Research article Special Issues

Proposal of dental demineralization diagnosis with OCT echo based on multiscale entropy analysis


  • Received: 15 December 2023 Revised: 15 February 2024 Accepted: 18 February 2024 Published: 27 February 2024
  • Optical coherence tomography (OCT) has been widely used for the diagnosis of dental demineralization. Most methods rely on extracting optical features from OCT echoes for evaluation or diagnosis. However, due to the diversity of biological samples and the complexity of tissues, the separability and robustness of extracted optical features are inadequate, resulting in a low diagnostic efficiency. Given the widespread utilization of entropy analysis in examining signals from biological tissues, we introduce a dental demineralization diagnosis method using OCT echoes, employing multiscale entropy analysis. Three multiscale entropy analysis methods were used to extract features from the OCT one-dimensional echo signal of normal and demineralized teeth, and a probabilistic neural network (PNN) was used for dental demineralization diagnosis. By comparing diagnostic efficiency, diagnostic speed, and parameter optimization dependency, the multiscale dispersion entropy-PNN (MDE-PNN) method was found to have comprehensive advantages in dental demineralization diagnosis with a diagnostic efficiency of 0.9397. Compared with optical feature-based dental demineralization diagnosis methods, the entropy features-based analysis had better feature separability and higher diagnostic efficiency, and showed its potential in dental demineralization diagnosis with OCT.

    Citation: Ziqi Peng, Seiroh Okaneya, Hongzi Bai, Chuangxing Wu, Bei Liu, Tatsuo Shiina. Proposal of dental demineralization diagnosis with OCT echo based on multiscale entropy analysis[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4421-4439. doi: 10.3934/mbe.2024195

    Related Papers:

  • Optical coherence tomography (OCT) has been widely used for the diagnosis of dental demineralization. Most methods rely on extracting optical features from OCT echoes for evaluation or diagnosis. However, due to the diversity of biological samples and the complexity of tissues, the separability and robustness of extracted optical features are inadequate, resulting in a low diagnostic efficiency. Given the widespread utilization of entropy analysis in examining signals from biological tissues, we introduce a dental demineralization diagnosis method using OCT echoes, employing multiscale entropy analysis. Three multiscale entropy analysis methods were used to extract features from the OCT one-dimensional echo signal of normal and demineralized teeth, and a probabilistic neural network (PNN) was used for dental demineralization diagnosis. By comparing diagnostic efficiency, diagnostic speed, and parameter optimization dependency, the multiscale dispersion entropy-PNN (MDE-PNN) method was found to have comprehensive advantages in dental demineralization diagnosis with a diagnostic efficiency of 0.9397. Compared with optical feature-based dental demineralization diagnosis methods, the entropy features-based analysis had better feature separability and higher diagnostic efficiency, and showed its potential in dental demineralization diagnosis with OCT.



