Research article Special Issues

Investigation of soliton solutions to the truncated M-fractional (3+1)-dimensional Gross-Pitaevskii equation with periodic potential

  • Received: 15 May 2024 Revised: 19 July 2024 Accepted: 29 July 2024 Published: 05 August 2024
  • MSC : 35C07, 35Q51, 83C15

  • This research explores some modernistic soliton solutions to the (3+1)-dimensional periodic potential the Gross–Pitaevskii equation with a truncated M-fractional derivative plays a significant role in Bose–Einstein condensation, which describes the dynamics of the condensate wave function. The obtained results include trigonometric, hyperbolic trigonometric and exponential function solutions. Three techniques named: the $ \exp_a $ function method, the Sardar sub-equation method, and the extended $ (G'/G) $-expansion approach are employed to achieve a variety of new solutions for the governing model. More comprehensive information about the dynamical representation of some of the solutions is being presented by visualizing the 2D, 3D and contour plots. This work reveals a number of new types of traveling-wave solutions, such as the double periodic singular, the periodic singular, the dark singular, the dark kink singular, the periodic solitary singular, and the singular soliton solutions. These novel solutions are not the same as those that were previously studied for this governing equation. The presented techniques demonstrate clarity, efficacy, and simplicity, revealing their relevance to diverse sets of dynamic and static nonlinear equations pertaining to evolutionary events in computational physics, in addition to other real-world applications and a wide range of study fields for addressing a variety of other nonlinear fractional models that hold significance in the fields of applied science and engineering.

    Citation: Haitham Qawaqneh, Ali Altalbe, Ahmet Bekir, Kalim U. Tariq. Investigation of soliton solutions to the truncated M-fractional (3+1)-dimensional Gross-Pitaevskii equation with periodic potential[J]. AIMS Mathematics, 2024, 9(9): 23410-23433. doi: 10.3934/math.20241138

    Related Papers:

  • This research explores some modernistic soliton solutions to the (3+1)-dimensional periodic potential the Gross–Pitaevskii equation with a truncated M-fractional derivative plays a significant role in Bose–Einstein condensation, which describes the dynamics of the condensate wave function. The obtained results include trigonometric, hyperbolic trigonometric and exponential function solutions. Three techniques named: the $ \exp_a $ function method, the Sardar sub-equation method, and the extended $ (G'/G) $-expansion approach are employed to achieve a variety of new solutions for the governing model. More comprehensive information about the dynamical representation of some of the solutions is being presented by visualizing the 2D, 3D and contour plots. This work reveals a number of new types of traveling-wave solutions, such as the double periodic singular, the periodic singular, the dark singular, the dark kink singular, the periodic solitary singular, and the singular soliton solutions. These novel solutions are not the same as those that were previously studied for this governing equation. The presented techniques demonstrate clarity, efficacy, and simplicity, revealing their relevance to diverse sets of dynamic and static nonlinear equations pertaining to evolutionary events in computational physics, in addition to other real-world applications and a wide range of study fields for addressing a variety of other nonlinear fractional models that hold significance in the fields of applied science and engineering.



