Objective: Autism spectrum disorder (ASD) is usually characterised by altered social skills, repetitive behaviours, and difficulties in verbal/nonverbal communication. It has been reported that electroencephalograms (EEGs) in ASD are characterised by atypical complexity. The most commonly applied method in studies of ASD EEG complexity is multiscale entropy (MSE), where the sample entropy is evaluated across several scales. However, the accuracy of MSE-based classifications between ASD and neurotypical EEG activities is poor owing to several shortcomings in scale extraction and length, the overlap between amplitude and frequency information, and sensitivity to frequency. The present study proposes a novel, nonlinear, non-stationary, adaptive, data-driven, and accurate method for the classification of ASD and neurotypical groups based on EEG complexity and entropy without the shortcomings of MSE. Approach: The proposed method is as follows: (a) each ASD and neurotypical EEG (122 subjects × 64 channels) is decomposed using empirical mode decomposition (EMD) to obtain the intrinsic components (intrinsic mode functions). (b) The extracted components are normalised through the direct quadrature procedure. (c) The Hilbert transforms of the components are computed. (d) The analytic counterparts of components (and normalised components) are found. (e) The instantaneous frequency function of each analytic normalised component is calculated. (f) The instantaneous amplitude function of each analytic component is calculated. (g) The Shannon entropy values of the instantaneous frequency and amplitude vectors are computed. (h) The entropy values are classified using a neural network (NN). (i) The achieved accuracy is compared to that obtained with MSE-based classification. (j) The consistency of the results of entropy 3D mapping with clinical data is assessed. Main results: The results demonstrate that the proposed method outperforms MSE (accuracy: 66.4%), with an accuracy of 93.5%. Moreover, the entropy 3D mapping results are more consistent with the available clinical data regarding brain topography in ASD. Significance: This study presents a more robust alternative to MSE, which can be used for accurate classification of ASD/neurotypical as well as for the examination of EEG entropy across brain zones in ASD.
Citation: Enas Abdulhay, Maha Alafeef, Hikmat Hadoush, V. Venkataraman, N. Arunkumar. EMD-based analysis of complexity with dissociated EEG amplitude and frequency information: a data-driven robust tool -for Autism diagnosis- compared to multi-scale entropy approach[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 5031-5054. doi: 10.3934/mbe.2022235
Objective: Autism spectrum disorder (ASD) is usually characterised by altered social skills, repetitive behaviours, and difficulties in verbal/nonverbal communication. It has been reported that electroencephalograms (EEGs) in ASD are characterised by atypical complexity. The most commonly applied method in studies of ASD EEG complexity is multiscale entropy (MSE), where the sample entropy is evaluated across several scales. However, the accuracy of MSE-based classifications between ASD and neurotypical EEG activities is poor owing to several shortcomings in scale extraction and length, the overlap between amplitude and frequency information, and sensitivity to frequency. The present study proposes a novel, nonlinear, non-stationary, adaptive, data-driven, and accurate method for the classification of ASD and neurotypical groups based on EEG complexity and entropy without the shortcomings of MSE. Approach: The proposed method is as follows: (a) each ASD and neurotypical EEG (122 subjects × 64 channels) is decomposed using empirical mode decomposition (EMD) to obtain the intrinsic components (intrinsic mode functions). (b) The extracted components are normalised through the direct quadrature procedure. (c) The Hilbert transforms of the components are computed. (d) The analytic counterparts of components (and normalised components) are found. (e) The instantaneous frequency function of each analytic normalised component is calculated. (f) The instantaneous amplitude function of each analytic component is calculated. (g) The Shannon entropy values of the instantaneous frequency and amplitude vectors are computed. (h) The entropy values are classified using a neural network (NN). (i) The achieved accuracy is compared to that obtained with MSE-based classification. (j) The consistency of the results of entropy 3D mapping with clinical data is assessed. Main results: The results demonstrate that the proposed method outperforms MSE (accuracy: 66.4%), with an accuracy of 93.5%. Moreover, the entropy 3D mapping results are more consistent with the available clinical data regarding brain topography in ASD. Significance: This study presents a more robust alternative to MSE, which can be used for accurate classification of ASD/neurotypical as well as for the examination of EEG entropy across brain zones in ASD.
