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Abstract: This research explores some modernistic soliton solutions to the (3+1)-dimensional
periodic potential the Gross–Pitaevskii equation with a truncated M-fractional derivative plays a
significant role in Bose–Einstein condensation, which describes the dynamics of the condensate
wave function. The obtained results include trigonometric, hyperbolic trigonometric and exponential
function solutions. Three techniques named: the expa function method, the Sardar sub-equation
method, and the extended (G′/G)-expansion approach are employed to achieve a variety of
new solutions for the governing model. More comprehensive information about the dynamical
representation of some of the solutions is being presented by visualizing the 2D, 3D and contour
plots. This work reveals a number of new types of traveling-wave solutions, such as the double
periodic singular, the periodic singular, the dark singular, the dark kink singular, the periodic solitary
singular, and the singular soliton solutions. These novel solutions are not the same as those that were
previously studied for this governing equation. The presented techniques demonstrate clarity, efficacy,
and simplicity, revealing their relevance to diverse sets of dynamic and static nonlinear equations
pertaining to evolutionary events in computational physics, in addition to other real-world applications
and a wide range of study fields for addressing a variety of other nonlinear fractional models that hold
significance in the fields of applied science and engineering.
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1. Introduction

Nonlinear evolution equations (NLEEs) have a wide range of applications in a variety of fields,
including ocean engineering, solitary wave theory, hydrodynamics, optical fibers, chaos theory, and
turbulence theory. The search for accessible qualities and the construction of exact solutions for
nonlinear dynamical models are recognized to be critical to many nonlinear mathematical and
physical processes. Many mathematical models have been developed in these areas in the form of
nonlinear partial differential equations (NLPDEs). In literature, numerous schemes are developed to
analyse such models like the generalized exponential rational function scheme [1], the Liu’s extended
trial function method [2], the generalized unified method [3], the exp(−φ(ξ) approach [4], the
sine-Gordon expansion technique [5], the enhanced modified simple equation scheme [6], the unified
technique [7], the extended tanh function scheme [8], the Lie symmetry technique [9], the symbolic
computational method, the Hirota bilinear approach [10], the long wave technique [11], the Jacobi
elliptic function expansion scheme [12], the Elzaki transform decomposition technique [13], the
(m + 1

G )-expansion and adomian decomposition schemes [14], the extended modified auxiliary
equation mapping technique [15], the simplest equation and Kudryashov’s new function
techniques [16], the modified simple equation scheme [17], the modified Kudryashov simple equation
technique [18], the first integral technique [19], the Bäcklund transformation scheme [20], the
extended jacobi elliptic function expansion technique [21], the extended (G/G)-expansion and the
improved (G′/G)-expansion schemes [22], the Riemann-Hilbert approach [23], the modified Sardar
sub-equation method [24], the polynomial expansion technique [25] and many others [26–33].

There are more convenient ways in the literature, such as the expa function, the Sardar
sub-equation and the extended (G′/G)-expansion methods, which have many prominent applications
in contemporary research. For instance, some new analytical results of the perturbed
Gerdjikov-Ivanov model have been achieved by using the expa function and extended tanh function
expansion methods in [34]. By applying the expa function and hyperbolic function techniques,
various kinds of wave solitons for a set of nonlinear Schrödinger equations are obtained [35]. Later
on, different types of exact solitons of fractional (4+1)-dimensional Fokas equation are developed by
utilizing the Sardar sub-equation method in [36]. Various kinds of wave solutions to the
time-fractional parabolic equations have been obtained by applying the extended (G′/G)-expansion
scheme [37, 38]. Currently, fractional calculus has gained much importance due to its various
applications in different fields of scientific research.

Therefore, different definitions of fractional order derivatives have been introduced, like the
conformable fractional derivative [39, 40], the beta derivative [41], the Caputo-Fabrizio fractional
derivative [42], the truncated M-fractional derivative [43, 44] and many others. In this study, the
truncated M-fractional (3+1)-dimensional Gross–Pitaevskii equation with periodic potential has been
investigated analytically. In literature, Various approaches have been applied to construct different
exact wave solutions for the governing model. For example, some new kinds of solitary wave
solutions have been obtained by utilizing the Kudryashov method [45]. By applying the variational
method, bright soliton solutions have been obtained in [46]. A collection of chirped-type exact wave
solutions has been achieved by using the F-expansion technique [47].

The basic focus of this work is to investigate the truncated M-fractional (3+1)-dimensional Gross–
Pitaevskii equation by employing the expa function approach, the Sardar sub-equation approach, and
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the extended (G′/G)-expansion approach. This study has different sections: Section 2: truncated M-
fractional derivative and its characteristics; Section 3: model description; Section 4: description of
methodologies; Section 5: mathematical treatment of model; Section 6: exact solutions of model;
Section 7: conclusion.

2. Truncated M-derivative

2.1. Definition

Suppose u(t) : [0,∞)→<, then the truncated M-derivative of u of order ε is given [48]

Dε,%
M,tu(t) = lim

τ→0

u (t E%(τt1−ε)) − u(t)
τ

, 0 < ε < 1, % > 0, (2.1)

where E%(.) shows the truncated Mittag–Leffler function of one parameter that is defined as [49]

E%(z) =

i∑
j=0

z j

Γ(% j + 1)
, % > 0 and z ∈ C. (2.2)

2.2. Characteristics

Let ε ∈ (0, 1], % > 0, r, s ∈ <, and g, f are ε− differentiable at a point t > 0, then by [48]:

(i) Dε,%
M,t(rg(t) + s f (t)) = rDε,%

M,tg(t) + sDε,%
M,t f (t). (2.3)