    加载中


    [1] A. Neirameh, M. Eslami, New solitary wave solutions for fractional Jaulent–Miodek hierarchy equation, Mod. Phys. Lett. B, 36 (2022), 2150612. https://doi.org/10.1142/S0217984921506120 doi: 10.1142/S0217984921506120
    [2] H. Rezazadeh, M. S. Osman, M. Eslami, M. Ekici, A. Sonmezoglu, M. Asma, et al., Mitigating internet bottleneck with fractional temporal evolution of optical solitons having quadratic–cubic nonlinearity, Optik, 164 (2018), 84–92. https://doi.org/10.1016/j.ijleo.2018.03.006 doi: 10.1016/j.ijleo.2018.03.006
    [3] M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation, Nonlinear Dyn., 96 (2019), 1491–1496. https://doi.org/10.1007/s11071-019-04866-1 doi: 10.1007/s11071-019-04866-1
    [4] F. Badshah, K. U. Tariq, M. Inc, F. Mehboob, On lump, travelling wave solutions and the stability analysis for the (3+1)-dimensional nonlinear fractional generalized shallow water wave model in fluids, Opt. Quant. Electron., 56 (2024), 244. https://doi.org/10.1007/s11082-023-05826-1 doi: 10.1007/s11082-023-05826-1
    [5] K. K. Ali, A. Wazwaz, M. S. Osman, Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method, Optik, 208 (2020), 164132. https://doi.org/10.1016/j.ijleo.2019.164132 doi: 10.1016/j.ijleo.2019.164132
    [6] M. S. Aktar, M. A. Akbar, M. S. Osman, Spatio-temporal dynamic solitary wave solutions and diffusion effects to the nonlinear diffusive predator-prey system and the diffusion-reaction equations, Chaos Soliton. Fract., 160 (2022), 112212. https://doi.org/10.1016/j.chaos.2022.112212 doi: 10.1016/j.chaos.2022.112212
    [7] B. Inan, M. S. Osman, A. k. Turgut, D. Baleanu, Analytical and numerical solutions of mathematical biology models: The Newell-Whitehead-Segel and Allen-Cahn equations, Math. method. Appl. Sci., 43 (2020), 2588–2600. https://doi.org/10.1002/mma.6067 doi: 10.1002/mma.6067
    [8] M. Adel, D. Baleanu, U. Sadiya, M. A. Arefin, M. H. Uddin, M. A. Elamin, et al., Inelastic soliton wave solutions with different geometrical structures to fractional order nonlinear evolution equations, Results in Physics, 38 (2022), 105661. https://doi.org/10.1016/j.rinp.2022.105661 doi: 10.1016/j.rinp.2022.105661
    [9] S. Kumar, S. K. Dhiman, D. Baleanu, M. S. Osman, A. Wazwaz, Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations, Symmetry, 14 (2022), 597. https://doi.org/10.3390/sym14030597 doi: 10.3390/sym14030597
    [10] F. Badshah, K. U. Tariq, A. Bekir, R. N. Tufail, H. Ilyas, Lump, periodic, travelling, semi-analytical solutions and stability analysis for the Ito integro-differential equation arising in shallow water waves, Chaos Soliton. Fract., 182 (2024), 114783. https://doi.org/10.1016/j.chaos.2024.114783 doi: 10.1016/j.chaos.2024.114783
    [11] K. K. Ali, R. Yilmazer, M. S Osman, Dynamic behavior of the (3+1)-dimensional KdV–Calogero–Bogoyavlenskii–Schiff equation, Opt. Quant. Electron., 54 (2022), 160. https://doi.org/10.1007/s11082-022-03528-8 doi: 10.1007/s11082-022-03528-8
    [12] S. Tarla, K. K. Ali, R. Yilmazer, M. S. Osman, The dynamic behaviors of the Radhakrishnan–Kundu–Lakshmanan equation by Jacobi elliptic function expansion technique, Opt. Quant. Electron., 54 (2022), 292. https://doi.org/10.1007/s11082-022-03710-y doi: 10.1007/s11082-022-03710-y