[1] | T. Hirota, R. So, Y. S. Kim, B. Leventhal, R. A. Epstein, A systematic review of screening tools in non-young children and adults for autism spectrum disorder, Res. Dev. Disabil., 80 (2018), 1–12. https://doi.org/10.1016/j.ridd.2018.05.017 doi: 10.1016/j.ridd.2018.05.017 |
[2] | C. Lord, S. Risi, P.S. Dilavore, C. Shulman, A. Thurm, A. Pickles. Autism from 2 to 9 years of age. Arch. Gen. Psychiatry, 63 (2006), 694–701. https://doi.org/10.1001/archpsyc.63.6.694 doi: 10.1001/archpsyc.63.6.694 |
[3] | B. B. Sizoo, E. H. Horwitz, J. P. Teunisse, C. C. Kan, C. Vissers, E. Forceville, et al., Predictive validity of self-report questionnaires in the assessment of autism spectrum disorders in adults, Autism, 19 (2015), 842–849. https://doi.org/10.1177/1362361315589869 doi: 10.1177/1362361315589869 |
[4] | P. O. Towle, P. A. Patrick, Autism Spectrum Disorder Screening Instruments for Very Young Children: A Systematic Review, Autism. Res. Treat., 2016 (2016), 4624829. https://doi.org/10.1155/2016/4624829 doi: 10.1155/2016/4624829 |
[5] | D. Bone, S. Bishop, M. P. Black, M. S. Goodwin, C. Lord, S. S. Narayanan, Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-Instrument Fusion, J. Child. Psychol. Psychiatry, 57 (2017), 927–937. https://doi.org/10.1111/jcpp.12559 doi: 10.1111/jcpp.12559 |
[6] | J. A. Kosmicki, V. Sochat, M. Duda, D. P. Wall, Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning, Transl. Psychiatry, 5 (2015), 514–517. https://doi.org/10.1038/tp.2015.7 doi: 10.1038/tp.2015.7 |
[7] | F. Thabtah, Machine learning in autistic spectrum disorder behavioral research: A review and ways forward, Informatics Heal. Soc. Care, 44 (2019), 278–297. https://doi.org/10.1080/17538157.2017.1399132 doi: 10.1080/17538157.2017.1399132 |
[8] | D. H. Oh, I. B. Kim, S. H. Kim, D. H. Ahn, Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning, Clin. Psychopharmacol. Neurosci., 15 (2017), 47–52. https://doi.org/10.9758/cpn.2017.15.1.47 doi: 10.9758/cpn.2017.15.1.47 |
[9] | M. Duda, R. Ma, N. Haber, D. P. Wall, Use of machine learning for behavioral distinction of autism and ADHD, Transl. Psychiatry, 6 (2016), 732. https://doi.org/10.1038/tp.2015.221 doi: 10.1038/tp.2015.221 |
[10] | G. Li, O. Lee, H. Rabitz, High-efficiency classification of children with autism spectrum disorder, PLoS One, 13 (2018), 1–23. https://doi.org/10.1371/journal.pone.0192867 doi: 10.1371/journal.pone.0192867 |
[11] | Q. Tariq, S. L. Fleming, J. N. Schwartz, K. Dunlap, C. Corbin, P. Washington, et al., Detecting Developmental Delay and Autism Through Machine Learning Models Using Home Videos of Bangladeshi Children: Development and Validation Study, J. Med. Internet Res., 21 (2019), 13822. https://doi.org/10.2196/13822 doi: 10.2196/13822 |
[12] | D. Eman, W. R. Emanuel, Machine Learning Classifiers for Autism Spectrum Disorder: A Review, 2019 4th Int. Conf. Inform. Technol. Inform. Syst. Electr. Eng. (ICITISEE), Yogyakarta, Indonesia, 2019. https://doi.org/10.1109/ICITISEE48480.2019.9003807 |