(ii) Dε,%
M,t(g(t). f (t)) = g(t)Dε,%

M,t f (t) + f (t)Dε,%
M,tg(t). (2.4)

(iii) Dε,%
M,t(

g(t)
f (t)

) =
f (t)Dε,%

M,tg(t) − g(t)Dε,%
M,t f (t)

( f (t))2 . (2.5)

(iv) Dε,%
M,t(A) = 0, where A is a constant. (2.6)

(v) Dε,%
M,tg(t) =

t1−ε

Γ(% + 1)
dg(t)

dt
. (2.7)

3. The governing model

Consider the following (3+1)-dimensional Gross–Pitaevskii equation with a truncated M-fractional
derivative [45]

ιDΥ,%
M,tg + ∇g − U(x)g − θ|g|2g = 0, (3.1)

where g = g(x, y, z, t) represents a wave function, |g| denotes a modulus value of g, while ∇ is a
Laplacian operator, the nonlinear coefficient θ(x, y, z, t) represents a real-valued function that depends
on the time and spatial coordinates, and the function U(x) shows the periodic potential of the trap
to confine the condensate. Eq (3.1) describes the Bose–Einstein condensate in the low temperature
regime. This equation appears in the studies of small-amplitude gravity waves, Langmuir waves, plane-
diffracted waves, Davydov’s alpha-helix waves, and so on.
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4. Presentation of methodologies

4.1. The expa function approach

Here, we will give a complete concept of this scheme.
Assuming the nonlinear partial differential equation (PDE),

G(q, q2qt, qx, qtt, qxx, qxt, ...) = 0. (4.1)

Eq (4.3) transformed in nonlinear ordinary differential equation (ODE)

Λ(Q,Q
′

,Q
′′

, ..., ) = 0, (4.2)

by using the following transformations:

q(x, y, t) = Q(ζ), ζ = ax + by + rt. (4.3)

Considering the root of Eq (4.2), which is shown in [50–53]:

Q(ζ) =
α0 + α1dζ + ... + αmdmζ

β0 + β1dζ + ... + βmdmζ , d , 0, 1, (4.4)

here αi and βi(0 ≤ i ≤ m) are undetermined. The positive integral value of m is calculated by utilizing
the homogeneous balance technique in Eq (4.2). Substituting Eq (4.4) into Eq (4.2), gives

℘(dζ) = `0 + `1dζ + ... + `tdtζ = 0. (4.5)

Taking `i (0 ≤ i ≤ t) in Eq (4.5) equal to 0, a system of algebraic equations is achieved as fellows.

`i = 0, where i = 0, · · · , t, (4.6)

By using the solutions obtained, we achieve the exact results of Eq (4.1).

4.2. The Sardar sub-equation approach

This part is about the fundamental steps of the Sardar sub-equation method [36]. Assuming the
nonlinear fractional partial differential equation given as:

F(g, gt, gxx, gxt, ggtt, gxy, ...) = 0. (4.7)

where g = g(x, y, t) represents a wave profile.
Applying the wave transformations given as follows:

g(x, y, t) = G(ζ), ζ = λx + κy + µt. (4.8)

We get a nonlinear ODE given as:

Y(G,G′′,GG′′,G′G2, ...) = 0. (4.9)
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Consider Eq (4.9), which has the solution in the following form:

G(ζ) =

m∑
i=0

biψ
i(ζ). (4.10)

where ψ(ζ) fulfills the ODE given as:

ψ
′

(ζ) =
√
σ + κψ2(ζ) + ψ4(ζ). (4.11)

Here, σ and κ are constants.
Using Eq (4.10) into Eq (4.9) with Eq (4.11) and collecting the coefficients of each power of ψi. By

putting the coefficient of each power equal to 0, we gain a set of algebraic equations in the terms bi, λ,
µ. By solving the obtained system of equations, we obtain the values of the parameters.
Case 1: If κ > 0 and σ = 0, then

ψ±1 = ±
√
−κab sechab(

√
κ ζ), (4.12)

ψ±2 = ±
√
κab cschab(

√
κ ζ), (4.13)

where, sechab(ζ) = 2
aeζ+be−ζ , cschab(ζ) = 2

aeζ−be−ζ .
Case 2: If κ < 0 and σ = 0, then

ψ±3 = ±
√
−κab secab(

√
−κ ζ), (4.14)

ψ±4 = ±
√
−κab cscab(

√
−κ ζ), (4.15)

where, secab(ζ) = 2
aeιζ+be−ιζ , cscab(ζ) = 2ι

aeιζ−be−ιζ .
Case 3: If κ < 0 and σ = κ2

4 , then

ψ±5 = ±

√
−
κ

2
tanhab(

√
−
κ

2
ζ), (4.16)

ψ±6 = ±

√
−
κ

2
cothab(

√
−
κ

2
ζ), (4.17)

ψ±7 = ±

√
−
κ

2
(tanhab(

√
−2κ ζ) ± ι

√
ab sechab(

√
−2κ ζ)), (4.18)

ψ±8 = ±

√
−
κ

2
(cothab(

√
−2κ ζ) ±

√
ab cschab(

√
−2κ ζ)), (4.19)

ψ±9 = ±

√
−
κ

8
(tanhab(

√
−
κ

8
ζ) + cothab(

√
−
κ

8
ζ)), (4.20)

where, tanhab(ζ) = aeζ−be−ζ
aeζ+be−ζ , cothab(ζ) = aeζ+be−ζ

aeζ−be−ζ .
Case 4: If κ > 0 and σ = κ2

4 , then

ψ±10 = ±

√
κ

2
tanab(

√
κ

2
ζ), (4.21)
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ψ±11 = ±

√
κ

2
cotab(

√
κ

2
ζ), (4.22)

ψ±12 = ±

√
κ

2
(tanab(

√
2κ ζ) ±

√
ab secab(

√
2κ ζ)), (4.23)

ψ±13 = ±

√
κ

2
(cotab(

√
2κ ζ) ±

√
ab cscab(

√
2κ ζ)), (4.24)

ψ±14 = ±

√
κ

8
(tanab(

√
κ

8
ζ) + cotab(

√
κ

8
ζ)), (4.25)

where, tanab(ζ) = −ι aeιζ−be−ιζ
aeιζ+be−ιζ , cotab(ζ) = ι aeιζ+be−ιζ

aeιζ−be−ιζ .

