | P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6 |
[11] | P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503 |
[12] | P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal.-Theory Methods Appl., 121 (2015), 206–222. https://doi.org/10.1016/j.na.2014.11.001 doi: 10.1016/j.na.2014.11.001 |
[13] | M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2 |
[14] | P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z |
[15] | P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. https://doi.org/10.1090/spmj/1392 doi: 10.1090/spmj/1392 |
[16] | F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. https://doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7 |
[17] | A. Azzollini, P. d'Avenia, A. Pomponio, Quasilinear elliptic equations in $ \mathbb{R}^N$ via variational methods and Orlicz-Sobolev embeddings, Calc. Var., 49 (2014), 197–213. https://doi.org/10.1007/s00526-012-0578-0 doi: 10.1007/s00526-012-0578-0 |
[18] | N. Chorfi, V. D. Rădulescu, Standing wave solutions of a quasilinear degenerate Schrödinger equation with unbounded potential, Electron. J. Qual. Theory Differ. Equ., 37 (2016), 1–12. https://doi.org/10.14232/ejqtde.2016.1.37 doi: 10.14232/ejqtde.2016.1.37 |
[19] | X. Y. Shi, V. D. Rădulescu, D. D. Repovš, Q. H. Zhang, Multiple solutions of double phase variational problems with variable exponent, Adv. Calc. Var., 13 (2020), 385–401. https://doi.org/10.1515/acv-2018-0003 doi: 10.1515/acv-2018-0003 |
[20] | J. J. Liu, P. Pucci, Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition, Adv. Nonlinear Anal., 12 (2023), 20220292. https://doi.org/10.1515/anona-2022-0292 doi: 10.1515/anona-2022-0292 |
[21] | B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal.-Theory Methods Appl., 188 (2019), 294–315. https://doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007 |
[22] | L. Gasiński, N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 14 (2021), 613–626. https://doi.org/10.1515/acv-2019-0040 doi: 10.1515/acv-2019-0040 |
[23] | W. L. Liu, G. W. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006 |
[24] | L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differ. Equations, 274 (2021), 1037–1066. https://doi.org/10.1016/j.jde.2020.11.014 doi: 10.1016/j.jde.2020.11.014 |
[25] | I. H. Kim, Y. H. Kim, M. W. Oh, S. D. Zeng, Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal.-Real World Appl., 67 (2022), 103627. https://doi.org/10.1016/j.nonrwa.2022.103627 doi: 10.1016/j.nonrwa.2022.103627 |
[26] | S. D. Zeng, V. D. Rădulescu, P. Winkert, Double phase obstacle problems with variable exponent, Adv. Differential Equations, 27 (2022), 611–645. https://doi.org/10.57262/ade027-0910-611 doi: 10.57262/ade027-0910-611 |
[27] | Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems:existence and uniqueness, J. Differ. Equations, 323 (2022), 182–228. https://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029 |
[28] | F. Vetro, P. Winkert, Constant sign solutions for double phase problems with variable exponents, Appl. Math. Lett., 135 (2023), 108404. https://doi.org/10.1016/j.aml.2022.108404 doi: 10.1016/j.aml.2022.108404 |
[29] | K. Ho, P. Winkert, New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems, Calc. Var., 62 (2023), 227. https://doi.org/10.1007/s00526-023-02566-8 doi: 10.1007/s00526-023-02566-8 |
[30] | J. Zhang, W. Zhang, V. D. Rădulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z., 301 (2022), 4037–4078. https://doi.org/10.1007/s00209-022-03052-1 doi: 10.1007/s00209-022-03052-1 |
[31] | W. Zhang, J. Zhang, V. D. Rădulescu, Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction, J. Differ. Equations, 347 (2023), 56–103. https://doi.org/10.1016/j.jde.2022.11.033 doi: 10.1016/j.jde.2022.11.033 |