    加载中


    [1] R. H. Selwitz, A. I. Ismail, N. B. Pitts, Dental caries, Lancet, 369 (2007), 51–59. https://doi.org/10.1016/S0140-6736(07)60031-2 doi: 10.1016/S0140-6736(07)60031-2
    [2] J. D. Featherstone, Dental caries: a dynamic disease process, Aust. Dent. J., 53 (2008), 286–291. https://doi.org/10.1111/j.1834-7819.2008.00064.x doi: 10.1111/j.1834-7819.2008.00064.x
    [3] A. L. A. S. Farhan, The modern X-ray imaging manners for diagnosis of the dental diseases, Eurasian J. Phys. Chem. Math., 7 (2022), 138–148.
    [4] A. E. Rad, M. S. M. Rahim, H. Kolivand, A. Norouzi, Automatic computer-aided caries detection from dental x-ray images using intelligent level set, Multimed.Tools Appl., 77 (2018), 28843–28862. https://doi.org/10.1007/s11042-018-6035-0 doi: 10.1007/s11042-018-6035-0
    [5] R. K. Meleppat, C. Shearwood, L. K. Seah, M. V. Matham, Quantitative optical coherence microscopy for the in situ investigation of the biofilm, J. Biomed. Opt., 21 (2016), 127002. https://doi.org/10.1117/1.JBO.21.12.127002 doi: 10.1117/1.JBO.21.12.127002
    [6] R. K. Meleppat, M. V. Matham, L. K. Seah, C. Shearwood, Quantification of biofilm thickness using a swept source based optical coherence tomography system, in 3rd International Conference on Optical and Photonic Engineering, icOPEN 2015, Singapore, 2015. https://doi.org/10.1117/12.2190106
    [7] G. Rebolleda, L. Diez-Alvarez, A. Casado, C. Sánchez-Sánchez, E. de Dompablo, J. J. González-López, et al., OCT: new perspectives in neuro-ophthalmology, Saudi J. Ophthalmol., 29 (2015), 9–25. https://doi.org/10.1016/j.sjopt.2014.09.016 doi: 10.1016/j.sjopt.2014.09.016
    [8] J. G. Fujimoto, W. Drexler, J. S. Schuman, C. K. Hitzenberger, Optical Coherence Tomography (OCT) in ophthalmology: introduction, Opt. Express, 17 (2009), 3978–3979. https://doi.org/10.1364/oe.17.003978 doi: 10.1364/oe.17.003978
    [9] R. K. Meleppat, K. E. Ronning, S. J. Karlen, M. E. Burns, E. N. Pugh, R. J. Zawadzki, et al., In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium, Sci. Rep., 11 (2021), 16252. https://doi.org/10.1038/s41598-021-95320-z doi: 10.1038/s41598-021-95320-z
    [10] R. K. Meleppat, P. Zhang, M. J. Ju, S. K. Manna, Y. F. Jian, E. N. Pugh, et al., Directional optical coherence tomography reveals melanin concentration-dependent scattering properties of retinal pigment epithelium, J. Biomed. Opt., 24 (2019), 066011. https://doi.org/10.1117/1.JBO.24.6.066011 doi: 10.1117/1.JBO.24.6.066011
    [11] R. K. Meleppat, E. B. Miller, S. K. Manna, P. F. Zhang, E. N. Pugh, R. J. Zawadzki, Multiscale Hessian filtering for enhancement of OCT angiography images, in Ophthalmic technologies XXIX, San Francisco, California, United States, 10858 (2019), 64–70. https://doi.org/10.1117/12.2511044
    [12] J. Welzel, Optical coherence tomography in dermatology: a review, Skin Res. Technol., 7 (2001), 1–9. https://doi.org/10.1034/j.1600-0846.2001.007001001.x doi: 10.1034/j.1600-0846.2001.007001001.x
    [13] M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, G. B. Jemec, OCT imaging of skin cancer and other dermatological diseases, J. Biophotonics, 2 (2009), 442–451. https://doi.org/10.1002/jbio.200910020 doi: 10.1002/jbio.200910020
    [14] B. P. de Oliveira, A. C. Câmara, D. A. Duarte, A. S. L. Gomes, R. J. Heck, A. C. Dantas, et al., Detection of apical root cracks using spectral domain and swept-source optical coherence tomography, J. Endodont., 43 (2017), 1148–1151. https://doi.org/10.1016/j.joen.2017.01.019 doi: 10.1016/j.joen.2017.01.019
    [15] Y. Shimada, A. Sadr, Y. Sumi, J. Tagami, Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations, Curr. Oral Health Rep., 2 (2015), 73–80. https://doi.org/10.1007/s40496-015-0045-z doi: 10.1007/s40496-015-0045-z