4.3. The extended (G′/G)− expansion approach

In this part, there are some fundamental steps of this method given in [22].
Step 1:

Supposing the nonlinear fractional partial differential equation (NLFPDE) is shown as follows:

G(q,Dα,γ
M,tq, q

2qx, qy, qyy, qxx, qxy, ...) = 0, (4.26)

Here, q = q(x, y, t) shows the wave function.
Step 2: Assuming the wave transform is shown as follows:

q(x, y, t) = Q(ζ), ζ = x − νy +
Γ(γ + 1)

α
(κtα), (4.27)

Putting Eq (4.27) into Eq (4.26), results in the form of the ordinary differential equation (ODE)
shown as:

Λ(Q(ζ),Q2(ζ)Q
′

(ζ),Q
′′

(ζ), ...) = 0, (4.28)

Step 3:
Considering toots of Eq (4.28) in the form given as:

Q(ζ) =

m∑
i=−m

αi

(
G′(ζ)
G(ζ)

)i

, (4.29)

In Eq (4.29), α0 and αi, (i = ±1,±2,±3, ...,±m) are unknowns, and αi , 0. Using the homogenous
balance method in Eq. (4.28), one can calculate the positive integer m.

The function G = G(ζ) fulfills the Riccati differential equation shown as follows:

dGG′′ − aG2 − bGG′ − c(G′)2 = 0, (4.30)

where a, b, c, and d are constants.
Step 4:

Suppose Eq (4.30) have results shown as:
Case 1: if b , 0 and b2 + 4ad − 4ac > 0, then
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G′(ζ)
G(ζ)

)
=

b
2(d − c)

+

√
−4ac + 4ad + b2

2(d − c)

×


C1 sinh

(
ζ
√
−4ac+4ad+b2

2d

)
+ C2 cosh

(
ζ
√
−4ac+4ad+b2

2d

)
C1 cosh

(
ζ
√
−4ac+4ad+b2

2d

)
+ C2 sinh

(
ζ
√
−4ac+4ad+b2

2d

)
 , (4.31)

Case 2: if b , 0 and b2 + 4ad − 4ac < 0, then(
G′(ζ)
G(ζ)

)
=

b
2(d − c)

+

√
4ac − 4ad − b2

2(d − c)

×


C2 cos

(
ζ
√

4ac−4ad−b2

2d

)
−C1 sin

(
ζ
√

4ac−4ad−b2

2d

)
C1 cos

(
ζ
√

4ac−4ad−b2

2d

)
+ C2 sin

(
ζ
√

4ac−4ad−b2

2d

)
 , (4.32)

Case 3: if b , 0 and b2 + 4ad − 4ac = 0, then(
G′(ζ)
G(ζ)

)
=

b
2(d − c)

+
dD

(d − c)(C − Dζ)
, (4.33)

Case 4: if b = 0 and ad − ac > 0, then(
G′(ζ)
G(ζ)

)
=

√
ad − ac

(d − c)


C1 sinh

(
ζ
√

ad−ac
d

)
+ C2 cosh

(
ζ
√

ad−ac
d

)
C1 cosh

(
ζ
√

ad−ac
d

)
+ C2 sinh

(
ζ
√

ad−ac
d

)
 , (4.34)

Case 5: if b = 0 and ad − ac < 0, then(
G′(ζ)
G(ζ)

)
=

√
ac − ad
d − c


C2 cos

(
ζ
√

ac−ad
d

)
−C1 sin

(
ζ
√

ac−ad
d

)
C1 cos

(
ζ
√

ac−ad
d

)
+ C2 sin

(
ζ
√

ac−ad
d

)
 , (4.35)

where a, b, c, d, C1, and C2 are constants.
Step 5:

Substituting Eq (4.29) along with Eq (4.30) into Eq (4.28) and collecting the coefficients of each
power of

(
G′(ζ)
G(ζ)

)
. By putting each coefficient equal to zero, we achieve a set of algebraic equations

involving ν, κ, αi, (i = 0,±1,±2, ...,±m) and other parameters.
Step 6:

Solving the obtained set of equations by using Mathematica software.
Step 7:

Putting the gained solutions into Eq (4.29), we obtain the exact solutions of Eq (4.27).

5. Mathematical analysis

Consider the following traveling wave transformations:

g(x, y, z, t) = G(ζ) × exp
(
ιδ

(
ρx + µy + τz + λ

Γ(% + 1)
ε

tε
))
, (5.1)
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and
ζ = x + y + z − ω

Γ(% + 1)
ε

tε , (5.2)

here, G(ζ) represents the amplitude of the wave profile, whereas λ and ω are the velocities of solitons,
δ denotes a wave number, while ,ρ,µ and τ are the other parameters.