[13] | X. Bi, Y. Wang, Q. Shu, Q. Sun, Q. Xu, Classification of autism spectrum disorder using random support vector machine cluster, Frontiers in Genetics, 6 (2018), 9–18. https://doi.org/10.3389/fgene.2018.00018 doi: 10.3389/fgene.2018.00018 |
[14] | E. Grossi, C. Olivieri, M. Buscema, Diagnosis of autism through EEG processed by advanced computational algorithms: a pilot study, Comput. Methods Programs Biomed., 142 (2017), 73–79. https://doi.org/10.1016/j.cmpb.2017.02.002 doi: 10.1016/j.cmpb.2017.02.002 |
[15] | M. L. Raja, M. Priya, Neural network based classification of EEG signals for diagnosis of autism spectrum disorder, Int. J. Pharm. Bio. Sci., 8 (2017), 1020–1026. |
[16] | L. Raja, M. M. Priyab, EEG based ASD diagnosis for children using auto-regressive features and FFNN, Int. J. Control Theo. App., 10 (2017), 27–32. |
[17] | L. Raja, M. M. Priya, EEG based diagnosis of autism spectrum disorder using static and dynamic neural networks, ARPN J. Eng. Appl. Sci., 12 (2017), 4653787. |
[18] | R. Djemal, K. AlSharabi, S. Ibrahim, A. Alsuwailem, EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN, BioMed. Res. Int., 2017 (2017), 1–9. https://doi.org/10.1155/2017/9816591 doi: 10.1155/2017/9816591 |
[19] | T. M. Heunis, C. Aldrich, P. J. Vries, Recent Advances in Resting-State Electroencephalography Biomarkers for Autism Spectrum Disorder-A Review of Methodological and Clinical Challenges, Rev. Pediatr. Neurol., 61 (2016), 28–37. https://doi.org/10.1016/j.pediatrneurol.2016.03.010 doi: 10.1016/j.pediatrneurol.2016.03.010 |
[20] | N. P. Jordanova, J. P. Jordanov, Spectrum-weighted EEG frequency ("brain-rate") as a quantitative indicator of mental arousal. Prilozi, 26 (2005), 35–42. |
[21] | E. Abdulhay, M. Alafeef, A. Abdelhay, A. Al-Bashir, Classification of Normal, Ictal and Inter-ictal EEG via Direct Quadrature and Random Forest Tree, J. Med. Biol. Eng., 37 (2017), 843–857. https://doi.org/10.1007/s40846-017-0239-z doi: 10.1007/s40846-017-0239-z |
[22] | Z. Dandan, D. Haiyan, H. Xinlin, L. Yunfeng, Z. Congle, Y. Datian, The Combination of Amplitude and Sample Entropy in EEG and its Application to Assessment of Cerebral Injuries in Piglets, 2008 Int. Conf. BioMed. Eng. Informatics, Sanya, China, 2008. https://doi.org/10.1109/BMEI.2008.12 |
[23] | E. Abdulhay, M. Alafeef, L. Alzghoul, M. Al Momani, R. Al Abdi, N. Arunkumar, et al., Computer-aided autism diagnosis via second-order difference plot area applied to EEG empirical mode decomposition, Neural Comput. Appl., 32 (2020), 10947–10956. https://doi.org/10.1007/s00521-018-3738-0 doi: 10.1007/s00521-018-3738-0 |
[24] | R. J. Oweis, E. W. Abdulhay, Seizure classification in EEG signals utilizing Hilbert-Huang transform, Biomed. Eng. Online, 10 (2011), 38. https://doi.org/10.1186/1475-925X-10-38 doi: 10.1186/1475-925X-10-38 |
[25] | E. Abdulhay, M. Alafeef, H. Hadoush, N. Alomari, M. Bashayreh, Frequency 3D Mapping and Inter-Channel Stability of EEG Intrinsic Function Pulsation: Indicators Towards Autism Spectrum Diagnosis, 2017 10th Jordanian Int. Electric. Electron. Eng. Conf. (JIEEEC), Amman, Jordan, 2017. https://doi.org/10.1109/JIEEEC.2017.8051416 |
