In this paper, we study the following problems with a general nonlinearity:
$ \begin{equation*} \label{f} \left\{\begin{aligned} & -\Delta_p u-\Delta_q u+V(\varepsilon x )(|u|^{p-2}u+|u|^{q-2}u) = f(u), &\mathrm{in}\ \mathbb{R}^N, \\ & u\in W^{1, p}( \mathbb{R}^N)\cap W^{1, q}( \mathbb{R}^N), &\mathrm{in}\ \mathbb{R}^N, \end{aligned} \right. \end{equation*} $
where $ \varepsilon > 0 $ is a small parameter, $ 2\leq p < q < N $, the potential $ V $ is a positive continuous function having a local minimum. $ f: \mathbb{R} \to \mathbb{R} $ is a $ C^1 $ subcritical nonlinearity. Under some proper assumptions of $ V $ and $ f, $ we obtain the concentration of positive solutions with the local minimum of $ V $ by applying the penalization method for above equation. We must note that the monotonicity of $ \frac{f (s)}{s^{p-1}} $ and the so-called Ambrosetti-Rabinowitz condition are not required.
Citation: Li Wang, Jun Wang, Daoguo Zhou. Concentration of solutions for double-phase problems with a general nonlinearity[J]. AIMS Mathematics, 2023, 8(6): 13593-13622. doi: 10.3934/math.2023690
In this paper, we study the following problems with a general nonlinearity:
$ \begin{equation*} \label{f} \left\{\begin{aligned} & -\Delta_p u-\Delta_q u+V(\varepsilon x )(|u|^{p-2}u+|u|^{q-2}u) = f(u), &\mathrm{in}\ \mathbb{R}^N, \\ & u\in W^{1, p}( \mathbb{R}^N)\cap W^{1, q}( \mathbb{R}^N), &\mathrm{in}\ \mathbb{R}^N, \end{aligned} \right. \end{equation*} $
where $ \varepsilon > 0 $ is a small parameter, $ 2\leq p < q < N $, the potential $ V $ is a positive continuous function having a local minimum. $ f: \mathbb{R} \to \mathbb{R} $ is a $ C^1 $ subcritical nonlinearity. Under some proper assumptions of $ V $ and $ f, $ we obtain the concentration of positive solutions with the local minimum of $ V $ by applying the penalization method for above equation. We must note that the monotonicity of $ \frac{f (s)}{s^{p-1}} $ and the so-called Ambrosetti-Rabinowitz condition are not required.
[1] | C. O. Alves, V. Ambrosio, T. Isernia, Existence, multiplicity and concentration for a class of fractional $p \& q$ Laplacian problems in $ \mathbb{R}^{N}$, Commun. Pur. Appl. Anal., 18 (2019), 2009–2045. https://doi.org/10.3934/cpaa.2019091 doi: 10.3934/cpaa.2019091 |
[2] | V. Ambrosio, Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth, arXiv: 2105.13632. |
[3] | V. Ambrosio, Concentration phenomena for a class of fractional Kirchhoff equations in $ \mathbb{R}^N$ with general nonlinearities, Nonlinear Anal., 195 (2020), 111761. https://doi.org/10.1016/j.na.2020.111761 doi: 10.1016/j.na.2020.111761 |
[4] | V. Ambrosio, Fractional $p \& q$ Laplacian problems in $ \mathbb{R}^{N}$ with critical growth, Z. Anal. Anwend., 39 (2020), 289–314. https://doi.org/10.4171/zaa/1661 doi: 10.4171/zaa/1661 |
[5] | V. Ambrosio, The nonlinear fractional relativistic Schrödinger equation: existence, multiplicity, decay and concentration results, Discrete Cont. Dyn., 41 (2021), 5659–5705. https://doi.org/10.3934/dcds.2021092 doi: 10.3934/dcds.2021092 |
[6] | V. Ambrosio, Mountain pass solutions for the fractional Berestycki-Lions problem, Adv. Differential Equations, 23 (2018), 455–488. https://doi.org/10.57262/ade/1516676484 doi: 10.57262/ade/1516676484 |
[7] | V. Ambrosio, V. D. Rădulescu, Fractional double-phase patterns: concentration and multiplicity of solutions, J. Math. Pure. Appl., 142 (2020), 101–145. https://doi.org/10.1016/j.matpur.2020.08.011 doi: 10.1016/j.matpur.2020.08.011 |
[8] | V. Ambrosio, T. Isernia, V. D. Rădulescu, Concentration of positive solutions for a class of fractional $p$-Kirchhoff type equations, P. Roy. Soc. Edinb. A, 151 (2021), 601–651. https://doi.org/10.1017/prm.2020.32 doi: 10.1017/prm.2020.32 |
[9] | J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. A, 306 (1982), 557–611. https://doi.org/10.1098/rsta.1982.0095 doi: 10.1098/rsta.1982.0095 |
[10] | H. Berestycki, P. L. Lions, Nonlinear scalar field equations, I, Existence of a ground state, Arch. Rational. Mech. Anal., 82 (1983), 347–375. https://doi.org/10.1007/BF00250556 doi: 10.1007/BF00250556 |
[11] | D. Bonheure, P. d'Avenia, A. Pomponio, On the electrostatic Born-Infeld equation with extended charges, Commun. Math. Phys., 346 (2016), 877–906. https://doi.org/10.1007/s00220-016-2586-y doi: 10.1007/s00220-016-2586-y |
[12] | M. Born, L. Infeld, Foundations of the new field theory, Nature, 132 (1933), 1004. |
[13] | J. Byeon, L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational. Mech. Anal., 185 (2007), 185–200. https://doi.org/10.1007/s00205-006-0019-3 doi: 10.1007/s00205-006-0019-3 |
[14] | J. Byeon, Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002), 295–316. https://doi.org/10.1007/s00205-002-0225-6 doi: 10.1007/s00205-002-0225-6 |
[15] | S. Barile, G. M. Figueiredo, Existence of least energy positive, negative and nodal solutions for a class of $p \& q$-problems with potentials vanishing at infinity, J. Math. Anal. Appl., 427 (2015), 1205–1233. https://doi.org/10.1016/j.jmaa.2015.02.086 doi: 10.1016/j.jmaa.2015.02.086 |
[16] | L. Cherfils, V. II'yasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$-laplacian, Commun. Pur. Appl. Anal., 4 (2005), 9–22. https://doi.org/10.3934/cpaa.2005.4.9 doi: 10.3934/cpaa.2005.4.9 |
[17] | F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pur. Appl., 195 (2016), 1917–1959. https://doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7 |
[18] | G. S. Costa, G. M. Figueiredo, Existence and concentration of nodal solutions for a subcritical $p \& q$ equation, Commun. Pur. Appl. Anal., 19 (2020), 5077–5095. https://doi.org/10.3934/cpaa.2020227 doi: 10.3934/cpaa.2020227 |
[19] | G. S. Costa, G. M. Figueiredo, Existence and concentration of positive solutions for a critical p$ & $q equation, Adv. Nonlinear Anal., 11 (2022), 243–267. https://doi.org/10.1515/anona-2020-0190 doi: 10.1515/anona-2020-0190 |
[20] | M. del Pino, P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var., 4 (1996), 121–137. https://doi.org/10.1007/BF01189950 doi: 10.1007/BF01189950 |
[21] | J. M. do $\mathrm{\acute{O}}, $ On existence and concentration of positive bound states of $p$-Laplacian equations in $\mathbb{R}^N$ involving critical growth, Nonlinear Anal. Theor., 62 (2005), 777–801. https://doi.org/10.1016/j.na.2005.03.093 doi: 10.1016/j.na.2005.03.093 |
[22] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[23] | E. Gloss, Existence and concentration of bound states for a $p$-Laplacian equation in $ \mathbb{R}^N$, Adv. Nonlinear Stud., 10 (2010), 273–296. https://doi.org/10.1515/ans-2010-0203 doi: 10.1515/ans-2010-0203 |
[24] | Y. He, G. Li, The existence and concentration of weak solutions to a class of $p$-Laplacian type problems in unbounded domains, Sci. China Math., 57 (2014), 1927–1952. https://doi.org/10.1007/s11425-014-4830-2 doi: 10.1007/s11425-014-4830-2 |
[25] | Y. He, G. Li, Standing waves for a class of Kirchhoff type problems in $\mathbb {R}^3$ involving critical Sobolev exponents, Calc. Var., 54 (2015), 3067–3106. https://doi.org/10.1007/s00526-015-0894-2 doi: 10.1007/s00526-015-0894-2 |
[26] | J. Hirata, N. Ikoma, K. Tanaka, Nonlinear scalar field equations in $\mathbb{R}^N$: mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal., 35 (2010), 253–276. |
[27] | T. Isernia, Fractional $p \& q$-laplacian problems with potentials vanishing at infinity, Opuscula Math., 40 (2020), 93–110. https://doi.org/10.7494/opmath.2020.40.1.93 doi: 10.7494/opmath.2020.40.1.93 |
[28] | S. Jarohs, Strong comparison principle for the fractional $p$-Laplacian and applications to starshaped rings, Adv. Nonlinear Stud., 18 (2018), 691–714. https://doi.org/10.1515/ans-2017-6039 doi: 10.1515/ans-2017-6039 |
[29] | L. Jeanjean, K. Tanaka, A remark on least energy solutions in $ \mathbb{R}^N$, Proc. Amer. Math. Soc., 131 (2003), 2399–2408. https://doi.org/10.1090/S0002-9939-02-06821-1 doi: 10.1090/S0002-9939-02-06821-1 |