    [13] S. Rashid, K. T. Kubra, S. Sultana, P. Agarwal, M. S. Osman, An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method, J. Comput. Appl. Math., 413 (2022), 114378. https://doi.org/10.1016/j.cam.2022.114378 doi: 10.1016/j.cam.2022.114378
    [14] H. F. Ismael, I. Okumuş, T. Aktürk, H. Bulut, M. S. Osman, Analyzing study for the 3D potential Yu–Toda–Sasa–Fukuyama equation in the two-layer liquid medium, J. Ocean Eng. Sci., 2022. In press. https://doi.org/10.1016/j.joes.2022.03.017
    [15] A. R. Seadawy, N. Cheemaa, A. Biswas, Optical dromions and domain walls in (2+1)-dimensional coupled system, Optik, 227 (2021), 165669. https://doi.org/10.1016/j.ijleo.2020.165669 doi: 10.1016/j.ijleo.2020.165669
    [16] S. El-Ganaini, M. O. Al-Amr, New abundant solitary wave structures for a variety of some nonlinear models of surface wave propagation with their geometric interpretations, Math. Method. Appl. Sci., 45 (2022), 7200–7226. https://doi.org/10.1002/mma.8232 doi: 10.1002/mma.8232
    [17] M. O. Al-Amr, H. Rezazadeh, K. K. Ali, A. Korkmaz, N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities, Commun. Theor. Phys., 72 (2020), 065503. https://doi.org/10.1088/1572-9494/ab8a12 doi: 10.1088/1572-9494/ab8a12
    [18] M. N. Rasheed, M. O. Al-Amr, E. A. Az-Zo'bi, M. A. Tashtoush, L. Akinyemi, Stable optical solitons for the Higher-order Non-Kerr NLSE via the modified simple equation method, Mathematics, 9 (2021) 1986. https://doi.org/10.3390/math9161986
    [19] M. Eslami, H. Rezazadeh, The first integral method for Wu–Zhang system with conformable time-fractional derivative, Calcolo, 53 (2016), 475–485. https://doi.org/10.1007/s10092-015-0158-8 doi: 10.1007/s10092-015-0158-8
    [20] H. Rezazadeh, D. Kumar, A. Neirameh, M. Eslami, M. Mirzazadeh, Applications of three methods for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model with Kerr law nonlinearity, Pramana, 94 (2020), 39. https://doi.org/10.1007/s12043-019-1881-5 doi: 10.1007/s12043-019-1881-5
    [21] A. Zafar, M. Raheel, M. Mirzazadeh, M. Eslami, Different soliton solutions to the modified equal-width wave equation with Beta-time fractional derivative via two different methods, Rev. Mex. Fis., 68 (2022), 010701. https://doi.org/10.31349/revmexfis.68.010701 doi: 10.31349/revmexfis.68.010701
    [22] S. Sahoo, S. S. Ray, M. A. Abdou, New exact solutions for time-fractional Kaup-Kupershmidt equation using improved $(G'/G)-$expansion and extended $(G'/G)-$expansion methods, Alex. Eng. J., 59 (2020), 3105–3110. https://doi.org/10.1016/j.aej.2020.06.043 doi: 10.1016/j.aej.2020.06.043
    [23] Z. Zou, R. Guo, The Riemann–Hilbert approach for the higher-order Gerdjikov–Ivanov equation, soliton interactions and position shift, Commun. Nonlinear Sci., 124 (2023), 107316. https://doi.org/10.1016/j.cnsns.2023.107316 doi: 10.1016/j.cnsns.2023.107316
    [24] N. Nasreen, U. Younas, T. A. Sulaiman, Z. Zhang, D. Lu, A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model, Results Phys., 51 (2023), 106722. https://doi.org/10.1016/j.rinp.2023.106722 doi: 10.1016/j.rinp.2023.106722
    [25] F. Badshah, K. U. Tariq, A. Bekir, S. M. R. Kazmi, Stability, modulation instability and wave solutions of time-fractional perturbed nonlinear Schrödinger model, Opt. Quant. Electron., 56 (2024), 425. https://doi.org/10.1007/s11082-023-06058-z doi: 10.1007/s11082-023-06058-z