By using Eq(5.1) into Eq(3.1), we obtain the real and imaginary parts given as follows:
The real part

3G − (δ2(ρ2 + µ2 + τ2) + δλ + 2U)G − θG3 = 0, (5.3)

and the imaginary part
δ(ρ + µ + τ) − ω = 0, (5.4)

From Eq(5.4), we obtain the velocity of solitons, given as:

ω = δ(ρ + µ + τ). (5.5)

By utilizing the homogenous balance approach in Eq (5.3), we achieve m = 1.
Now we will find the soliton solutions to the above Eq (5.3) by using the described approaches.

5.1. Application to the expa function approach

For m = 1, Eq (4.4) changes into

G(ζ) =
α0 + α1dζ

β0 + β1dζ
. (5.6)

By inserting Eq (5.6) into Eq (5.3) and solving the system of equations, we obtain different solution
sets given as follows:
Set 1:α0 = −

√
3
2β0 log(d)
√
θ

, α1 =

√
3
2β1 log(d)
√
θ

, λ = −
3 log2(d) + 2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

)
2δ

 , (5.7)

gI
1(x, y, z, t) = −

√
3
2 log(d)
√
θ

β0 − β1d(x+y+z−δ(ρ+µ+τ) Γ(%+1)
ε tε )

β0 + β1d(x+y+z−δ(ρ+µ+τ) Γ(%+1)
ε tε )


× exp

ιδ(ρx + µy + τz − (
3 log2(d) + 2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

)
2δ

)
Γ(% + 1)

ε
tε)

 . (5.8)

Set 2:α0 =

√
3
2β0 log(d)
√
θ

, α1 = −

√
3
2β1 log(d)
√
θ

, λ = −
3 log2(d) + 2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

)
2δ

 , (5.9)
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gI
2(x, y, z, t) =

√
3
2 log(d)
√
θ

β0 − β1d(x+y+z−δ(ρ+µ+τ) Γ(%+1)
ε tε )

β0 + β1d(x+y+z−δ(ρ+µ+τ) Γ(%+1)
ε tε )


× exp

ιδ(ρx + µy + τz − (
3 log2(d) + 2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

)
2δ

)
Γ(% + 1)

ε
tε)

 . (5.10)

5.2. Application to the SSE approach

For m=1, Eq (4.10) reduces into
G(ζ) = b0 + b1ψ(ζ) (5.11)

Putting Eq (5.11) into Eq (5.3) along Eq (5.12). By summing up the coefficients of each power of
ψ(ζ) and putting them equal to zero, we get a set of algebraic equations. By solving the gained system
with the use of the Mathematica tool, we achieve the below solution sets.
Set 1: b0 = 0, b1 = ±

√
6
√
θ
, λ =

δ2
(
−

(
µ2 + ρ2 + τ2

))
+ 3κ − 2U

δ

 , (5.12)

gII
1 (x, y, z, t) = ±

√
6
√
θ

(
√
−κab sechab(

√
κ ζ)) × exp

(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.13)

gII
2 (x, y, z, t) = ±

√
6
√
θ

(
√
κab cschab(

√
κ ζ) × exp

(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.14)

Case 2:

gII
3 (x, y, z, t) = ±

√
6
√
θ

(
√
−κab secab(

√
−κ ζ)) × exp

(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.15)

gII
4 (x, y, z, t) = ±

√
6
√
θ

(
√
−κab cscab(

√
−κ ζ)) × exp

(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.16)

Case 3:

gII
5 (x, y, z, t) = ±

√
6
√
θ

(
√
−
κ

2
tanhab(

√
−
κ

2
ζ)) × exp

(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.17)

gII
6 (x, y, z, t) = ±

√
6
√
θ

(
√
−
κ

2
cothab(

√
−
κ

2
ζ)) × exp

(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.18)

gII
7 (x, y, z, t) = ±

√
6
√
θ

(
√
−
κ

2
(tanhab(

√
−2κ ζ) ± ι

√
ab sechab(

√
−2κ ζ)))

× exp
(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.19)
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gII
8 (x, y, z, t) = ±

√
6
√
θ

(
√
−
κ

2
(cothab(

√
−2κ ζ) ±

√
ab cschab(

√
−2κ ζ)))

× exp
(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.20)

gII
9 (x, y, z, t) = ±

√
6
√
θ

(
√
−
κ

8
(tanhab(

√
−
κ

8
ζ) + cothab(

√
−
κ

8
ζ)))

× exp
(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.21)

Case 4

gII
10(x, y, z, t) = ±

√
6
√
θ

(
√
κ

2
tanab(

√
κ

2
ζ)) × exp

(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.22)

gII
11(x, y, z, t) = ±

√
6
√
θ

(
√
κ

2
cotab(

√
κ

2
ζ)) × exp

(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.23)

gII
12(x, y, z, t) = ±

√
6
√
θ

(
√
κ

2
(tanab(

√
2κ ζ) ±

√
ab secab(

√
2κ ζ)))

× exp
(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.24)

gII
13(x, y, z, t) = ±

√
6
√
θ

(
√
κ

2
(cotab(

√
2κ ζ) ±

√
ab cscab(

√
2κ ζ)))

× exp
(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.25)

gII
14(x, y, z, t) = ±

√
6
√
θ

(
√
κ

8
(tanab(

√
κ

8
ζ) + cotab(

√
κ

8
ζ)))

× exp
(
ιδ(ρx + µy + τz + λ

Γ(% + 1)
ε

tε)
)
. (5.26)

5.3. Application to the extended (G′/G)-expansion approach

For m = 1, Eq (4.29) becomes:

G(ζ) = α−1

(
G′(ζ)
G(ζ)

)−1

+ α0 + α1

(
G′(ζ)
G(ζ)