    [16] Y. Shimada, A. Sadr, M. F. Burrow, J. Tagami, N. Ozawa, Y. Sumi, Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries, J. Dent., 38 (2010), 655–665. https://doi.org/10.1016/j.jdent.2010.05.004 doi: 10.1016/j.jdent.2010.05.004
    [17] Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, et al., Noninvasive cross‐sectional imaging of proximal caries using swept‐source optical coherence tomography (SS‐OCT) in vivo, J. Biophotonics, 7 (2014), 506–513. https://doi.org/10.1002/jbio.201200210 doi: 10.1002/jbio.201200210
    [18] K. H. Chan, A. C. Chan, W. A. Fried, J. C. Simon, C. L. Darling, D. Fried, Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross‐polarization optical coherence tomography, J. Biophotonics, 8 (2015), 36–45. https://doi.org/10.1002/jbio.201300137 doi: 10.1002/jbio.201300137
    [19] H. Kang, C. L. Darling, D. Fried, Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography, Dent. Mater., 28 (2012), 488–494. https://doi.org/10.1016/j.dental.2011.11.020 doi: 10.1016/j.dental.2011.11.020
    [20] D. P. Popescu, M. G. Sowa, M. D. Hewko, L. P. Choo-Smith, Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images, J. Biomed. Opt., 13 (2008), 054053. https://doi.org/10.1117/1.2992129 doi: 10.1117/1.2992129
    [21] C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. https://doi.org/10.1103/PhysRevLett.88.174102 doi: 10.1103/PhysRevLett.88.174102
    [22] B. Kosko, Fuzzy entropy and conditioning, Inf. Sci, 40 (1986), 165–174. https://doi.org/10.1016/0020-0255(86)90006-X doi: 10.1016/0020-0255(86)90006-X
    [23] M. Rostaghi, H. Azami, Dispersion entropy: A measure for time-series analysis, IEEE Signal Process Lett., 23 (2016), 610–614. https://doi.org/10.1109/LSP.2016.2542881 doi: 10.1109/LSP.2016.2542881
    [24] M. A. Li, H. N. Liu, W. Zhu, J. F. Yang, Applying improved multiscale fuzzy entropy for feature extraction of MI-EEG, Appl. Sci., 7 (2017), 92. https://doi.org/10.3390/app7010092 doi: 10.3390/app7010092
    [25] M. G. Li, R. T. Wang, D. Q. Xu, An improved composite multiscale fuzzy entropy for feature extraction of MI-EEG, Entropy, 22 (2020), 1356. https://doi.org/10.3390/e22121356 doi: 10.3390/e22121356
    [26] M. U. Ahmed, T. Chanwimalueang, S. Thayyil, D. P. Mandic, A multivariate multiscale fuzzy entropy algorithm with application to uterine EMG complexity analysis, Entropy, 19 (2016), 2. https://doi.org/10.3390/e19010002 doi: 10.3390/e19010002
    [27] T. B. Liu, W. P. Yao, M. Wu, Z. R, Shi, J. Wang, X. B. Ning, Multiscale permutation entropy analysis of electrocardiogram, Phys. A, 471 (2017), 492–498. https://doi.org/10.1016/j.physa.2016.11.102 doi: 10.1016/j.physa.2016.11.102
    [28] D. Li, X. Li, Z. Liang, L. J. Voss, J. W. Sleigh, Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia, J. Neural Eng., 7 (2010), 046010. https://doi.org/10.1088/1741-2560/7/4/046010 doi: 10.1088/1741-2560/7/4/046010
    [29] G. X. Ouyang, J. Li, X. Z. Liu, X. L. Li, Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis, Epilepsy Res., 104 (2013), 246–252. https://doi.org/10.1016/j.eplepsyres.2012.11.003 doi: 10.1016/j.eplepsyres.2012.11.003
    [30] H. Azami, M. Rostaghi, D. Abásolo, J. Escudero, Refined composite multiscale dispersion entropy and its application to biomedical signals, IEEE Trans. Biomed. Eng., 64 (2017), 2872–2879. https://doi.org/10.1109/TBME.2017.2679136 doi: 10.1109/TBME.2017.2679136
    [31] B. Liu, R. M. Wang, Z. Q. Peng, L. J. Qin, Identification of denatured biological tissues based on compressed sensing and improved multiscale dispersion entropy during HIFU treatment, Entropy, 22 (2020), 944. https://doi.org/10.3390/e22090944 doi: 10.3390/e22090944
    [32] M. Chakraborty, D. Mitra, Automated detection of epileptic seizures using multiscale and refined composite multiscale dispersion entropy, Chaos Solitons Fract., 146 (2021), 110939. https://doi.org/10.1016/j.chaos.2021.110939 doi: 10.1016/j.chaos.2021.110939
    [33] X. L. Huang, X. M. Ma, F. Hu., Machine learning and intelligent communications, Mobile Network Appl., 23 (2018), 68–70. https://doi.org/10.1007/s11036-017-0962-2 doi: 10.1007/s11036-017-0962-2
    [34] M. Sangeetha, K. Kumar, A. A. Aljabr, Image processing techniques in periapical dental X-ray image detection and classification, Webology, 18 (2021), 42–53. https://doi.org/10.14704/WEB/V18SI02/WEB18011 doi: 10.14704/WEB/V18SI02/WEB18011
    [35] Justiawan, D. A. Wahjuningrum, R. P. Hadi, A. P. Nurhayati, K. Prayogo, R. Sigit, et al., Comparative analysis of color matching system for teeth recognition using color moment, Med. Devices: Evidence Res., 12 (2019), 497–504. https://doi.org/10.2147/MDER.S224280 doi: 10.2147/MDER.S224280
    [36] M. Hashem, A. A. Al-Kheraif, A. A. Wahba, Examining the longevity of dental restoration using Hebbian adversarial networks clustering with gradient boosting recurrent neural network, Measurement, 141 (2019), 313–323. https://doi.org/10.1016/j.measurement.2019.04.035 doi: 10.1016/j.measurement.2019.04.035
    [37] E. Kaya, H. G. Gunec, S. S. Gokyay, S. Kutal, S. Gulum, H. F. Ates, Proposing a CNN method for primary and permanent tooth detection and enumeration on pediatric dental radiographs, J. Clin. Pediatr. Dent., 46 (2022), 293–298. https://doi.org/10.22514/1053-4625-46.4.6 doi: 10.22514/1053-4625-46.4.6
    [38] D. F. Specht, Probabilistic neural networks, Neural Networks, 3 (1990), 109–118. https://doi.org/10.1016/0893-6080(90)90049-Q doi: 10.1016/0893-6080(90)90049-Q
    [39] B. Liu, X. Zhang, X. Zou, J. Cao, Z. Q. Peng, Biological tissue damage monitoring method based on IMWPE and PNN during HIFU treatment, Information, 12 (2021), 404. https://doi.org/10.3390/info12100404 doi: 10.3390/info12100404
    [40] T. Shiina, Y. Moritani, M. Ito, Y. Okamura, Long-optical-path scanning mechanism for optical coherence tomography, Appl. Opt., 42 (2003), 3795–3799. https://doi.org/10.1364/AO.42.003795 doi: 10.1364/AO.42.003795
    [41] K. Saeki, D. Huyan, M. Sawada, Y. Sun, A. Nakamura, M. Kimura, et al., Measurement algorithm for real front and back curved surfaces of contact lenses, Appl. Opt., 59 (2020), 9051–9059. https://doi.org/10.1364/AO.399190 doi: 10.1364/AO.399190
    [42] D. Huyan, N. Lagrosas, T. Shiina, Target imaging in scattering media using ghost imaging optical coherence tomography, APL Photonics, 7 (2022), 086104. https://doi.org/10.1063/5.0099638 doi: 10.1063/5.0099638
    [43] D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, C. Q. Le, et al., Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography, J. Biomed. Opt., 7 (2002), 618–627. https://doi.org/10.1117/1.1509752 doi: 10.1117/1.1509752
    [44] M. T. Tsai, Y. L. Wang, T. W. Yeh, H. C. Lee, W. J. Chen, J. L. Ke, et al., Early detection of enamel demineralization by optical coherence tomography, Sci. Rep., 9 (2019), 17154. https://doi.org/10.1038/s41598-019-53567-7 doi: 10.1038/s41598-019-53567-7
    [45] Y. Li, J. Liu, C. Tang, W. Han, S. Y. Zhou, S. Q. Yang, et al., Multiscale entropy analysis of instantaneous frequency variation to overcome the cross-over artifact in rhythmic EEG, IEEE Access, 9 (2021), 12896–12905. https://doi.org/10.1109/ACCESS.2021.3051367 doi: 10.1109/ACCESS.2021.3051367
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(760) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog