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1. Introduction

In recent years, solution examinations of boundary value models have increasingly become an
interesting area of study. In fact, many real-world applications are modeled through boundary value
problems of ordinary differential equations, for instance, problems arising from thermoelasticity,
elasticity, fluid dynamics, quantum, and optical physics, chemical engineering, and population
dynamics to mention a few, see [1-5] and the references therewith. Moreover, the expensive relevance
of these problems entices vast a number of researchers to continuously develop ways to solve the
models from the analytical, theoretical, and numerical aspects. In fact, the classical boundary
conditions, including the Neumann, Dirichlet, and Robin have relatively become old-fashioned
nowadays due to the development of more sophisticated conditions, which perfectly model
complicated scenarios. In his regard, we mention some of the most significant boundary conditions
comprising nonlocal boundary conditions [6-10], nonlocal multipoint integral boundary
conditions [11, 12], discontinuous type integral boundary conditions [13], four-point nonlocal integral
boundary conditions [14], multi-strip integral boundary conditions [15], integral boundary
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conditions [16—18] and the non-classical boundary condition [19] among other. Indeed, these types of
conditions take into account all the physical or chemical changes that can occur inside the domain.
Also, they can construct boundary data that contain random shapes such as fluid flow problems in the
blood vessels. For more developments in the boundary value problems and their related boundary
conditions, we refer the reader(s) to [20-24] and the given references therein.

In particular, the boundary conditions featuring integral terms (the nonlocals) are by far more
suitable for describing irregularities in parts of curved boundary structures. Indeed, the
Riemann-Stieltjes integral boundary condition [6—-10] serves as a chief in this class of boundary
conditions. Furthermore, they have many applications in physics and statistics (in the area of
stochastic processes). We, therefore, refer the reader(s) to see [25-34] that dealt with
Riemann-Stieltjes integral boundary conditions. These recently published articles discussed the
single-valued case of differential equations equipped with Riemann-Stieltjes integral boundary
conditions. The novelty in this study is to study the single and multi-valued case of differential
equations with Riemann-Stieltjes integral boundary conditions using modern theories in the arena.

Consequently, this research discusses some existence and uniqueness results for the third-order
boundary value problem with nonlocal Stieltjes typed boundary conditions. More explicitly, we make
consideration to the following model

y'(1) = f(r,y(), a<t<T, aTeR,

r T
aiy(@) + ary(T) = Y yiy(o) + f Y()dg(s) + A,

i=1

/ ’ - ’ ! / (11)
Biy'(a) + By (T) = ) piy/ (o) + f Y ($)dg(s) + A,
171 -
5@+ 621 = Yy @+ [ 5)dbs) +
i=1 a
where f is a given continuous function from [a¢,T] X RtoR,a < 0y < 0 < - <0, < T, ¢

is a bounded variation function. The values 4; € R (j = 1,2,3), while «;,5;,6; € R (j = 1,2),
and y;,p;, v ERY (i =1,2,...,7).

More precisely, we aim in this study to extend the traditional third-order boundary value problems
to feature non-separated and multi-point Stieltjes boundary data over an interval of choice. Thus,
the existence theory for boundary value problems of third-order ordinary differential equations (and
inclusions) in the presence of these new boundary conditions will be established in the present study.
Besides, Stieltjes’ conditions act in the same way with several types of boundary conditions, such as
the multi-point and integral boundary conditions. For details on Riemann-Stieltjes integral conditions,
we refer the reader(s) to Whyburn [35] and Conti [36]. In addition, the standard tools of functional
analysis would be used to prove the existence theory for nonlinear boundary value problems as derived
in [37-41].

Lastly, we arrange the paper as follows: In Section 2, we prove an auxiliary lemma related to the
linear variant of the problem (1.1). The existence and uniqueness of results for the boundary value
problem (1.1), together with illustrative examples are proved in Section 3. Section 4 presents the
existence of solutions for the parallel multi-valued problem of the problem (1.1), while Section 5 gives
some concluding notes.
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2. Preliminary result

The solution for the linear variants of the problem (1.1) is defined in the lemma that follows.

Lemma 2.1. Assume that ¢ € Cla, T], and

r

T r T r T
(r+6:=Yon [ doo)pi b= Y- [ doo)arvar= Y m- [ docw) 2o
a i=1 a i=1 a

i=1
is satisfied. Then, the following linear problem

V') =€), a<t<T,

r T
a1y(a) + ary(T) = Z yiy(o) + f y($)dp(s) + A,

i=1 a

r T 2.1)
By (@) + By (T) = ) piy' (o) + f Y ()dg(s) + o,
i=1 a
r T
81y (@) + 62" (T) = > vy (o) + f y(5)de(s) + s,
i=1 a
is equivalent to the integral equation
T N2
¥ = f S ZS) £(s)ds
1 [T T — 5)
i [ B E ST kT - 5+ Ko e
oL Z f " |yE\E (0i=s7 | K\ — ) + viKa(0)|[E(s)ds (2.2)
T i, 12 B IEAN| i 2
L A PR Gl K dild
or [ [ (B =255 + kit — 0 + K)ot
1 1 1
+E—4/l] + FK] (T)/lz + fKQ(T)/l_O,,
where
(t —a)?
K\(1) = E\(Es(r ~ @) = Es), Ko(1) = Es(Es — Ey(t = a)) = ExEg — Es~——).  (23)

AIMS Mathematics Volume 8, Issue 6, 13572—-13592.