)
. (5.27)

here α−1, α0 and α1 are unknowns.
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Inserting Eq (5.27) along with Eq (4.30) into Eq (5.3) and solving the system for α−1, α0, α1 and
other parameters, we gain different solution sets given as follows:
Set 1:α−1 = −

√
6a

d
√
θ
, α0 = −

√
3
2b

d
√
θ
, α1 = 0, λ =

2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ

 . (5.28)

By using Eqs (5.28), (5.27), (4.31), and (5.1), we achieve

gIII
1 (x, y, z, t) =

−

√
3
2

d
√
θ

(b + 2a(
b

2(d − c)
+

√
4ad − 4ac + b2

2(d − c)

(
C1 sinh( ζ

√
4ad−4ac+b2

2d ) + C2 cosh( ζ
√

4ad−4ac+b2

2d )

C1 cosh( ζ
√

4ad−4ac+b2

2d ) + C2 sinh( ζ
√

4ad−4ac+b2

2d )
))−1)

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ
)
Γ(% + 1)

ε
tε)

 . (5.29)

By using Eqs (5.28), (5.27), (4.32), and (5.1), we achieve

gIII
2 (x, y, z, t) = −

√
3
2

d
√
θ

(b + 2a(
b

2(d − c)
+

√
4ac − 4ad − b2

2(d − c)

(
C2 cos

(
ζ
√

4ac−4ad−b2

2d

)
−C1 sin

(
ζ
√

4ac−4ad−b2

2d

)
C1 cos

(
ζ
√

4ac−4ad−b2

2d

)
+ C2 sin

(
ζ
√

4ac−4ad−b2

2d

) ))−1)

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ
)
Γ(% + 1)

ε
tε)

 . (5.30)

By using Eqs (5.28), (5.27), (4.34), and (5.1), we achieve

gIII
3 (x, y, z, t) = −

a
√

6

d
√
θ


√

ad − ac
(d − c)


C1 sinh

(
ζ
√

ad−ac
d

)
+ C2 cosh

(
ζ
√

ad−ac
d

)
C1 cosh

(
ζ
√

ad−ac
d

)
+ C2 sinh

(
ζ
√

ad−ac
d

)


−1

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
2d2δ

)
Γ(% + 1)

ε
tε)

 . (5.31)

By using Eqs (5.28), (5.27), (4.35), and (5.1), we achieve

gIII
4 (x, y, z, t) = −

a
√

6

d
√
θ


√

ac − ad
d − c


C2 cos

(
ζ
√

ac−ad
d

)
−C1 sin

(
ζ
√

ac−ad
d

)
C1 cos

(
ζ
√

ac−ad
d

)
+ C2 sin

(
ζ
√

ac−ad
d

)


−1
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× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
2d2δ

)
Γ(% + 1)

ε
tε)

 . (5.32)

Set 2:α−1 = 0, α0 = −

√
3
2 b

d
√
θ
, α1 =

√
6(d − c)

d
√
θ

, λ =
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ

 .
(5.33)

By using Eqs (5.33), (5.27), (4.31), and (5.1), we achieve

gIII
5 (x, y, z, t) =

−

√
3
2

d
√
θ

(b − (b +
√

4ad − 4ac + b2)

(
C1 sinh( ζ

√
4ad−4ac+b2

2d ) + C2 cosh( ζ
√

4ad−4ac+b2

2d )

C1 cosh( ζ
√

4ad−4ac+b2

2d ) + C2 sinh( ζ
√

4ad−4ac+b2

2d )
)))

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ
)
Γ(% + 1)

ε
tε)

 . (5.34)

By using Eqs (5.33), (5.27), (4.32), and (5.1), we achieve

gIII
6 (x, y, z, t) =

√
3
2

d
√
θ

(−b + 2(d − c)(
b

2(d − c)
+

√
4ac − 4ad − b2

2(d − c)

(
C2 cos( ζ

√
4ac−4ad−b2

2d ) −C1 sin( ζ
√

4ac−4ad−b2

2d )

C1 cos( ζ
√

4ac−4ad−b2

2d ) + C2 sin( ζ
√

4ac−4ad−b2

2d )
)))

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ
)
Γ(% + 1)

ε
tε)

 . (5.35)

By using Eqs (5.33), (5.27), (4.34), and (5.1), we achieve

gIII
7 (x, y, z, t) =

√
6(d − c)

d
√
θ


√

ad − ac
(d − c)


C1 sinh

(
ζ
√

ad−ac
d

)
+ C2 cosh

(
ζ
√

ad−ac
d

)
C1 cosh

(
ζ
√

ad−ac
d

)
+ C2 sinh

(
ζ
√

ad−ac
d

)



× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
2d2δ

)
Γ(% + 1)

ε
tε)

 . (5.36)

By using Eqs (5.33), (5.27), (4.35), and (5.1), we achieve

gIII
8 (x, y, z, t) =

√
6(d − c)

d
√
θ


√

ac − ad
d − c


C2 cos

(
ζ
√

ac−ad
d

)
−C1 sin

(
ζ
√

ac−ad
d

)
C1 cos

(
ζ
√

ac−ad
d

)
+ C2 sin

(
ζ
√

ac−ad
d

)
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× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
2d2δ

)
Γ(% + 1)

ε
tε)

 . (5.37)

Set 3:α−1 =

√
6a

d
√
θ
, α0 =

√
3
2b

d
√
θ
, α1 = 0, λ =

2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ

 . (5.38)

By using Eqs (5.38), (5.27), (4.31), and (5.1), we achieve

gIII
9 (x, y, z, t) =

√
3
2

d
√
θ

(b + 2a(
b

2(d − c)
+

√
4ad − 4ac + b2

2(d − c)

(
C1 sinh( ζ

√
4ad−4ac+b2

2d ) + C2 cosh( ζ
√

4ad−4ac+b2

2d )

C1 cosh( ζ
√

4ad−4ac+b2

2d ) + C2 sinh( ζ
√

4ad−4ac+b2

2d )
))−1)

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ
)
Γ(% + 1)

ε
tε)

 . (5.39)

By using Eqs (5.38), (5.27), (4.32), and (5.1), we achieve

gIII
10 (x, y, z, t) =

√
3
2

d
√
θ

(b + 2a(
b

2(d − c)
+

√
4ac − 4ad − b2

2(d − c)

(
C2 cos

(
ζ
√

4ac−4ad−b2

2d

)
−C1 sin

(
ζ
√

4ac−4ad−b2

2d

)
C1 cos

(
ζ
√

4ac−4ad−b2

2d

)
+ C2 sin

(
ζ
√

4ac−4ad−b2

2d

) ))−1)

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ
)
Γ(% + 1)

ε
tε)

 . (5.40)

By using Eqs (5.38), (5.27), (4.34), and (5.1), we achieve

gIII
11 (x, y, z, t) =

a
√

6

d
√
θ


√

ad − ac
(d − c)


C1 sinh

(
ζ
√

ad−ac
d

)
+ C2 cosh

(
ζ
√

ad−ac
d

)
C1 cosh

(
ζ
√

ad−ac
d

)
+ C2 sinh

(
ζ
√

ad−ac
d

)


−1

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
2d2δ

)
Γ(% + 1)

ε
tε)

 . (5.41)

By using Eqs (5.38), (5.27), (4.35), and (5.1), we achieve
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gIII
12 (x, y, z, t) =

a
√

6

d
√
θ


√

ac − ad
d − c


C2 cos

(
ζ
√

ac−ad
d

)
−C1 sin

(
ζ
√

ac−ad
d

)
C1 cos

(
ζ
√

ac−ad
d

)
+ C2 sin

(
ζ
√

ac−ad
d

)


−1

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
2d2δ

)
Γ(% + 1)

ε
tε)

 . (5.42)

Set 4:α−1 = 0, α0 =

√
3
2 b

d
√
θ
, α1 =

√
6(c − d)

d
√
θ

, λ =
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ

 .
(5.43)

By using Eqs (5.43), (5.27), (4.31), and (5.1), we achieve

gIII
13 (x, y, z, t) =

√
3
2

d
√
θ

(b + 2(c − d)(
b

2(d − c)
+

√
4ad − 4ac + b2

2(d − c)

(
C1 sinh( ζ

√
4ad−4ac+b2

2d ) + C2 cosh( ζ
√

4ad−4ac+b2

2d )

C1 cosh( ζ
√

4ad−4ac+b2

2d ) + C2 sinh( ζ
√

4ad−4ac+b2

2d )
)))

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ
)
Γ(% + 1)

ε
tε)

 . (5.44)

By using Eqs (5.43), (5.27), (4.32), and (5.1), we achieve

gIII
14 (x, y, z, t)(x, y, z, t) =

√
3
2

d
√
θ

(b + 2(c − d)(
b

2(d − c)
+

√
4ac − 4ad − b2

2(d − c)

(
C2 cos

(
ζ
√

4ac−4ad−b2

2d

)
−C1 sin

(
ζ
√

4ac−4ad−b2

2d

)
C1 cos

(
ζ
√

4ac−4ad−b2

2d

)
+ C2 sin

(
ζ
√

4ac−4ad−b2

2d

) )))

× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
− 3b2

2d2δ
)
Γ(% + 1)

ε
tε)

 . (5.45)

By using Eqs (5.43), (5.27), (4.34), and (5.1), we achieve

gIII
15 (x, y, z, t) =

√
6(c − d)

d
√
θ


√

ad − ac
(d − c)


C1 sinh

(
ζ
√

ad−ac
d

)
+ C2 cosh

(
ζ
√

ad−ac
d

)
C1 cosh

(
ζ
√

ad−ac
d

)
+ C2 sinh

(
ζ
√

ad−ac
d

)



× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
2d2δ

)
Γ(% + 1)

ε
tε)

 . (5.46)
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By using Eqs (5.43), (5.27), (4.35), and (5.1), we achieve

gIII
16 (x, y, z, t) =

√
6(c − d)

d
√
θ


√

ac − ad
d − c


C2 cos

(
ζ
√

ac−ad
d

)
−C1 sin

(
ζ
√

ac−ad
d

)
C1 cos

(
ζ
√

ac−ad
d

)
+ C2 sin

(
ζ
√

ac−ad
d

)



× exp

ιδ(ρx + µy + τz + (
2
(
6a(c − d) − d2

(
δ2

(
µ2 + ρ2 + τ2

)
+ 2U

))
2d2δ

)
Γ(% + 1)

ε
tε)

 . (5.47)

6. Discussion and results

In this section, the graphical representations of the truncated M-fractional (3+1)-dimensional
Gross–Pitaevskii equation with periodic potential have been illustrated. The 3D, contour, and 2D
graphs visualize the nature of nonlinear waves constructed from Eq (2.1). A family of bright, dark,
periodic, and singular solitons is displayed for a set of values. A more detailed comprehension of the
dynamical wave structures is presented in the two- and three- dimensional graphs of the computed
results using different variable selections. It has been noted that certain periodic wave solutions can
depict oscillatory or periodic motion, albeit oscillatory motion is restricted to oscillating between two
states or around an equilibrium point. Every movement that happens repeatedly throughout time is
considered periodic motion. The solitary wave forms that depict the nature of the solution as the
blow-up period approaches are another form of the created wave structures, and they are incredibly
intriguing to visualize through various wave shapes. The singularity assumes a simple form when the
solution becomes unbounded in finite time. When the solution is still bounded, we can say that the
wave has broken even though its slope becomes infinite in finite time. The graph gradually becomes
steeper as it propagates, until it reaches a point where the slope is vertical and the wave is considered
to have broken.