[26] | H. Hadoush, M. Alafeef, E. Abdulhay, Automated identification for autism severity level: EEG analysis using empirical mode decomposition and second order difference plot, Behavioural Brain Res., 362 (2019), 240–248. https://doi.org/10.1016/j.bbr.2019.01.018 doi: 10.1016/j.bbr.2019.01.018 |
[27] | E. Abdulhay, V. Elamaran, M. Chandrasekar, V. S. Balaji, and K. Narasimhan, Automated diagnosis of epilepsy from EEG signals using ensemble learning approach, Pattern Recognition Letters, 139 (2020), 174–181. https://doi.org/10.1016/j.patrec.2017.05.021 doi: 10.1016/j.patrec.2017.05.021 |
[28] | T. H. Pham, J. Vicnesh, J. K. Wei, S. J. Oh, N. Arunkumar, E. Abdulhay, et al., Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals, Int. J. Environ. Res. Public Health, 17 (2020), 1–14. https://doi.org/10.3390/ijerph17030971 doi: 10.3390/ijerph17030971 |
[29] | W. Bosl, A. Tierney, H. T. Flusberg, C. Nelson, EEG complexity as a biomarker for autism spectrum disorder risk, BMC Med., 9 (2011), 18. https://doi.org/10.1186/1741-7015-9-18 doi: 10.1186/1741-7015-9-18 |
[30] | F. H. Duffy, A. Heidelise, Autism, spectrum or clusters? An EEG coherence study, BMC Neurol., 19 (2019), 27. https://doi.org/10.1186/s12883-019-1254-1 doi: 10.1186/s12883-019-1254-1 |
[31] | A. Sheikhani, H. Behnam, M. R. Mohammadi, M. Noroozian, Analysis of EEG background activity in Autsim disease patients with bispectrum and STFT measure, Proceedings of the 11th WSEAS Int. Conf. Commun., Agios Nikolaos, Greece, 2007. |
[32] | J. Kang, H. Chen, X. Li, X. Li, EEG entropy analysis in autistic children, J. Clin. Neurosci., 62 (2019), 199–206. https://doi.org/10.1016/j.jocn.2018.11.027 doi: 10.1016/j.jocn.2018.11.027 |
[33] | L. Billeci, F. Sicca, K. Maharatna, F. Apicella, A. Narzisi, G. Campatelli, et al., On the application of quantitative EEG for characterizing autistic brain: a systematic review, Front. Hum. Neurosci., 7 (2013), 442. https://doi.org/10.3389/fnhum.2013.00442 doi: 10.3389/fnhum.2013.00442 |
[34] | M. Ahmadlou, H. Adeli, A. Adeli, Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder, J. Clin. Neurophysiol., 27 (2010), 328–333. https://doi.org/10.1097/WNP.0b013e3181f40dc8 doi: 10.1097/WNP.0b013e3181f40dc8 |
[35] | B. B. Mandelbrot, The Fractal Geometry of Nature. New York: Freeman and Company (1977), 1–468. |
[36] | M. Costa, A. L. Goldberger, C. K. Peng, Multiscale entropy analysis of biological signals. Phys. Rev. E., 71 (2005), 021906. https://doi.org/10.1103/PhysRevE.71.021906 doi: 10.1103/PhysRevE.71.021906 |
[37] | A. Namdari, Z. Li, A review of entropy measures for uncertainty quantification of stochastic processes, Adv. Mechanical Eng., 11 (2019), 1–14. https://doi.org/10.1177/1687814019857350 doi: 10.1177/1687814019857350 |