    [26] O. M. Braun, Y. S. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep., 306 (1998), 1–108. https://doi.org/10.1016/S0370-1573(98)00029-5 doi: 10.1016/S0370-1573(98)00029-5
    [27] S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755 doi: 10.1016/j.aml.2021.107755
    [28] L. M. Song, Z. J. Yang, X. L. Li, S. M. Zhang, Coherent superposition propagation of Laguerre–Gaussian and Hermite–Gaussian solitons, Appl. Math. Lett., 102 (2020), 106114. https://doi.org/10.1016/j.aml.2019.106114 doi: 10.1016/j.aml.2019.106114
    [29] S. Shen, Z. J. Yang, X. L. Li, S. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media, Commun. Nonlinear Sci., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005 doi: 10.1016/j.cnsns.2021.106005
    [30] Z. Y. Sun, D. Deng, Z. G. Pang, Z. J. Yang, Nonlinear transmission dynamics of mutual transformation between array modes and hollow modes in elliptical sine-Gaussian cross-phase beams, Chaos Soliton. Fract., 178 (2024), 114398. https://doi.org/10.1016/j.chaos.2023.114398 doi: 10.1016/j.chaos.2023.114398
    [31] Z. Y. Sun, J. Li, R. Bian, D. Deng, Z. J. Yang, Transmission mode transformation of rotating controllable beams induced by the cross phase, Opt. Express, 32 (2024), 9201–9212. https://doi.org/10.1364/OE.520342 doi: 10.1364/OE.520342
    [32] I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, Sh. Momani, Design fractional-order PID controllers for single-joint robot arm model, Int. J. Advance Soft Compu. Appl., 14 (2022), 96–114. 10.15849/IJASCA.220720.07 doi: 10.15849/IJASCA.220720.07
    [33] H. Qawaqneh, A. Zafar, M. Raheel, A. A. Zaagan, E. H. M. Zahran, A. Cevikel, et al., New soliton solutions of M-fractional Westervelt model in ultrasound imaging via two analytical techniques, Opt. Quant. Electron. 56 (2024), 737. https://doi.org/10.1007/s11082-024-06371-1
    [34] A. Zafar, K. K. Ali, M. Raheel, K. S. Nisar, A. Bekir, Abundant M-fractional optical solitons to the pertubed Gerdjikov–Ivanov equation treating the mathematical nonlinear optics, Opt. Quant. Electron., 54 (2022), 25. https://doi.org/10.1007/s11082-021-03394-w doi: 10.1007/s11082-021-03394-w
    [35] A. Zafar, A. Bekir, M. Raheel, H. Rezazadeh, Investigation for optical soliton solutions of two nonlinear Schrödinger equations via two concrete finite series methods, Int. J. Appl. Comput. Math., 6 (2020), 65. https://doi.org/10.1007/s40819-020-00818-1 doi: 10.1007/s40819-020-00818-1
    [36] N. Ullah, M. I. Asjad, J. Awrejcewicz, T. Muhammad, D. Baleanu, On soliton solutions of fractional-order nonlinear model appears in physical sciences, AIMS Mathematics, 7 (2022), 7421–7440. https://doi.org/10.3934/math.2022415 doi: 10.3934/math.2022415
    [37] N. Taghizadeh, S. R. M. Noori, S. B. M. Noori, Application of the extended $(G'/G)$-expansion method to the improved Eckhaus equation, Appl. Appl. Math., 9 (2014), 24.
    [38] M. Ekici, Soliton and other solutions of nonlinear time fractional parabolic equations using extended $(G'/G)$-expansion method, Optik, 130 (2017), 1312–1319. https://doi.org/10.1016/j.ijleo.2016.11.104 doi: 10.1016/j.ijleo.2016.11.104
    [39] W. Wu, X. Ma, B. Zeng, H. Zhang, P. Zhang, A novel multivariate grey system model with conformable fractional derivative and its applications, Comput. Ind. Eng., 164 (2022), 107888. https://doi.org/10.1016/j.cie.2021.107888 doi: 10.1016/j.cie.2021.107888
    [40] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new defination of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [41] K. S. Nisar, A. Ciancio, K. K. Ali, M. S. Osman, C. Cattani, D. Baleanu, et al., On beta-time fractional biological population model with abundant solitary wave structures, Alex. Eng. J., 61 (2022), 1996–2008. https://doi.org/10.1016/j.aej.2021.06.106 doi: 10.1016/j.aej.2021.06.106
    [42] N. Al-Salti, E. Karimov, K. Sadarangani, On a differential equation with Caputo-Fabrizio fractional derivative of order $1\leq$ beta $\leq2$ and application to mass-spring-damper system, 2016, arXiv: 1605.07381. https://doi.org/10.48550/arXiv.1605.07381
    [43] A. S. T. Tagne, J. M. E. Ema'a, G. H. Ben-Bolie, D. Buske, A new truncated M-fractional derivative for air pollutant dispersion, Indian J. Phys., 94 (2020), 1777–1784. https://doi.org/10.1007/s12648-019-01619-z doi: 10.1007/s12648-019-01619-z
    [44] A. Zafar, A. Bekir, M. Raheel, W. Razzaq, Optical soliton solutions to Biswas-Arshed model with truncated M-fractional derivative, Optik, 222 (2020), 165355. https://doi.org/10.1016/j.ijleo.2020.165355 doi: 10.1016/j.ijleo.2020.165355
    [45] A. Neirameh, Exact analytical solutions for 3D- Gross-Pitaevskii equation with periodic potential by using the Kudryashov method, J. Egypt. Math. Soc., 24 (2016), 49–53. https://doi.org/10.1016/j.joems.2014.11.004 doi: 10.1016/j.joems.2014.11.004
    [46] M. Ma, Z. Huang, Bright soliton solution of a Gross–Pitaevskii equation, Appl. Math. Lett., 26 (2013), 718–724. https://doi.org/10.1016/j.aml.2013.02.002 doi: 10.1016/j.aml.2013.02.002
    [47] A. A. Bastami, M. R. Belić, D. Milović, N. Z. Petrović, Analytical chirped solutions to the (3+1)-dimensional Gross-Pitaevskii equation for various diffraction and potential functions, Phys. Rev. E, 84 (2011), 016606. https://doi.org/10.1103/PhysRevE.84.016606 doi: 10.1103/PhysRevE.84.016606
    [48] T. A. Sulaiman, G. Yel, H. Bulut, M-fractional solitons and periodic wave solutions to the Hirota-Maccari system, Mod. Phys. Lett. B, 33 (2019), 1950052. https://doi.org/10.1142/S0217984919500520 doi: 10.1142/S0217984919500520
    [49] J. V. da C. Sousa, E. C. de Oliveira, A new truncated $ M $-fractional derivative type unifying some fractional derivative types with classical properties, 2017, arXiv: 1704.08187v4. https://doi.org/10.48550/arXiv.1704.08187
    [50] A. T. Ali, E. R. Hassan, General $Exp_a$-function method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 451–459. https://doi.org/10.1016/j.amc.2010.06.025 doi: 10.1016/j.amc.2010.06.025
    [51] E. M. E. Zayed, A. G. Al-Nowehy, Generalized Kudryashov method and general $exp_a$ function method for solving a high order nonlinear schrödinger equation, J. Space Explor., 6 (2017), 120.
    [52] K. Hosseini, Z. Ayati, R. Ansari, New exact solutions of the Tzitzéica-type equations in non-linear optics using the $exp_a$ function method, J. Mod. Optic., 65 (2018), 847–851. https://doi.org/10.1080/09500340.2017.1407002 doi: 10.1080/09500340.2017.1407002
    [53] A. Zafar, The $exp_a$ function method and the conformable time-fractional KdV equations, Nonlinear Eng., 8 (2019), 728–732. https://doi.org/10.1515/nleng-2018-0094 doi: 10.1515/nleng-2018-0094
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(561) PDF downloads(41) Cited by(2)

Article outline

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog