This study develops the existence of solutions for a nonlinear third-order ordinary differential equation with non-separated multi-point and nonlocal Riemann-Stieltjes boundary conditions. Standard tools of fixed point theorems are applied to prove the existence and uniqueness of results for the problem at hand. Further, we made use of the fixed point theorem due to Bohnenblust-Karlin to discuss the existence of solutions for the multi-valued case. Lastly, we clarify the reported results by means of examples.
Citation: Mona Alsulami. Existence theory for a third-order ordinary differential equation with non-separated multi-point and nonlocal Stieltjes boundary conditions[J]. AIMS Mathematics, 2023, 8(6): 13572-13592. doi: 10.3934/math.2023689
This study develops the existence of solutions for a nonlinear third-order ordinary differential equation with non-separated multi-point and nonlocal Riemann-Stieltjes boundary conditions. Standard tools of fixed point theorems are applied to prove the existence and uniqueness of results for the problem at hand. Further, we made use of the fixed point theorem due to Bohnenblust-Karlin to discuss the existence of solutions for the multi-valued case. Lastly, we clarify the reported results by means of examples.
[1] | R. Ma, A survey on nonlocal boundary value problems, Appl. Math. E-Notes, 7 (2007), 257–279. |
[2] | F. T. Akyildiz, H. Bellout, K. Vajravelu, R. A. Van Gorder, Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces, Nonlinear Anal. Real World Appl., 12 (2011), 2919–2930. http://dx.doi.org/10.1016/j.nonrwa.2011.02.017 doi: 10.1016/j.nonrwa.2011.02.017 |
[3] | M. Ashordia, On boundary value problems for systems of nonlinear generalized ordinary differential equations, Czech. Math. J., 67 (2017), 579–608. http://dx.doi.org/10.21136/CMJ.2017.0144-11 doi: 10.21136/CMJ.2017.0144-11 |
[4] | L. Zheng, X. Zhang, Modeling and analysis of modern fluid problems, London: Elsevier/Academic Press, 2017. http://dx.doi.org/10.1016/C2016-0-01480-8 |
[5] | Y. Sun, L. Liu, J. Zhang, R. P. Agarwal, Positive solutions of singular three-point boundary value problems for second-order differential equations, J. Comput. Appl. Math., 230 (2009), 738–750. http://dx.doi.org/10.1016/j.cam.2009.01.003 doi: 10.1016/j.cam.2009.01.003 |
[6] | P. W. Eloe, B. Ahmad, Positive solutions of a nonlinear $n$th order boundary value problem with nonlocal conditions, Appl. Math. Lett., 18 (2005), 521–527. http://dx.doi.org/10.1016/j.aml.2004.05.009 doi: 10.1016/j.aml.2004.05.009 |
[7] | V. A. Ilyin, E. I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Diff. Equat., 23 (1987), 803–810. |
[8] | S. Clark, J. Henderson, Uniqueness implies existence and uniqueness criterion for nonlocal boundary value problems for third order differential equations, Proc. Amer. Math. Soc., 134 (2006), 3363–3372. http://dx.doi.org/10.2307/4098045 doi: 10.2307/4098045 |
[9] | J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. Lond. Math. Soc., 74 (2006), 673–693. http://dx.doi.org/10.1112/S0024610706023179 doi: 10.1112/S0024610706023179 |
[10] | B. Ahmad, S. Hamdan, A. Alsaedi, S. K. Ntouyas, A study of a nonlinear coupled system of three fractional differential equations with nonlocal coupled boundary conditions, Adv. Differ. Equ., 2021 (2021), 278. http://dx.doi.org/10.1186/s13662-021-03440-7 doi: 10.1186/s13662-021-03440-7 |
[11] | B. Ahmad, A. Alsaedi, N. Al-Malki, On higher-order nonlinear boundary value problems with nonlocal multipoint integral boundary conditions, Lith. Math. J., 56 (2016), 143–163. http://dx.doi.org/10.1007/s10986-016-9311-6 doi: 10.1007/s10986-016-9311-6 |
[12] | B. Ahmad, B. Alghamdi, R. P. Agarwal, A. Alsaedi, Riemann-Liouville fractional integro-differential equations with fractional nonlocal multi-point boundary conditions, Fractals, 30 (2022), 2240002. http://dx.doi.org/10.1142/S0218348X22400023 |
[13] | B. Ahmad, A. Alsaedi, Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 358–367. http://dx.doi.org/10.1016/j.nonrwa.2007.09.004 doi: 10.1016/j.nonrwa.2007.09.004 |
[14] | B. Ahmad, S. K. Ntouyas, A study of higher-order nonlinear ordinary differential equations with four-point nonlocal integral boundary conditions, J. Appl. Math. Comput., 39 (2012), 97–108. http://dx.doi.org/10.1007/s12190-011-0513-0 doi: 10.1007/s12190-011-0513-0 |
[15] | J. Henderson, Smoothness of solutions with respect to multi-strip integral boundary conditions for $n$th order ordinary differential equations, Nonlinear Anal. Model., 19 (2014), 396–412. http://dx.doi.org/10.15388/NA.2014.3.6 doi: 10.15388/NA.2014.3.6 |
[16] | I. Y. Karaca, F. T. Fen, Positive solutions of $n$th-order boundary value problems with integral boundary conditions, Math. Model. Anal., 20 (2015), 188–204. http://dx.doi.org/10.3846/13926292.2015.1020531 doi: 10.3846/13926292.2015.1020531 |
[17] | H. H. Alsulami, S. K. Ntouyas, S. A. Al-Mezel, B. Ahmad, A. Alsaedi, A study of third-order single-valued and multi-valued problems with integral boundary conditions, Bound. Value Probl., 2015 (2015), 25. http://dx.doi.org/10.1186/s13661-014-0271-7 doi: 10.1186/s13661-014-0271-7 |
[18] | M. Boukrouche, D. A. Tarzia, A family of singular ordinary differential equations of the third order with an integral boundary condition, Bound. Value Probl., 2018 (2018), 32. http://dx.doi.org/10.1186/s13661-018-0950-x doi: 10.1186/s13661-018-0950-x |
[19] | N. I. Ionkin, The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition, Differ. Uravn., 13 (1977), 294–304. |
[20] | B. Ahmad, S. K. Ntouyas, H. Alsulami, Existence of solutions or nonlinear $n$th-order differential equations and inclusions with nonlocal and integral boundary conditions via fixed point theory, Filomat, 28 (2014), 2149–2162. http://dx.doi.org/10.2298/FIL1410149A doi: 10.2298/FIL1410149A |
[21] | F. Nicoud, T. Schfonfeld, Integral boundary conditions for unsteady biomedical CFD applications, Int. J. Numer. Meth. Fl., 40 (2002), 457–465. http://dx.doi.org/10.1002/fld.299 doi: 10.1002/fld.299 |
[22] | M. Feng, X. Zhang, W. Ge, Existence theorems for a second order nonlinear differential equation with nonlocal boundary conditions and their applications, J. Appl. Math. Comput., 33 (2010), 137–153. http://dx.doi.org/10.1007/s12190-009-0278-x doi: 10.1007/s12190-009-0278-x |
[23] | J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45–67. http://dx.doi.org/10.1007/s00030-007-4067-7 doi: 10.1007/s00030-007-4067-7 |
[24] | J. R. Graef, J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. Theor., 71 (2009), 1542–1551. http://dx.doi.org/10.1016/j.na.2008.12.047 doi: 10.1016/j.na.2008.12.047 |
[25] | X. Zhang, L. Liu, Y. Wu, Y. Zou, Existence and uniqueness of solutions for systems of fractional differential equations with Riemann-Stieltjes integral boundary condition, Adv. Differ. Equ., 2018 (2018), 204. http://dx.doi.org/10.1186/s13662-018-1650-7 doi: 10.1186/s13662-018-1650-7 |
[26] | B. Ahmad, Y. Alruwaily, A. Alsaedi, S. K. Ntouyas, Existence and stability results for a fractional order differential equation with non-conjugate Riemann-Stieltjes integro-nultipoint boundary conditions, Mathematics, 7 (2019), 249. http://dx.doi.org/10.3390/math7030249 doi: 10.3390/math7030249 |
[27] | N. Yao, X. Liu, M. Jia, Solvability for Riemann-Stieltjes integral boundary value problems of Bagley-Torvik equations at resonance, J. Appl. Anal. Comput., 10 (2020), 1937–1953. http://dx.doi.org/10.11948/20190289 doi: 10.11948/20190289 |
[28] | B. Ahmad, A. Alsaedi, A. Alruwauly, On Riemann-Stieltjes integral boundary value problems of Caputo-Riemann-Liouville type fractional integro-differential equations, Filomat, 34 (2020), 2723–2738. http://dx.doi.org/10.2298/FIL2008723A doi: 10.2298/FIL2008723A |
[29] | B. Ahmad, A. Alsaedi, Y. Alruwaily, S. K. Ntouyas, Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions, AIMS Math., 5 (2020), 1446–1461. http://dx.doi.org/10.3934/math.2020099 doi: 10.3934/math.2020099 |
[30] | S. Aljoudi, B. Ahmad, A. Alsaedi, Existence and uniqueness results for a coupled system of Caputo-Hadamard fractional differential equations with nonlocal Hadamard type integral boundary conditions, Fractal Fract., 4 (2020), 13. http://dx.doi.org/10.3390/fractalfract4020013 doi: 10.3390/fractalfract4020013 |
[31] | B. Ahmad, Y. Alruwaily, A. Alsaedi, S. K. Ntouyas, Riemann-Stieltjes integral boundary value problems involving mixed Riemann-Liouville and Caputo fractional derivatives, J. Nonlinear Funct., 2021 (2021), 1–19. http://dx.doi.org/10.23952/jnfa.2021.11 doi: 10.23952/jnfa.2021.11 |
[32] | C. Nuchpong, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions, Adv. Differ. Equ., 2021 (2021), 268. http://dx.doi.org/10.1186/s13662-021-03424-7 doi: 10.1186/s13662-021-03424-7 |
[33] | M. I. Abbas, M. Fečkan, Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition, Math. Slovaca, 72 (2022), 925–934. http://dx.doi.org/10.1515/ms-2022-0063 doi: 10.1515/ms-2022-0063 |
[34] | M. A. Yuan, J. I. Dehong, Existence of solutions to a system of Riemann-Liouville fractional differential equations with coupled Riemann-Stieltjes integrals boundary conditions, Fractal Fract., 6 (2022), 543. http://dx.doi.org/10.3390/fractalfract6100543 doi: 10.3390/fractalfract6100543 |
[35] | W. M. Whyburn, Differential equations with general boundary conditions, B. Am. Math. Soc., 48 (1942), 692–705. http://dx.doi.org/10.1090/S0002-9904-1942-07760-3 doi: 10.1090/S0002-9904-1942-07760-3 |
[36] | R. Conti, Recent trends in the theory of boundary value problems for ordinary differential equations, Bolletino dell Unione Mat. Ital., 22 (1967), 135–178. |
[37] | B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, Existence theory for coupled nonlinear third-order ordinary differential equations with nonlocal multi-point anti-periodic type boundary conditions on an arbitrary domain, AIMS Math., 4 (2019), 1634–1663. http://dx.doi.org/10.3934/math.2019.6.1634 doi: 10.3934/math.2019.6.1634 |
[38] | A. Alsaedi, M. Alsulami, H. M. Srivastav, B. Ahmad, S. K. Ntouyas, Existence theory for nonlinear third-order ordinary differential equations with nonlocal multi-point and multi-strip boundary conditions, Symmetry, 11, (2019), 281. http://dx.doi.org/10.3390/sym11020281 |
[39] | B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, Second-order ordinary differential equations and inclusions with a new kind of integral and multi-strip boundary conditions, Differ. Equ. Appl., 11 (2019), 183–202. http://dx.doi.org/10.7153/dea-2019-11-07 doi: 10.7153/dea-2019-11-07 |
[40] | B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, A study of a coupled system of nonlinear second-order ordinary differential equations with nonlocal integral multi-strip boundary conditions on an arbitrary domain, J. Comput. Anal. Appl., 29 (2021), 215–235. |
[41] | H. M. Srivastava, S. K. Ntouyas, M. Alsulami, A. Alsaedi, B. Ahmad, A self-adjoint coupled system of nonlinear ordinary differential equations with nonlocal multi-point boundary conditions on anarbitrary domain, Appl. Sci., 11 (2021), 4798. http://dx.doi.org/10.3390/app11114798 doi: 10.3390/app11114798 |
[42] | D. R. Smart, Fixed point theorems, London: Cambridge University Press Archive, 1980. |
[43] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. http://dx.doi.org/10.1007/978-0-387-21593-8 |
[44] | K. Deimling, Multivalued differential equations, Berlin: De Gruyter, 1992. http://dx.doi.org/10.1515/9783110874228 |
[45] | S. Hu, N. Papageorgiou, Handbook of multivalued analysis, Dordrecht: Kluwer, 1997. http://dx.doi.org/10.1007/978-1-4615-4665-8 |
[46] | H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. http://dx.doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543 |
[47] | M. Kisielewicz, Differential inclusions and optimal control, Dordrecht: Kluwer, 1991. |
[48] | H. F. Bohnenblust, S. Karlin, On a theorem of Ville, In: Contributions to the theory of games (AM-24), New Jersey: Princeton University Press, 1951. http://dx.doi.org/10.1515/9781400881727-014 |
[49] | A. Lasota, Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 13 (1965), 781–786. |