13575

with

r T
I'=EEE,, E, :61+52—2Vi—f d(b(S);tO,

i=1

r T
E> = p) +,32—Zpi—f dg(s) # 0,
i=1 a

r T
E4=&1+G2—Z7’i—f d¢(s) # 0,
L , (24)
Es=Bo(T —a)— ) pilo;—a) - f (s — a)dg(s),
i=1 a

r T
Es=axT -a)= ) yloi—a)- f (s = a)dg(s),
i=1 a

T-aP < (0i—a) fT (s —ay
Es=a Ny D dg(s).
L) ; 2 L2

Proof. Integrating y"’(1) = &£(7) from a to 7 trice, one gets

N2 T )2
Y1) =co+ci(t—a)+c; @ 2a) + f @ 2S) &(s)ds, (2.5

where c¢(, ¢; and ¢, are chosen real unknown constants. Then, upon combining the third boundary
condition of (2.1) with (2.5), we get

T r o T X
) = Eil[—(sz f Es)ds+ ) v f £(s)ds + f ( f EDdt)de(s) + ). (2.6)
a i=1 a a a

Using the second boundary condition of (2.1) together with (2.6) in

Y@ =ci+o(r—a)+ fT(T — $)&(s)ds,
we obtain

¢ =gz E(=8 [T - 9)s)ds + I, i [0 = )é(s)ds
T S
- f ( f (s = DE@)L)dg(s) + 1o) 27

T r o T X
~E3( -6 f Es)ds + ) v, f E(s)ds + f ( f E(Ddr)de(s) + 13)].
a i=1 a a a

Finally, upon using the first boundary condition of (2.1) in (2.5) together with (2.6) and (2.7), one gets

co = H(EsEs - EzEs)[ — 0 faT E)ds + Ty vi [ Es)ds

T s T
+ f ( f E(0)dt)d(s) + A3 | - E\Es| - B f (T = $)é(s)ds
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r o T X
3o [ =+ [ ([ - newdnss + )
=1 a a a

VE B[ - o f T =5 s +Z f " (U’ 9 ()ds
T S _ 2
+ f ( f & 2’) Edt)de(s) + A )

where I'and E; (j = 1,...,6) are given by (2.4). Therefore, substituting the values of ¢, ¢, and ¢,
into (2.5) and using the notations expressed in (2.3), the solution of (2.2) is thus obtained. Moreover,
the converse of the lemma follows by direct computation. This completes the proof.

3. Main results

Let H = C([a,T],R) denote the Banach space, which further contains continuous functions
from [a, T] — R with the norm introduced by ||y|| = sup{|y(7)|, T € [a, T]}. Then, on using Lemma 2.1,
we transform problem (1.1) into an analogue fixed point problem as

y =Py, (3.1

where P : H — H is defined by

T \2
P = [ S s

I (T - 5)?
‘f f |02, 2 + BK\(D(T = 5) + 6:Ka(0)| f (s, ())ds

ALy [ pEE TS w9 vkl s G2
i= 1 a

2
[ 1[ met 2) KOs = 1)+ Ka0) 10,50t o)

1 1 1
+—A + = K A+ =K (1)A
Eh 1(1) A, T 2(7) 3.

If the operator expressed in (3.1) has fixed points, then we can say that problem (1.1) has solutions.
Additionally, let us consider the following values, which would be used in the result of this study,

— )3 3 r 3 N3
0 :(T a) N 1[| 2IM+Z%M+I (s a)d¢()]

3! |E4l 3! — 3!
a)z L (i—aP | (T (s-a)p
o N lZ]piT + f S—d(s)] (3.3)
T
+ 26T - )+ le wei=a+ [ - ada)
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and 1 1 1
P LU BT A
0, _®+'E4 + F‘kﬁu r|k2, (3.4)

where MaXze(q,7] |K1 (T)| = kl and MaXze[q,T] |K2(T)| = kz.

3.1. Existence of solutions

In this regard, Krasnoselskii’s fixed point theorem [42] would be used to prove the existence of
solutions for the problem (1.1) in what follows.

Lemma 3.1. (Krasnoselskii’s fixed point theorem). Let L be a closed bounded, convex and nonempty
subset of a Banach space X. Let ¢| and ¢, be operators such that
(i) 1l + ¢pol, € L whenever 1,1, € L,
(ii) ¢y is compact and continuous,
(iii) ¢ is a contraction mapping. Then, there exists 7 € L such that
7= ¢12+ oz
Theorem 3.1. Let f : [a,T] X R — R be a continuous function such that
C) If(ry) - fr, ol <lly-x|, VYrelaT], £>0, y,xeR.

(C2) There exist a map « € C([a, T],R") with ||| = sup,c,.7) k(T)| such that |f(z, y)| < k(7), Y(7,y) €
[a,T] X R.

In addition, it is assumed that

3
7 “))<1, (3.5)

3!
where O is defined by (3.3). Then, the problem (1.1) has at least one solution on [a, T].

CE

Proof. Consider a closed ball B,, = {y € H : ||y|| < w} for fixed w > O,||«||, where ©, is given by (3.4).
Let us define the operators £; and $, on B,, as follows:

T o\
(P1y)(7) = f (T zs) F(s.y(s)ds,

and
(T - s)?