[38] | H. Hadoush, M. Alafeef, E. Abdulhay, Brain complexity in children with mild and severe autism spectrum disorders: analysis of multiscale entropy in EEG, Brain Topography, 32 (2019), 914–921. https://doi.org/10.1007/s10548-019-00711-1 doi: 10.1007/s10548-019-00711-1 |
[39] | Y. Ghanbari, L. Bloy, J. C. Edgar, L. Blaskey, R. Verma, T. P. Roberts, Joint analysis of band-specific functional connectivity and signal complexity in autism, J. Autism Dev. Disord., 45 (2015), 444–460. https://doi.org/10.1007/s10803-013-1915-7 doi: 10.1007/s10803-013-1915-7 |
[40] | T. Liu, Y. Chen, D. Chen, C. Li, Y. Qiu, J. Wang, Altered electroencephalogram complexity in autistic children shown by the multiscale entropy approach, Neuro. Report, 28 (2017), 169–173. https://doi.org/10.1097/WNR.0000000000000724 doi: 10.1097/WNR.0000000000000724 |
[41] | J. O. Maximo, D. L. Murdaugh, R. K. Kana, Alterations in Brain Entropy in Autism Spectrum Disorders, 2017 Int. Meet. Autism Res., Birmingham, USA, 2017. |
[42] | J. Q. Kosciessa, N. A. Kloosterman, D. D. Garrett, Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What's signal irregularity got to do with it?, PLOS Comput. Biol., 16 (2020), e1007885. https://doi.org/10.1371/journal.pcbi.1007885 doi: 10.1371/journal.pcbi.1007885 |
[43] | A. Catarino, O. Churches, S. B. Cohen, A. Andrade, H. Ring, Atypical EEG complexity in autism spectrum conditions: a multiscale, entropy analysis, Clin. Neurophysiol., 122 (2011), 2375–2383. https://doi.org/10.1016/j.clinph.2011.05.004 doi: 10.1016/j.clinph.2011.05.004 |
[44] | J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol., 278 (2000), H2039–49. https://doi.org/10.1152/ajpheart.2000.278.6.H2039 doi: 10.1152/ajpheart.2000.278.6.H2039 |
[45] | R. Ferenets, T. Lipping, A. Anier, V. Jantti, S. Melto, S. Hovilehto, Comparison of entropy and complexity measures for the assessment of depth of sedation, IEEE Trans. Biomed. Eng., 53 (2006), 1067–1077. https://doi.org/10.1109/TBME.2006.873543 doi: 10.1109/TBME.2006.873543 |
[46] | A. H. Heurtier, The Multiscale Entropy Algorithm and Its Variants: A Review, Entropy, 17 (2015), 3110–3123. https://doi.org/10.3390/e17053110 doi: 10.3390/e17053110 |
[47] | H. Azami and J. Escudero, Amplitude- and Fluctuation-Based Dispersion Entropy, Entropy, 20 (2018), 210. https://doi.org/10.3390/e20030210 doi: 10.3390/e20030210 |
[48] | J. F. Valencia, A. Porta, M. Vallverdu, F. Claria, R. Baranowski, E. O. Baranowska, et al., Refined multiscale entropy: Application to 24-h Holter recordings of heart period variability in healthy and aortic stenosis subjects, IEEE Trans. Biomed., 56 (2009), 2202–2213. https://doi.org/10.1109/TBME.2009.2021986 doi: 10.1109/TBME.2009.2021986 |
[49] | J. F. Valencia, M. Vallverdu, R. Schroeder, L. Cygankiewicz, R. Vazquez, A. B. Luna, et al., Heart rate variability characterized by refined multiscale entropy applied to cardiac death in ischemic cardiomyopathy patients, Comput. Cardiol., 37 (2010), 65–68. |
[50] | W. J. Bosl, T. Loddenkemper, C. A. Nelson, Nonlinear EEG biomarker profiles for autism and absence epilepsy, Neuropsychiatric Electrophysiology, 3 (2017), 1. https://doi.org/10.1186/s40810-017-0023-x doi: 10.1186/s40810-017-0023-x |
[51] | W. J. Bosl, H. T. Flusberg, C. A. Nelson, EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach, Sci. Rep., 8 (2018), 6828. https://doi.org/10.1038/s41598-018-24318-x doi: 10.1038/s41598-018-24318-x |
[52] | S. D. Wu, C.W. Wu, K.Y. Lee, S. G. Lin, Modified multiscale entropy for short-term time series analysis, Physica A, 392 (2013), 15865–5873. https://doi.org/10.1016/j.physa.2013.07.075 doi: 10.1016/j.physa.2013.07.075 |
[53] | S. D. Wu, C. W. Wu, S. G. Lin, C. C. Wang, K. Y. Lee, Time series analysis using composite multiscale entropy, Entropy, 15 (2013), 1069–1084. https://doi.org/10.3390/e15031069 doi: 10.3390/e15031069 |
[54] | S. D. Wu, C. W. Wu, S. G. Lin, K. Y. Lee, C. K. Peng, Analysis of complex time series using refined composite multiscale entropy, Phys. Lett. A, 378 (2014), 1369–1374. https://doi.org/10.1016/j.physleta.2014.03.034 doi: 10.1016/j.physleta.2014.03.034 |
[55] | S. D. Wu, C. W. Wu, K. Y. Lee, S. G. Lin, Modified multiscale entropy for short-term time series analysis, Phys. A, 392 (2013), 5865–5873. https://doi.org/10.1016/j.physa.2013.07.075 doi: 10.1016/j.physa.2013.07.075 |
[56] | Y. C. Chang, H. T. Wu, H. R. Chen, A. B. Liu, J. J. Yeh, M. T. Lo, et al., Application of a modified entropy computational method in assessing the complexity of pulse wave velocity signals in healthy and diabetic subjects, Entropy, 16 (2014), 4032–4043. https://doi.org/10.3390/e16074032 doi: 10.3390/e16074032 |
[57] | Y. Jiang, C. K. Peng, Y. Xu, Hierarchical entropy analysis for biological signals, J. Comput. Appl. Math., 236 (2011), 728–742. https://doi.org/10.1016/j.cam.2011.06.007 doi: 10.1016/j.cam.2011.06.007 |
[58] | H. B. Xie, W. X. He, H. Liu, Measuring time series regularity using nonlinear similarity-based sample entropy, Phys. Lett. A, 372 (2008), 7140–7146. https://doi.org/10.1016/j.physleta.2008.10.049 doi: 10.1016/j.physleta.2008.10.049 |
[59] | M. U. Ahmed, D. P. Mandic, Multivariate multiscale entropy analysis, IEEE Signal Process. Lett., 19 (2012), 91–94. https://doi.org/10.1109/LSP.2011.2180713 doi: 10.1109/LSP.2011.2180713 |
[60] | M. D. Costa, A. L. Goldberger, Generalized multiscale entropy analysis: Application to quantifying the complex volatility of human heartbeat time series, Entropy, 17 (2015), 1197–1203. https://doi.org/10.3390/e17031197 doi: 10.3390/e17031197 |
[61] | L. Faes, A. Porta, M. Javorka, G. Nollo, Efficient Computation of Multiscale Entropy over Short Biomedical Time Series Based on Linear State-Space Models, Complexity, 2017 (2017), 1768264. https://doi.org/10.1155/2017/1768264 doi: 10.1155/2017/1768264 |
[62] | T. Takahashi, Complexity of spontaneous brain activity in mental disorders, Prog. Neuropsychopharmacol. Biol. Psychiatry, 45 (2013), 258–266. https://doi.org/10.1016/j.pnpbp.2012.05.001 doi: 10.1016/j.pnpbp.2012.05.001 |