[30] | C. Ji, V. D. Rădulescu, Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation, Calc. Var., 59 (2020), 115. https://doi.org/10.1007/s00526-020-01772-y doi: 10.1007/s00526-020-01772-y |
[31] | H. Jin, W. Liu, J. Zhang, Singularly perturbed fractional Schrödinger equation involving a general critical nonlinearity, Adv. Nonlinear Stud., 18 (2018), 487–499. https://doi.org/10.1515/ans-2018-2015 doi: 10.1515/ans-2018-2015 |
[32] | T. Jin, Y. Y. Li, J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111–1171. https://doi.org/10.4171/JEMS/456 doi: 10.4171/JEMS/456 |
[33] | G. Li, X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of $p$-$q$-{Laplacian} type on $\mathbb{R}^{N}$, Nonlinear Anal., 71 (2009), 2316–2334. https://doi.org/10.1016/j.na.2009.01.066 doi: 10.1016/j.na.2009.01.066 |
[34] | W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006 |
[35] | J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math., 13 (1960), 457–468. https://doi.org/10.1002/cpa.3160130308 doi: 10.1002/cpa.3160130308 |
[36] | D. Mugnai, N. S. Papageorgiou, Wang's multiplicity result for superlinear $(p, q)$-equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc., 366 (2014), 4919–4937. https://doi.org/10.1090/S0002-9947-2013-06124-7 doi: 10.1090/S0002-9947-2013-06124-7 |
[37] | K. Perera, M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. https://doi.org/10.1142/S0219199717500237 doi: 10.1142/S0219199717500237 |
[38] | P. Pucci, J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681–703. https://doi.org/10.1512/iumj.1986.35.35036 doi: 10.1512/iumj.1986.35.35036 |
[39] | L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153 |
[40] | V. C. Z. Sissa, P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $ \mathbb{R}^N$, Commun. Pure Appl. Math., 45 (1992), 1217–1269. https://doi.org/10.1002/cpa.3160451002 doi: 10.1002/cpa.3160451002 |
[41] | W. A. Strauss, Mathematical aspects of classical nonlinear field equations, In: Lecture notes in physics, Heidelberg: Springer, 1979,123–149. https://doi.org/10.1007/3-540-09246-3_7 |
[42] | M. Willem, Minimax theorems, MA: Birkh$\mathrm{\ddot{a}}$user Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[43] | M. Wu, Z. Yang, A class of $p$-$q$-Laplacian type equation with potentials eigenvalue problem in $\mathbb{R}^{N}$, Bound. Value Probl., 2009 (2009), 185319. https://doi.org/10.1155/2009/185319 doi: 10.1155/2009/185319 |
[44] | J. Zhang, D. G. Costa, J. M. do $\mathrm{\acute{O}}$, Semiclassical states of p-Laplacian equations with a general nonlinearity in critical case, J. Math. Phys., 57 (2016), 071504. https://doi.org/10.1063/1.4959220 doi: 10.1063/1.4959220 |
[45] | J. Zhang, W. Zhang, V. D. Rădulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z., 301 (2022), 4037–4078. https://doi.org/10.1007/s00209-022-03052-1 doi: 10.1007/s00209-022-03052-1 |
[46] | W. Zhang, S. Yuan, L. Wen, Existence and concentration of ground-states for fractional Choquard equation with indefinite potential, Adv. Nonlinear Anal., 11 (2022), 1552–1578. https://doi.org/10.1515/anona-2022-0255 doi: 10.1515/anona-2022-0255 |
[47] | W. Zhang, J. Zhang, Multiplicity and concentration of positive solutions for fractional unbalanced double phase problems, J. Geom. Anal., 32 (2022), 235. https://doi.org/10.1007/s12220-022-00983-3 doi: 10.1007/s12220-022-00983-3 |
[48] | W. Zhang, J. Zhang, V. D. Rădulescu, Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction, J. Differ. Equations, 347 (2023), 56–103. https://doi.org/10.1016/j.jde.2022.11.033 doi: 10.1016/j.jde.2022.11.033 |
[49] | Y. Zhang, X. Tang, V. D. Rădulescu, Concentration of solutions for fractional double-phase problems: critical and supercritical cases, J. Differ. Equations, 302 (2021), 139–184. https://doi.org/10.1016/j.jde.2021.08.038 doi: 10.1016/j.jde.2021.08.038 |