By employing the expa function approach: Figure 1 illustrates a dark singular wave soliton
gI

1(x, y, z, t) observed for Case-I when β0 = 4, β1 = 2, ε = 1, δ = 0.25, θ = 45, λ = 3, µ = 2, ρ = 1,
τ = 2, d = 10, t = 1, z = 2. While Figure 2 demonstrates a dark solitary wave gI

2(x, y, z, t) developed
when β0 = 3, β1 = 4, ε = 1, δ = 0.25, θ = 90, λ = 1, µ = 2, ρ = 1, τ = 0.5, d = 2, t = 1, z = 2.

(a) a

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(b) b (c) c

Figure 1. 3D, contour, and 2D plots for |gI
1(x, y, z, t)| when β0 = 4, β1 = 2, ε = 1, δ =

0.25, θ = 45, λ = 3, µ = 2, ρ = 1, τ = 2, d = 10, t = 1, z = 2.
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(a) a
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Figure 2. 3D, contour, and 2D plots for |gI
2(x, y, z, t)| when β0 = 3, β1 = 4, ε = 1, δ =

0.25, θ = 90, λ = 1, µ = 2, ρ = 1, τ = 0.5, d = 2, t = 1, z = 2.

Similarly, implementing the SSE technique: Figure 3 depicts a bell-shaped bright soliton gII
2 (x, y, t)

for ε = 1, δ = 0.25, θ = 45, κ = 2, µ = 1, ρ = 1, τ = 2, a = 3, b = 2, t = 1, z = 1, while Figure 4
illustrates a singular wave structure gII

4 (x, y, z, t) for ε = 1, δ = 0.25, θ = 45, κ = 2, µ = 1, ρ = 1, τ =

2, a = 3, b = 2, t = 1, z = 1.

(a) a
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(b) b (c) c

Figure 3. 3D, contour, and 2D plots for |gII
1 (x, y, z, t)| when ε = 1, δ = 0.25, θ = 45, κ =

2, µ = 1, ρ = 1, τ = 2, a = 3, b = 2, t = 1, z = 1.
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Figure 4. 3D, contour, and 2D plots for |gII
4 (x, y, z, t)| when ε = 1, δ = 0.25, θ = 45, κ =

2, µ = 1, ρ = 1, τ = 2, a = 3, b = 2, t = 1, z = 1.

Figure 5 displays a periodic wave gII
6 (x, y, z, t) observed for ε = 3, δ = 1, θ = 90, κ = 0.25, µ =

0.5, ρ = 1, τ = 2, a = 1, b = −2, t = 1, z = 1. Figure 6 expresses a periodic wave structure
gII

9 (x, y, z, t) for ε = 1, δ = 0.25, θ = 45, κ = 2, µ = 1, ρ = 1, τ = 2, a = 3, b = 2, t = 1, z = 1.
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(a) a
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Figure 5. 3D, contour, and 2D plots for |gII
6 (x, y, z, t)| when ε = 3, δ = 1, θ = 90, κ =

0.25, µ = 0.5, ρ = 1, τ = 2, a = 1, b = −2, t = 1, z = 1.
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Figure 6. 3D, contour, and 2D plots for |gII
9 (x, y, z, t)| when ε = 1, δ = 0.25, θ = 45, κ =

2, µ = 1, ρ = 1, τ = 2, a = 3, b = 2, t = 1, z = 1.

Furthermore, applying the (G′/G)-expansion method: Figure 7 depicts a bell shaped soliton
gIII

1 (x, y, z, t) for ε = 1, δ = 1, θ = 45, ρ = 2, κ = 1, a = 3, b = 2, t = 1, while Figure 7 illustrates a
periodic soliton gIII

3 (x, y, z, t) for ε = 2, δ = 0.5, θ = 90, κ = 0.25, µ = −2, ρ = 1, τ = 3, a = 3, b = 2,
t = 1, z = 1.
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Figure 7. 3D, contour, and 2D plots for |gIII
1 (x, y, z, t)| when ε = 2, δ = 0.5, θ = 90, κ =

0.25, µ = −2, ρ = 1, τ = 3, a = 3, b = 2, t = 1, z = 1.

Whereas Figure 8 displays a soliatry wave gIII
2 (x, y, z, t) for ε = 1, δ = 0.25, θ = 9, κ = 2, µ =

1, ρ = 1, τ = 3, a = 0.5, b = 2, c = 3, C1 = 1, C2 = 2, d = 4, t = 1, z = 1 then Figure 9 expresses
a singular soliton gIII

7 (x, y, z, t) for ε = 1, δ = 0.25, θ = 5, κ = 2, µ = 1, ρ = 1, τ = 2, a = 5, b =

2, c = 3, C1 = 1, C2 = 2, d = 4, t = 1, z = 1.
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Figure 8. 3D, contour, and 2D plots for |gIII
2 (x, y, z, t)| when ε = 1, δ = 0.25, θ = 9, κ =

2, µ = 1, ρ = 1, τ = 3, a = 0.5, b = 2, c = 3, C1 = 1, C2 = 2, d = 4, t = 1, z = 1.
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Figure 9. 3D, contour, and 2D plots for |gIII
7 (x, y, z, t)| when ε = 1, δ = 0.25, θ = 5, κ =

2, µ = 1, ρ = 1, τ = 2, a = 5, b = 2, c = 3, C1 = 1, C2 = 2, d = 4, t = 1, z = 1.

While Figure 10 expresses a bright wave gIII
10 (x, y, z, t) for ε = 1, δ = 0.25, θ = 5, κ = 2, µ = 1, ρ =

1, τ = 2, a = 5, b = 2, c = 3, C1 = 1, C2 = 2, d = 4, t = 1, z = 1, whereas Figure 11 expresses
a solitary wave structure gIII

14 (x, y, z, t) for ε = 1, δ = 0.25, θ = 4, κ = 2, µ = 1, ρ = 1, τ = 2, a =

3, b = 5, c = 2, d = 1, t = 1, z = 1, and Figure 12 expresses a solitary wave structure gIII
16 (x, y, z, t)

for ε = 1, δ = 0.25, θ = 4, κ = 2, µ = 1, ρ = 1, τ = 2, a = 1, b = 2, c = −3, C1 = 3, C2 = 2, d =

1, t = 1, z = 1.
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Figure 10. 3D, contour, and 2D plots for |gIII
10 (x, y, z, t)| when ε = 1, δ = 0.25, θ = 5, κ =

2, µ = 1, ρ = 1, τ = 2, a = 5, b = 2, c = 3, C1 = 1, C2 = 2, d = 4, t = 1, z = 1.
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Figure 11. 3D, contour, and 2D plots for |gIII
14 (x, y, z, t)| when ε = 2, δ = 0.5, θ = 90, κ =

0.25, µ = −2, ρ = 1, τ = 3, a = 3, b = 2, t = 1, z = 1.
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Figure 12. 3D, contour, and 2D plots for |gIII
16 (x, y, z, t)| when ε = 1, δ = 0.25, θ = 4, κ =

2, µ = 1, ρ = 1, τ = 2, a = 1, b = 2, c = −3, C1 = 3, C2 = 2, d = 1, t = 1, z = 1.

7. Conclusions

We have succeeded in obtaining the modernistic soliton solutions of the truncated M-fractional
(3+1)-dimensional periodic potential Gross–Pitaevskii equation by utilizing the expa function
approach, the Sardar sub-equation approach, and the extended (G′/G)-expansion approach. The
solutions are also verified and demonstrated through visualization using MATHEMATICA software.
Finally, it is suggested that to deal with the other nonlinear partial differential equations, the applied
strategies are very helpful, reliable, and straight–forward. An interesting fact about paper is that, first,
a new definition of derivative is used for this model. The obtained results may be helpful in future
research on the model. A variety of behaviors are seen in the observed solutions, such as optical
soliton solutions and dark, bright, singular, periodic, and bell-shaped ones. Because of how extremely
significant and credible the results are in explaining a range of physical circumstances, this study is
more valuable. Graphs using contour plots, 2D, and 3D can also be used to display the established
results; for details, see Figures 1–12. Many natural phenomena, such as fluid dynamics, wave motion;
and optical fiber characteristics, are illustrated by these solutions in terms of their physical behavior.
The employed methodologies have been demonstrated to be beneficial and helpful in handling several
other nonlinear fractional models found in fluid dynamics, hydrodynamics, plasma, and other
scientific and engineering fields.
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dimensional Gross-Pitaevskii equation for various diffraction and potential functions, Phys. Rev. E,
84 (2011), 016606. https://doi.org/10.1103/PhysRevE.84.016606

AIMS Mathematics Volume 9, Issue 9, 23410–23433.

https://dx.doi.org/https://doi.org/10.1007/s11082-021-03394-w
https://dx.doi.org/https://doi.org/10.1007/s40819-020-00818-1
https://dx.doi.org/https://doi.org/10.3934/math.2022415
https://dx.doi.org/https://doi.org/10.1016/j.ijleo.2016.11.104
https://dx.doi.org/https://doi.org/10.1016/j.cie.2021.107888
https://dx.doi.org/https://doi.org/10.1016/j.cam.2014.01.002
https://dx.doi.org/https://doi.org/10.1016/j.aej.2021.06.106
https://dx.doi.org/https://doi.org/10.48550/arXiv.1605.07381
https://dx.doi.org/https://doi.org/10.1007/s12648-019-01619-z
https://dx.doi.org/https://doi.org/10.1007/s12648-019-01619-z
https://dx.doi.org/https://doi.org/10.1016/j.ijleo.2020.165355
https://dx.doi.org/https://doi.org/10.1016/j.joems.2014.11.004
https://dx.doi.org/https://doi.org/10.1016/j.aml.2013.02.002
https://dx.doi.org/https://doi.org/10.1103/PhysRevE.84.016606


23433

48. T. A. Sulaiman, G. Yel, H. Bulut, M-fractional solitons and periodic wave
solutions to the Hirota-Maccari system, Mod. Phys. Lett. B, 33 (2019), 1950052.
https://doi.org/10.1142/S0217984919500520

49. J. V. da C. Sousa, E. C. de Oliveira, A new truncated M-fractional derivative type unifying
some fractional derivative types with classical properties, 2017, arXiv: 1704.08187v4.
https://doi.org/10.48550/arXiv.1704.08187

50. A. T. Ali, E. R. Hassan, General Expa-function method for nonlinear evolution equations, Appl.
Math. Comput., 217 (2010), 451–459. https://doi.org/10.1016/j.amc.2010.06.025

51. E. M. E. Zayed, A. G. Al-Nowehy, Generalized Kudryashov method and general expa function
method for solving a high order nonlinear schrödinger equation, J. Space Explor., 6 (2017), 120.

52. K. Hosseini, Z. Ayati, R. Ansari, New exact solutions of the Tzitzéica-type equations in
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