[63] | N. Huang, Z. Shen, S. Long, M. Wu, H. H. Shih, Q. Zheng, et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Math. Phys. Eng. Sci., 454 (1998), 903–995. https://doi.org/10.1098/rspa.1998.0193 doi: 10.1098/rspa.1998.0193 |
[64] | N. E. Huang, Z. Wu, A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Rev. Geophys., 46 (2008), 228–251. https://doi.org/10.1029/2007RG000228 doi: 10.1029/2007RG000228 |
[65] | F. R. Kschischang, The Hilbert Transform. Toronto: University of Toronto, 2006. |
[66] | E. Abdulhay, P.Y. Guméry, J. Fontecave, P. Baconnier, Cardiogenic oscillations extraction in inductive plethysmography: Ensemble empirical mode decomposition, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Minnesota, USA, 2009, 2240–2243. https://doi.org/10.1109/IEMBS.2009.5335004 |
[67] | X. Han, J. Peng, A. Cui, F. Zhao, Sparse Principal Component Analysis via Fractional Function Regularity, Math. Probl. Eng., 2020 (2020), 7874140. https://doi.org/10.1155/2020/7874140 doi: 10.1155/2020/7874140 |
[68] | C. K. Arthur, V. A. Temeng, Y. Y. Ziggah, Performance Evaluation of Training Algorithms in Backpropagation Neural Network Approach to Blast-Induced Ground Vibration Prediction, Ghana Mining J., 20 (2020), 20–33. https://doi.org/10.4314/gm.v20i1.3 doi: 10.4314/gm.v20i1.3 |
[69] | K. Kovarski, J. Malvy, R. K. Khanna, S. Arsène, M. Batty, M. Latinus, Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect?, Translational Psychiatry, 9 (2019), 341. https://doi.org/10.1038/s41398-019-0672-6 doi: 10.1038/s41398-019-0672-6 |
[70] | S. A. Nastase, V. Iacovella, B. Davis, U. Hasson, Connectivity in the human brain dissociates entropy and complexity of auditory inputs, NeuroImage, 31 (2015), 292–300. https://doi.org/10.1016/j.neuroimage.2014.12.048 doi: 10.1016/j.neuroimage.2014.12.048 |
[71] | P. Barttfeld, B. Wicker, S. Cukier, S. Navarta, S. Lew, M. Sigman, A big-world network in ASD: dynamical connectivity analysis reflects a deficit in longrange connections and an excess of short-range connections, Neuropsychologia, 49 (2015), 254–263. https://doi.org/10.1016/j.neuropsychologia.2010.11.024 doi: 10.1016/j.neuropsychologia.2010.11.024 |
[72] | H. Zhang, R. Li, X. Wen, Q. Li, X. Wu, Altered Time-Frequency Feature in Default Mode Network of Autism Based on Improved Hilbert-Huang Transform, IEEE J. Biomed. Health Informatics, 25 (2021), 485–492. https://doi.org/10.1109/JBHI.2020.2993109 doi: 10.1109/JBHI.2020.2993109 |
[73] | T. Wadhera, D. Kakkar, Conditional entropy approach to analyze cognitive dynamics in autism spectrum disorder, Neurol. Res., 42 (2020), 869–878. https://doi.org/10.1080/01616412.2020.1788844 doi: 10.1080/01616412.2020.1788844 |
[74] | E. Gani, N. Handayani, S. H. Pratama, N. Afif, F. Aziezah, A. C. Keintjem, et al., Brainwaves Analysis Using Spectral Entropy in Children with Autism Spectrum Disorders (ASD), J. phys. Conf. ser., 1505 (2020), 012070. https://doi.org/10.1088/1742-6596/1505/1/012070 doi: 10.1088/1742-6596/1505/1/012070 |
[75] | E. Amiot, Entropy of Fourier coefficients of periodic musical objects, J. Math. Music, 15 (2021), 235–246. https://doi.org/10.1080/17459737.2020.1777592 doi: 10.1080/17459737.2020.1777592 |