[32] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[33] | A. Arosio, S. Panizzi, On the well-posedness of the kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305–330. https://doi.org/10.1090/S0002-9947-96-01532-2 doi: 10.1090/S0002-9947-96-01532-2 |
[34] | S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math. [Izv. Akad. Nauk SSSR], 4 (1940), 17–26. |
[35] | J. Yang, H. B. Chen, Existence of constant sign and nodal solutions for a class of $(p, q)$-Laplacian-Kirchhoff problems, J. Nonlinear Var. Anal., 7 (2023), 345–365. https://doi.org/10.23952/jnva.7.2023.3.02 doi: 10.23952/jnva.7.2023.3.02 |
[36] | X. Hu, Y. Y. Lan, Multiple solutions of Kirchhoff equations with a small perturbations, J. Nonlinear Funct. Anal., 2022 (2022), 1–11. https://doi.org/10.23952/jnfa.2022.19 doi: 10.23952/jnfa.2022.19 |
[37] | W. Chen, Z. W. Fu, Y. Wu, Positive solutions for nonlinear Schrödinger-Kirchhoff equations in $ \mathbb{R}^3$, Appl. Math. Lett., 104 (2020), 106274. https://doi.org/10.1016/j.aml.2020.106274 doi: 10.1016/j.aml.2020.106274 |
[38] | G. Autuori, P. Pucci, M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Rational Mech. Anal., 196 (2010), 489–516. https://doi.org/10.1007/s00205-009-0241-x doi: 10.1007/s00205-009-0241-x |
[39] | E. Azroul, A. Benkirane, M. Shimi, M. Srati, On a class of fractional $p(x)$-Kirchhoff type problems, Appl. Anal., 100 (2021), 383–402. https://doi.org/10.1080/00036811.2019.1603372 doi: 10.1080/00036811.2019.1603372 |
[40] | M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovš, Existence and multiplicity results for a new $p(x)$-Kirchhoff problem, Nonlinear Anal.-Theory Methods Appl., 190 (2020), 111598. https://doi.org/10.1016/j.na.2019.111598 doi: 10.1016/j.na.2019.111598 |
[41] | C. S. Chen, J. C. Huang, L. H. Liu, Multiple solutions to the nonhomogeneous $p$-Kirchhoff elliptic equation with concave-convex nonlinearities, Appl. Math. Lett., 26 (2013), 754–759. https://doi.org/10.1016/j.aml.2013.02.011 doi: 10.1016/j.aml.2013.02.011 |
[42] | Q. F. Zhang, H. Xie, Y. R. Jiang, Ground state solutions of Pohožaev type for Kirchhoff type problems with general convolution nonlinearity and variable potential, Math. Meth. Appl. Sci., 46 (2022), 11757–11779. https://doi.org/10.1002/mma.8559 doi: 10.1002/mma.8559 |
[43] | V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer, Berlin, 1994. https://doi.org/10.1007/978-3-642-84659-5 |
[44] | M. Chipot, J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, ESAIM-M2AN, 26 (1992), 447–467. https://doi.org/10.1051/m2an/1992260304471 doi: 10.1051/m2an/1992260304471 |
[45] | M. Chipot, B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal.-Theory Methods Appl., 30 (1997), 4619–4627. https://doi.org/10.1016/S0362-546X(97)00169-7 doi: 10.1016/S0362-546X(97)00169-7 |
[46] | A. Fiscella, A. Pinamonti, Existence and multiplicity results for Kirchhoff type problems on a double phase setting, Mediterr. J. Math., 20 (2023), 33. https://doi.org/10.1007/s00009-022-02245-6 doi: 10.1007/s00009-022-02245-6 |
[47] | R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal., 12 (2023), 20220312. https://doi.org/10.1515/anona-2022-0312 doi: 10.1515/anona-2022-0312 |
[48] | K. Ho, P. Winkert, Infinitely many solutions to Kirchhoff double phase problems with variable exponents, Appl. Math. Lett., 145 (2023), 108783. https://doi.org/10.1016/j.aml.2023.108783 doi: 10.1016/j.aml.2023.108783 |
[49] | Y. Cheng, Z. B. Bai, Existence and multiplicity results for parameter Kirchhoff double phase problem with Hardy-Sobolev exponents, J. Math. Phys., 65 (2024), 011506. https://doi.org/10.1063/5.0169972 doi: 10.1063/5.0169972 |
[50] | J. V. C. Sousa, Existence of nontrivial solutions to fractional Kirchhoff double phase problems, Comput. Appl. Math., 43 (2024), 93. https://doi.org/10.1007/s40314-024-02599-5 doi: 10.1007/s40314-024-02599-5 |
[51] | A. Fiscella, G. Marino, A. Pinamonti, S. Verzellesi, Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting, Rev. Mat. Complut., 37 (2024), 205–236. https://doi.org/10.1007/s13163-022-00453-y doi: 10.1007/s13163-022-00453-y |
[52] | T. Isernia, D. D. Repovš, Nodal solutions for double phase Kirchhoff problems with vanishing potentials, Asymptotic Anal., 124 (2021), 371–396. https://doi.org/10.3233/ASY-201648 doi: 10.3233/ASY-201648 |
[53] | J. X. Cen, C. Vetro, S. D. Zeng, A multiplicity theorem for double phase degenerate Kirchhoff problems, Appl. Math. Lett., 146 (2023), 108803. https://doi.org/10.1016/j.aml.2023.108803 doi: 10.1016/j.aml.2023.108803 |
[54] | X. Y. Lin, X. H. Tang, Existence of infinitely many solutions for $p$-Laplacian equations in $ \mathbb{R}^N$, Nonlinear Anal.-Theory Methods Appl., 92 (2013), 72–81. https://doi.org/10.1016/j.na.2013.06.011 doi: 10.1016/j.na.2013.06.011 |
[55] | L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $ \mathbb{R}^N$, Proc. R. Soc. Edinb. Sect. A-Math., 129 (1999), 787–809. https://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147 |
[56] | S. B. Liu, On ground states of superlinear $p$-Laplacian equations in $ \mathbb{R}^N$, J. Math. Anal. Appl., 361 (2010), 48–58. https://doi.org/10.1016/j.jmaa.2009.09.016 doi: 10.1016/j.jmaa.2009.09.016 |
[57] | Z. Tan, F. Fang, On superlinear $p(x)$-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal.-Theory Methods Appl., 75 (2012), 3902–3915. https://doi.org/10.1016/j.na.2012.02.010 doi: 10.1016/j.na.2012.02.010 |
[58] | J. M. Kim, Y. H. Kim, Multiple solutions to the double phase problems involving concave-convex nonlinearities, AIMS Math., 8 (2023), 5060–5079. https://doi.org/10.3934/math.2023254 doi: 10.3934/math.2023254 |
[59] | W. H. Xie, H. B. Chen, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $ \mathbb{R}^N$, Math. Nachr., 291 (2018), 2476–2488. https://doi.org/10.1002/mana.201700059 doi: 10.1002/mana.201700059 |
[60] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[61] | X. H. Tang, S. T. Chen, X. Y. Lin, J. S. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differ. Equations, 268 (2020), 4663–4690. https://doi.org/10.1016/j.jde.2019.10.041 doi: 10.1016/j.jde.2019.10.041 |
[62] | X. H. Tang, X. Y. Lin, J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369–383. https://doi.org/10.1007/s10884-018-9662-2 doi: 10.1007/s10884-018-9662-2 |
[63] | S. T. Chen, X. H. Tang, Existence and multiplicity of solutions for Dirichlet problem of $p(x)$-Laplacian type without the Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 501 (2021), 123882. https://doi.org/10.1016/j.jmaa.2020.123882 doi: 10.1016/j.jmaa.2020.123882 |
[64] | Q. F. Zhang, C. L. Gan, T. Xiao, Z. Jia, Some results of nontrivial solutions for Klein-Gordon-Maxwell systems with local super-quadratic conditions, J. Geom. Anal., 31 (2021), 5372–5394. https://doi.org/10.1007/s12220-020-00483-2 doi: 10.1007/s12220-020-00483-2 |
[65] | B. H. Dong, Z. W. Fu, J. S. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China-Math., 61 (2018), 1807–1824. https://doi.org/10.1007/s11425-017-9274-0 doi: 10.1007/s11425-017-9274-0 |
[66] | X. L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617 |
[67] | J. F. Zhao, Structure theory of Banach spaces (in Chinese), Wuhan: Wuhan University Press, 1991. |
[68] | X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal.-Theory Methods Appl., 52 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5 doi: 10.1016/S0362-546X(02)00150-5 |
[69] | C. O. Alves, S. B. Liu, On superlinear $p(x)$-Laplacian equations in $ \mathbb{R}^N$, Nonlinear Anal.-Theory Methods Appl., 73 (2010), 2566–2579. https://doi.org/10.1016/j.na.2010.06.033 doi: 10.1016/j.na.2010.06.033 |