[76] | D. Abásolo, R. Hornero, P. Espino, D. Alvarez, J. Poza, Entropy analysis of the EEG background activity in Alzheimer's disease patients, Physiol. Meas., 27 (2006), 241–253. https://doi.org/10.1088/0967-3334/27/3/003 doi: 10.1088/0967-3334/27/3/003 |
[77] | J. Han, Y. Li, J. Kang, E. Cai, Z. Tong, G. Ouyang, et al., Global Synchronization of Multichannel EEG Based on Rényi Entropy in Children with Autism Spectrum Disorder, Appl. Sci., 7 (2017), 257. https://doi.org/10.3390/app7030257 doi: 10.3390/app7030257 |
[78] | E. Abdulhay, M. Alafeef, H. Hadoush, N. Arunkumar, Resting State EEG-based Diagnosis of Autism via Elliptic Area of Continuous Wavelet Transform Complex Plot, J. Intell. fuzzy syst., 39 (2020), 8599–8607. https://doi.org/10.3233/JIFS-189176 doi: 10.3233/JIFS-189176 |
[79] | R. Okazaki, T. Takahashi, K. Ueno, K. Takahashi, M. Ishitobi, M. Kikuchi, et al., Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: a multiscale entropy approach, Front. Hum. Neurosci., 9 (2015), 25767444. https://doi.org/10.3389/fnhum.2015.00106 doi: 10.3389/fnhum.2015.00106 |
[80] | S. Thapaliya, S. Jayarathna, M. Jaime, Evaluating the EEG and eye movements for autism spectrum disorder, 2018 IEEE Int. Conf. Big Data, Seattle, WA, USA, 2018. https://doi.org/10.1109/BigData.2018.8622501 |
[81] | J. Eldridge, A. E. Lane, M. Belkin, S. Dennis, Robust features for the automatic identification of autism spectrum disorder in children, J. Neurodev. Disord., 6 (2014), 1–12. https://doi.org/10.1186/1866-1955-6-12 doi: 10.1186/1866-1955-6-1 |
[82] | H. Amoud, H. Snoussi, D. Hewson, M. Doussot, J. Duchêne, Intrinsic mode entropy for nonlinear discriminant analysis, IEEE Signal Process. Lett., 14 (2007), 297–300. https://doi.org/10.1109/LSP.2006.888089 doi: 10.1109/LSP.2006.888089 |
[83] | M. Hu, H. Liang, Adaptive multiscale entropy analysis of multivariate neural data, IEEE Trans. Biomed. Eng., 59 (2012), 12–15. https://doi.org/10.1109/TBME.2011.2162511 doi: 10.1109/TBME.2011.2162511 |
[84] | O. Dekhil, M. Ali, Y. E. Nakeib, A. Shalaby, A. Soliman, A. Switala, et.al., A Personalized Autism Diagnosis CAD System Using a Fusion of Structural MRI and Resting-State Functional MRI Data. Front. Psychiatry, 10 (2021), 1–16. https://doi.org/10.3389/fpsyt.2019.00392 doi: 10.3389/fpsyt.2019.00392 |
[85] | O. Dekhil, M. Ali, R. Haweel, Y. Elnakeib, M. Ghazal, H. Hajjdiab, et.al. A Comprehensive Framework for Differentiating Autism Spectrum Disorder From Neurotypicals by Fusing Structural MRI and Resting State Functional MRI, Seminars in Pediatric Neurology., 34 (2020), 100805. https://doi.org/10.1016/j.spen.2020.100805 doi: 10.1016/j.spen.2020.100805 |
[86] | K. Barik, K. Watanabe, J. Bhattacharya, G. Saha, Classification of Autism in Young Children by Phase Angle Clustering in Magnetoencephalogram Signals, 2020 National Conf. Commun. (NCC), Kharagpur, India, 2020, 1–6. https://doi.org/10.1109/NCC48643.2020.9056022 |