1 T
P =1 [ |aEiEs + K (DT = 5) + 6:K(0)| (5. ¥()ds

1w [ (o;—5)?
+= Z f [%‘ElEzT + piKi(T)(oi = 5) + ViKz(T)]f(S,)’(S))dS
o1 Ja

1 T s (S—T)2
T f [ f (E1Ex=—= + Ki(@)(s = 1) + Ko(D) £(0, Y(0)dl|d(s)

1 1 1
—A —K; (1)1 =K>(1)A5.
+E41+F 1(T)2+r 2 (1) A3

Notice that (Py)(1) = (P1y)(1) + (PLy)(7). For T € [a,T] and y, x € B,,, we find that

T N2
[Pry+Podl = sup | f C 3 s, yiods

7€la,T] 2
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1 (T (T — s)?
T f [azElEz > +ﬁzK1(T)(T—s)+6sz(T)]f(s,x(s))ds

+l 2 ff"f ['y'ElEZ (oi — S)2 + piK (D)o — $) + V'KZ(T)]f(s x(s))ds
r =1 vYa l 2 l ! ' ’

e (s — 1)
T f [ f (E:E> 5 + Ky(1)(s = 1) + Ka(D)) £ (1, x(0))dt|dgs(s)

11 I
+ A+ K + =KD}

(r—a)
< [l sup
t€la,T] { 3!

r

1 (T - a)® (o; —a)’ T (s—a)
|E4|[| A+ D +fa o dé(s)]

T — 2 r N2 T 2
+ﬁ| O A" Z L f St
=1 a

i=1

+ﬁ|K2(T)|[|62|(T —a)+ Z viloi — a) + f (s — a)dg(s)]

ki@l + |2l < ey < w,

+‘ 'r ‘r

where ®, is given by (3.4). ThlS shows that P,y + P,x € B,,.. Thus, condition (i) in Lemma 3.1 is
satisfied. Next, on using the assumption of (C;) and (3.5), we obtain

P2y = Poxll

AIMS Mathematics

IA

1 7 (T — 5)?
sup {— [IazE1E2| + B K (DT - s5) + |52K2(T)|]
7€la,T] |F| a

X| (s, 3(5)) = f (s, x(s))|ds + mz f [ViE\Ed

(cr,

K (DI = ) + VK (O] |£(5, 5(5) = fs, 2(9)
t)2

I f f BByl + Ky (1)l(s = 1) + | Kx(7)])

x| e,y - £ x(r))(dr Jag(s)},

1 T-a)P < . —a)? — )
Ex |[|Ozz|% + Z'}’i% +f (s a) dp(s )]
: i=1 : a

Cllu=vi|

T — 2 r - 2 T 2
e S Y e [ S )

i=1

Il [
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+-%WmT—m+Z?mn—m+LwammML
N3
< €(®—(T3!a) )iy =l

which implies that #, is a contraction operator. Then, we prove that #; is compact and continuous.
Notice also that, the continuity of f means that the operator #; is continuous. In addition, Py is

uniformly bounded on B,, as

T -a)’
Pl < 52

Let us fix SUP (7 y)e[a.TIxB, |f(r,y)| = f, and take a < 7| < 7, < T. Then,

T 2 N2
e -l = | [ 275 - s
Jony;
T1 2
3
];((Tz 3T1)

— 0Oast, — 1y,

f(s, y(s)ds]

<

)

1 3 3
+5lm-at - -w

independently of y € B,,. This implies that #; is relatively compact on B,,. Hence, it follows by the
Arzela-Ascoli theorem that the operator #; is compact on B,,. Thus, all the hypotheses of Lemma 3.1
have been fulfilled. Consequently, by Krasnoselskii’s fixed point theorem, the problem (1.1) has at
least one solution on [a, T].

Remark 3.1. If we switch the rolezof the operators P, and P, in the theorem above, then the
condition (3.5) is replaced with € % < 1.

In the following theorem, we prove the uniqueness result of solutions for the problem (1.1) by
implementation of the Banach’s contraction mapping principle [43].

3.2. Uniqueness of solutions

Theorem 3.2. Assume that f : [a,T] X R — R satisfies (Cy) condition. Then, the boundary value
problem (1.1) has a unique solution on [a, T]if € < 1/®, where © is given by (3.3).

0O.q
, sup |f(t,0)| = g. In the first step,
—ce, oV 1 P

we show that B, C B,, where the operator ¥ is defined by (3.2). For any y € B,, 7 € [a,T], we find
that

Proof. Consider a set B, = {y € H : ||yl <}, where ¢ >

fCs, (DI = |f (s, 3(8)) = f(s,0) + f(s, 0)l,
< fGs, y(s) — f(s,0)[ + (s, 0)l,
< Lyl +4q,
< li+gq.
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Then, for y € B,, we obtain

Pl

IA

+

INIA

2
f( )f(s y(s))ds

I (T - 5)°
£ [ [aaBiE S5 KT - 9+ 6akat)| . 305

sup {

7€la,T]

1 r T = 2
T Z f [YiElEz @ > ) + piKi(T) (0 — ) + v,-Kz(‘r)]f(s,y(s))ds
o1 Va

1 (T — 12
- f [ f (E1E2(S 2t) + K\(1)(s = 1) + Ko(D)) f(2, Y(0))dt|d(s)
1 }

1 1
—A + K1 ()2 + Kz(T)/13
E,4

(T - a)g

(be+ q){

1 (T - a)g (0' - a)3 T (s - a)g
El Z

T-af @@t (T
HirARes Zp L f o )|

dg(s )

|r|['52'(T a)+Zv,(cr, a) + f (s — a)dg(s) |

2+ e+ [le)

(le+q)0,

L

where @, is given by (3.4). This shows that B, C B,.
Now we show that the operator P is a contraction. Then, for y, x € H, we have

Py~ Pxil = sup |Py(r) - Px(r),

7€[0,T]

T )2
<{ [ 500 - ssxtonas

T

+_
Il

1 r fo,- EE (O-i _ S)2 x ©
+ﬁ ; ) [%‘| 1B 5 + pil K1 (Do — ) + v 2(T)|]‘f(s,y(s)) - f(s, x(s))'

AIMS Mathematics

[|02E1E2|

(T -5

+ BKADNT = )+ 16K 5, 3(5)) = fs, x(s))|ds
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2
o f f B EA S 1K@ = )+ 1Kao)

X v0) = i, x| gs))

(T-a® 1 T-a) < _(0i-a) fT(S—a)3
S E N T

(T-aP <~ (0;—a) T(s—a)’
ﬁk1[|,32| ZP:’T + L 2 d¢(S)]

<tly-xIlf

i=1

4 |F|k2[|62|(T a) + Z vilo; —a) + f (s — a)d¢(S)]}

<{O|y-x],

where we have used (3.3). By the given assumption: £ < 1/0, it follows that the operator P is a
contraction. Thus, by Banach’s contraction mapping principle, we deduce that the operator ¥ has a
fixed point, which corresponds to a unique solution of the problem (1.1) on [a, T].

Example 3.1. Consider the following non-separated multi-point and Stieltjes boundary value problem:

-7

)= 2 iny(r) + Y
g veraar o 24y

T
3
aiy(a) + axy(T) = Z Yiy(o) + f Y($)dg(s) + 7.

i=1

+cost, T €]0,2],

T 3.6)
piv'@ + B/ (1) = Yoo+ [ (o)) + 3,
i=1 a

4

T
1
61'(a) + 62" (T) = ) vy () + f Y/ ($)d(s) + 3.

i=1

wherea = 0, T =2, r =4, a; =2/9, a, =4/9,8, = 1/7,8, = 3/7,6, = 1/8,6, = 1/4, vy, =
1/9,')’2:1/377’3:5/9a?’4:2/3,l31:2/77/32:3/77,03:4/7ap4:5/7a V1:3/8a V2:1/29 V33:
5/, = 341 = 13,02 = 233 = Low = 43,4 = 312 = 3, & = L g(s) = b=,

Clearly, |f(r.y)| < == + ‘218—;”' 4 [cosl, Lf(r,y) — f(x, )| < €ly — x|, with € = 1/6. Using the
given data, we find that |E|| = 4.541667 # 0, |E,| = 4.095238 # 0, |E4 = 3.666667 + 0, |E3| =
1.047619, |Es| = 4.814815, |Eg| = 3.261729 and |I'| = 68.197099 (' and E; (i = 1,...,6) are given
by (2.4)), © = 4386978, © — L9 = 3.053645 (O is defined by 3.3).

Furthermore, we note that all the conditions of Theorem 3.1 are satisfied with f(@ —
0.508941 < 1. Hence the conclusion of Theorem 3.1 applies to the problem (3.6).

We also observe that all the conditions of Theorem 3.2 hold true with {® ~ 0.731163 < 1. Hence
we deduce by the conclusion of Theorem 3.2 that there exists a unique solution for the problem (3.6)
on [0,2].

(T—a)S) -
31 ~

AIMS Mathematics Volume 8, Issue 6, 13572—-13592.
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4. The multi-valued case

Here we discuss the existence of solutions for the multi-valued analogue (inclusions) case of the
problem (1.1) given by

y"(1) € F(1,y(1)), —0 <a<1<T < o,

r T
a1y(@) + axy(T) = Z yiy(oi) + f y($)dg(s) + A,

i=1

r T
By (@) + B2y (T) = Y piy' () + f V(S)dp(s) + do. @D
i=1 a

r

T
81y"(@) +62y"(T) = ) vy (o) + f Y (5)dg(s) + A,

i=1 a

where F : [a, T]XR — P(R) is a multi-valued map, P(R) is the family of all nonempty subsets of R and
the other quantities are the same as defined in the problem (1.1). We then apply Bohnenblust-Karlin
fixed point theorem to prove the existence of solutions for the problem (4.1).

Furthermore, for the convenience of the reader, we outline some basic concepts about multi-valued
analysis [44—47] as follows:

I) A multi-valuedmap S: U — P(U) is
(i) convex (closed) valued if S(u) is convex (closed) for all u € U, where (U, ||.||) is a Banach
space,
(i1) bounded on a bounded set if S(Z) = U,zS(u) is bounded in U for all Z € P,(U) (that is,
sup,cz{supflv| : v € S(u)}} < o),
(iii) upper semi-continuous (u.s.c.) on U if for each u, € U, the set S(uy) is a nonempty closed
subset of U, and if for each open set A of U containing S(uy), there exists an open
neighborhood Ay of u, such that S(Ay) C A,
(iv) completely continuous if S(B) is relatively compact for every B € P, (U).

IT) If the multi-valued map S is completely continuous with nonempty compact values, then S
is w.s.c. 1if and only if S has a closed graph; that is, u, — wu., v, — v., v, € S(u,)
implies v, € S(u..).

IIT) A multi-valued map S : U — P(U) has a fixed point if there is u € U such that u € S(u).

IV) In the sequel, we denote the set of all nonempty bounded, closed and convex subset of U
by BCC(U), and L'([a, T],R) denotes the Banach space of functions u : [a,T] — R, which are
Lebesgue integrable, and normed by ||u||;1 = fol |u(t)|dT.

V) Consider the following assumptions, which are needed in the forthcoming analysis:

(Ay) Let F : [a, T]XR — BCC(R); (1,y) — F(7,y)be measurable with respect to 7 foreach y € R,
u.s.c. with respect to y for a.e. 7 € [a,T], and for each fixed y € R, the set Sf, := {g €
L'([a,T1,R) : g(1) € F(1,y) for all T € [a, T]} is nonempty.

(A;) For each r > 0, there exists a function ¢, € L'([a, T],R*) such that ||[F(t,y)|| = sup{lg| :
g(t) € F(1,y)} < ¥,(7) for each (t,y) € [a, T] X R with |y| < r and

T
lim inf (—f“ w’(T)dT)

r—+o00 r

= &< oo (4.2)

AIMS Mathematics Volume 8, Issue 6, 13572—-13592.
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VI) Lastly, in relation to (4.1), we define
1A A A3
A= ‘—E4 + 'F‘gl + ‘F|g2 (43)

Now, we state the following lemmas, which are needed to prove the main result:

Lemma 4.1. (Bohnenblust-Karlin [48]) Let D C U be nonempty bounded, closed, and convex.
Let S : D — B(U) be u.s.c. with closed, convex values such that S(D) C D and S(D) is compact.
Then, S has a fixed point.

Lemma 4.2. [49] Let F be a multi-valued map satisfying the condition (A) and ¢ is linear continuous
from L'([a, T],R) — C([a, T1,R). Then, the operator ¢ o S : C([a, T],R) — BCC(C([a,T],R)),y +>
(@ o Sp)Y) = ¢(S ry) is a closed graph operator in C([a,T],R) X C([a, T],R).

Theorem 4.1. Assume that (A,) and (A,) hold and that
0 < 1, (4.4)

where ® and & are given by (3.3) and (4.2) respectively. Then, the problem (4.1) has at least one
solution on |a, T].

Proof. Transforming the problem (4.1) into a fixed point problem, define an operator G : H — B(H)
by

heH:

T N2
f @ 25) g(s)ds
1

! (T —s)?
- f |2\ Er— + BuKi(0)(T = 5) + 5:K:(7)[g(s)ds

0= +1 3 [ E T gk - s kel [
r < ; 4 2 l 4 l

G0y =

1 T S (S— l)2
T f [ f (E:E» > + Ki(0)(s = 1) + K(1))g(0)dt |dg(s)

1 1 1
+—A + =K (1) + =K (7)43,
EUYT 1M T 2(1)A3

for g € Sf,. It is obvious that the fixed points of G are solutions of the boundary value problem (4.1).
We will show that G satisfies the assumptions of Lemma 4.1 and hence it will have a fixed point
which guarantees the existence of a solution for the problem (4.1).
In the first step, we show that G(y) is convex foreach y € H.For h, h, € G, there exist g1, 82 € Sf,
such that for all ¢ € [a, T'], we have

T N2
hir) = f ( 2“‘) gi(s)ds

1 (7 T — g2
- 1 [ BB ST kT -+ sk as)ds
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2

I i -
+ l: ; fa [%‘ElEz (o - s) + p;Ki(t)(o; — 5) + ViKz(T)]g,-(S)ds

r
1

1 T S (S _ t)2
+ _f [f (E1E2 3 +K1(T)(S—t)+KZ(T))gi(t)dt]d(ﬁ(s)

1 1
+ A+ ITKI(T)/lZ + IiKz(T)/13, i=1,2.

Ey4

ForO<g¢<1landallT € [a,T], we obtain

[¢hy + (1 = ©)h2](7)

+

T N2
f U 2“) [6g1(s) + (1 - )ga(s)Ids

1 T T — 2
£ [ [amE S5 bk eT - 9+ 6ukato)]

X[sg1(s) + (1 = §)g2(s)lds

1 r T - 2
T Zf [%’ElEz @ > ) +piKi(T)(oi = 5) + ViKz(T)]
im1 Ja

X[sg1(s) + (1 = §)g2(s)lds

1 T S _ A2
[ (EESSE k@ - 0+ Km)

x[sg1(t) + (1 = §)ga(1)]dt|de(s)

1 1 1
—A —K(1)A =K (1) A5.
E41+F 1(7')2+F 2 (T)A3

As Sy is convex (F has convex values), so one can deduce that (ghl +(1 - g)hz) € G0»).

Now we show that there exists a positive number r such that G(B,) < B,
where B, = {y € H : ||yl < r}, and B, is a bounded closed convex set in /. If it is not true, then we
can find a function y, € B,, h, € G(y,) with ||G(y,)|| > r for each positive number r such that

2
S o (s)ds

h(t) = fT(T_z

1 (7 T _ gP2
- —f [Q'ZEIEZ( 25) + oKy ()T — S)+52K2(T)]gr(s)d5

r

2

I« [ = )2
+ F;L [yiElEz(O- s) +piK1(T)(0'i—S)+V5K2(T)]g,(s)ds

r

2

L (s —1)?
+ —f [f (E1E2 +Kl(T)(S—l‘)+K2(T))gr(t)dt]d¢(s)

1 1 1
+ —A+ le(r)az + sz(T)ﬂz,

E,

AIMS Mathematics

Volume 8, Issue 6, 13572—-13592.



13585

for some g, € Sp,,. On the other hand, using (A,), we get

ro < GGl

2
< f(T g (s)ds

Y
-1 f (0BT 2” BK (DT = )+ K0 (5)ds

+ = Z f”’ )/,E Ez ) + oK (7)o — 5) + Vsz(T)]l//r(s)ds
i=1 Y4

1 T S (S _ t)z
T f [ f (E\E > + Ki(0)(s = 1) + Ko(0)), ()t |dgp(s)

1 1 1
+ =4+ =Ki(1)A + =K (1)43,
EUYT 1(M)A2 T 2(1) 43

T
< ®f U (s)ds + A,

where ©® and A are given by (3.3) and (4.3) respectively. Dividing both sides of the above inequality
by r yields

T
L <o J: mr(s)ds) A

-
Now, taking the limit inf as r — oo together with the notation (4.2), we obtain

1 < &0,

which contradicts (4.4). Consequently, there exists a positive number r; such that G(B,,) C B,,.
Next, we show that G(B,,) is equicontinuous set of H. Let 71,7, € [a,T] with 7y < 75,y € B,
and h € G(y), there exists g € S, such that for each 7 € [a, T'], we have

N3
Ih(2) — h(ry)| {M

IA

(1)

+ 5@ -0’ - @ -0

N2 r )2 T 2
+ ﬁ(72—7'1)[|,32| %) +Zpig+£ %d(ﬁ(s)]

i=1

EE
+ |F|(|E3E4|(T2 4 > s - ay -z, - ay))[162(T - a)
r T
+ D viloi—a)+ f (s — a)dg(s))]

i=1

(T2 - T1) |E E |
Wﬂ |F|(|E3E4|(T2 -7+ ) ! (1= a)* = (1) - a)z))/l%
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— 0as (r,—11)—0,

independently of y € B,,. Subsequently, the Ascoli-Arzeld theorem applies since the above three
conditions are satisfied. Thus the operator G : H — B(H) is compact multi-valued map. In order to
prove that G is u.s.c. we have to show that G has a closed graph as follows, where G is completely
continuous (see Proposition 1.2 [44]). Let y, — ., h, € G(,) and h, — h,. Then, we prove
that 4. € G(y.). Associated with h, € G(y,), there exists g, € S, for all T € [a, T], such that

T N2
ha(t) = f =5 o (s)ds

2

1 (7 T — 2
- 1 [ eEES ST kT - 5+ sk s ods

a

1< [ sy
+ T ; f [%E1E2% + piKi(T)(o; = 5) + ViKZ(T)]gn(s)ds

1 T S (S— t)2
T f [ f (E\E; > + Ki(0)(s = 1) + Kx(0))gu(0)dlt|dgi(s)

1 1 1
—A —K(1T)A =K>(1)As5.
+ E41+F 1(T)2+F 2(T)A3

Therefore, it is enough to prove that there exists g, € S r,, such that for all 7 € [a, T], we have

T _o)\2
f(T 5) g.(s)ds

h.(t) >

1 T T — 2
- = f [azElEz( 2s) + B Ky (2)(T = 5) + 6,K(7)|g.(5)ds

1o [ = 5)>
+ F IZZI f [’}/iElEzg +pl~K1(T)(0'l' —5)+ ViKZ(T):Ig*(S)dS

a

1 T S (S— f)2
T f [ f (E\E 5 + Ki(1)(s — ) + Ko(7))gu (1)t |dep(s)

1 1 1
+ — A+ =K{(0)A + =K5(7)As.
ENTT 1(1) A2 T (D) A3

Set Q : L'([a, T],R) — H as a continuous linear operator given by

T )2
f(T ) g(s)ds

g = Q©)(7) .

1 (7 T 2
- ¢ [ eEES ST kT - 9+ ska]sods

2

+ = Zf | [%E]EQQ + 0, K (t)(0; — 5) + ViKz(T)]g(s)ds

AIMS Mathematics Volume 8, Issue 6, 13572—-13592.



13587

Observe that

”hn -

hal

. (s = 1)
* ff [f (EIEZ 5 +Kl(T)(S—l)+K2(T))g(t)dt]d¢(s)

1 1 1
+ I A + KI(T)/IZ + Kz(r)/lg
4

T (1 —s)
|55

1 r Y
_ ﬁ f [|012E1E2|(T s) + |8 K (T)[(T — s5) + |52K2(T)|]

X[8n($) = g*(s)'ds+|r|2f %lElEzl(Gl )

&n(s) - g.(9)|ds

IA

&n(s) = g.()|ds

+ plKi(@Dl(oi - 5) + VileT)l]

2
+ f f BBl )+|K1(T)|(S—f)+|K2(T)|)

x|g, (1) - g*(t)'dt dd(s) = 0 as n — oo,

Thus, by Lemma 4.2, Q o S is a closed graph operator and 4,(7) € Q(S g,,) as y, — y.. Consequently,

we have

h.(7)

+

2
f(T )g*(s)ds

T N2
. f |2 A 5 9 + B Ky (2)(T = 5) + 6,K(7)|g.(5)ds

1 & ([ (= 5)?
T Z f [%‘ElEz @ > ) + piKi(7) (o — 5) + ViKz(T)]g*(S)dS
i1 Ya

N e s
= f [ f (ErEr— + K\(1)(s = ) + Ko(7))gu (1)t |dep(s)

1 1 1
— A+ = K A+ =K5(7)A3,
b 1(1)A2 T 2(7)A3

for some g, € S p,,. The hypothesis of Lemma 4.1 holds true and we can conclude that G is a compact
multi-valued map, u.s.c. with convex closed values. Thus, the operator G has a fixed point y which is
indeed a solution of problem (4.1). This completes the proof.
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Example 4.1. Consider the following boundary value problem

y"(1) € F(r,y(1)), 7 €10,2],

4 2
3
a1y (0) + asy(2) = va(a» + fo YD) + 3,
4 2 (4.5)
Biy'(0) + B2y’ (2) = D piy' (o) + fo Y (8)dg(s) + 3,
i=1

4 2
1
01Y"(0) +02y"(2) = ) viy"(o) + j; y/’(s)d¢(s)+§,

i=1

where all the constants take the same values as in Example 3.1.
So, |F(T, )|l < ﬁlylﬂ:os 7 in this case, with condition (4.4) satisfied, since £® ~ 0.482568 < 1.
Hence, it is deduced from the conclusion of Theorem 4.1 that there exists at least one solution for the

problem (4.5) on [0, 2].
5. Conclusions

In conclusion, the present study made use of the fixed point theorems to develop and further
prove the existence and uniqueness results for the generalized nonlinear third-order ordinary
differential equation with non-separated multi-point and nonlocal Riemann-Stieltjes (integral)
boundary conditions. Additionally, the existence of solutions for the multi-valued case has equally
been established through the application of Bohnenblust-Karlin’s version of the fixed point theorem.
Lastly, some supportive examples are supplied to clarify the applicability of the proven results.
Besides, the present study is relevant to a variety of physical models in science and engineering
applications.

Conflict of interest

The author declares that she has no conflict of interest.

References

1. R. Ma, A survey on nonlocal boundary value problems, Appl. Math. E-Notes, 7 (2007), 257-279.

2. E T. Akyildiz, H. Bellout, K. Vajravelu, R. A. Van Gorder, Existence results for
third order nonlinear boundary value problems arising in nano boundary layer fluid
flows over stretching surfaces, Nonlinear Anal. Real World Appl., 12 (2011), 2919-2930.
http://dx.doi.org/10.1016/j.nonrwa.2011.02.017

3. M. Ashordia, On boundary value problems for systems of nonlinear generalized
ordinary  differential  equations, Czech. Math. J, 67 (2017), 579-608.
http://dx.doi.org/10.21136/CMJ.2017.0144-11

4. L.Zheng, X. Zhang, Modeling and analysis of modern fluid problems, London: Elsevier/Academic
Press, 2017. http://dx.doi.org/10.1016/C2016-0-01480-8

AIMS Mathematics Volume 8, Issue 6, 13572—-13592.


http://dx.doi.org/http://dx.doi.org/10.1016/j.nonrwa.2011.02.017
http://dx.doi.org/http://dx.doi.org/10.21136/CMJ.2017.0144-11
http://dx.doi.org/http://dx.doi.org/10.1016/C2016-0-01480-8

13589

10.

11.

12.

13.

14.

15.

16.

17.

Y. Sun, L. Liu, J. Zhang, R. P. Agarwal, Positive solutions of singular three-point boundary value
problems for second-order differential equations, J. Comput. Appl. Math., 230 (2009), 738-750.
http://dx.doi.org/10.1016/j.cam.2009.01.003

P. W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary
value problem with nonlocal conditions, Appl. Math. Lett.,, 18 (2005), 521-527.
http://dx.doi.org/10.1016/j.am1.2004.05.009

V. A. llyin, E. 1. Moiseev, Nonlocal boundary value problem of the first kind for a
Sturm-Liouville operator in its differential and finite difference aspects, Diff. Equat.,
23 (1987), 803-810.

S. Clark, J. Henderson, Uniqueness implies existence and uniqueness criterion for nonlocal
boundary value problems for third order differential equations, Proc. Amer. Math. Soc., 134 (2006),
3363-3372. http://dx.doi.org/10.2307/4098045

J. Ri L. Webb, G. Infante, Positive solutions of nonlocal boundary value
problems: a unified approach, J. Lond. Math. Soc., 74 (2006), 673-693.
http://dx.doi.org/10.1112/S0024610706023179

B. Ahmad, S. Hamdan, A. Alsaedi, S. K. Ntouyas, A study of a nonlinear coupled system of
three fractional differential equations with nonlocal coupled boundary conditions, Adv. Differ.
Equ., 2021 (2021), 278. http://dx.doi.org/10.1186/s13662-021-03440-7

B. Ahmad, A. Alsaedi, N. Al-Malki, On higher-order nonlinear boundary value problems
with nonlocal multipoint integral boundary conditions, Lith. Math. J., 56 (2016), 143-163.
http://dx.doi.org/10.1007/s10986-016-9311-6

B. Ahmad, B. Alghamdi, R. P. Agarwal, A. Alsaedi, Riemann-Liouville fractional
integro-differential equations with fractional nonlocal multi-point boundary conditions,
Fractals, 30 (2022), 2240002. http://dx.doi.org/10.1142/S0218348X22400023

B. Ahmad, A. Alsaedi, Existence of approximate solutions of the forced Duffing equation with
discontinuous type integral boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009),
358-367. http://dx.doi.org/10.1016/j.nonrwa.2007.09.004

B. Ahmad, S. K. Ntouyas, A study of higher-order nonlinear ordinary differential equations with
four-point nonlocal integral boundary conditions, J. Appl. Math. Comput., 39 (2012), 97-108.
http://dx.doi.org/10.1007/s12190-011-0513-0

J. Henderson, Smoothness of solutions with respect to multi-strip integral boundary conditions
for nth order ordinary differential equations, Nonlinear Anal. Model., 19 (2014), 396—412.
http://dx.doi.org/10.15388/NA.2014.3.6

I. Y. Karaca, F. T. Fen, Positive solutions of nth-order boundary value problems
with integral boundary conditions, Math. Model. Anal., 20 (2015), 188-204.
http://dx.doi.org/10.3846/13926292.2015.1020531

H. H. Alsulami, S. K. Ntouyas, S. A. Al-Mezel, B. Ahmad, A. Alsaedi, A study of third-
order single-valued and multi-valued problems with integral boundary conditions, Bound. Value
Probl., 2015 (2015), 25. http://dx.doi.org/10.1186/s13661-014-0271-7

AIMS Mathematics Volume 8, Issue 6, 13572—-13592.


http://dx.doi.org/http://dx.doi.org/10.1016/j.cam.2009.01.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2004.05.009
http://dx.doi.org/http://dx.doi.org/10.2307/4098045
http://dx.doi.org/http://dx.doi.org/10.1112/S0024610706023179
http://dx.doi.org/http://dx.doi.org/10.1186/s13662-021-03440-7
http://dx.doi.org/http://dx.doi.org/10.1007/s10986-016-9311-6
http://dx.doi.org/http://dx.doi.org/10.1142/S0218348X22400023
http://dx.doi.org/http://dx.doi.org/10.1016/j.nonrwa.2007.09.004
http://dx.doi.org/http://dx.doi.org/10.1007/s12190-011-0513-0
http://dx.doi.org/http://dx.doi.org/10.15388/NA.2014.3.6
http://dx.doi.org/http://dx.doi.org/10.3846/13926292.2015.1020531
http://dx.doi.org/http://dx.doi.org/10.1186/s13661-014-0271-7

13590

18. M. Boukrouche, D. A. Tarzia, A family of singular ordinary differential equations of the
third order with an integral boundary condition, Bound. Value Probl., 2018 (2018), 32.
http://dx.doi.org/10.1186/s13661-018-0950-x

19. N. I. Tonkin, The solution of a certain boundary value problem of the theory of heat conduction
with a nonclassical boundary condition, Differ. Uravn., 13 (1977), 294-304.

20. B. Ahmad, S. K. Ntouyas, H. Alsulami, Existence of solutions or nonlinear nth-order differential
equations and inclusions with nonlocal and integral boundary conditions via fixed point theory,

Filomat, 28 (2014), 2149-2162. http://dx.doi.org/10.2298/FIL1410149A

21. F. Nicoud, T. Schfonfeld, Integral boundary conditions for unsteady biomedical CFD applications,
Int. J. Numer. Meth. Fl., 40 (2002), 457-465. http://dx.doi.org/10.1002/f1d.299

22. M. Feng, X. Zhang, W. Ge, Existence theorems for a second order nonlinear differential equation
with nonlocal boundary conditions and their applications, J. Appl. Math. Comput., 33 (2010), 137—
153. http://dx.doi.org/10.1007/s12190-009-0278-x

23. J.R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems involving integral
conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45-67. http://dx.doi.org/10.1007/s00030-007-
4067-7

24.)J. R. Graef, J. R. L. Webb, Third order boundary value problems with
nonlocal boundary conditions, Nonlinear Anal. Theor, 71 (2009), 1542—-1551.
http://dx.doi.org/10.1016/j.na.2008.12.047

25. X. Zhang, L. Liu, Y. Wu, Y. Zou, Existence and uniqueness of solutions for systems of fractional
differential equations with Riemann-Stieltjes integral boundary condition, Adv. Differ. Equ.,
2018 (2018), 204. http://dx.doi.org/10.1186/s13662-018-1650-7

26. B. Ahmad, Y. Alruwaily, A. Alsaedi, S. K. Ntouyas, Existence and stability results for a fractional
order differential equation with non-conjugate Riemann-Stieltjes integro-nultipoint boundary
conditions, Mathematics, 7 (2019), 249. http://dx.doi.org/10.3390/math7030249

27.N. Yao, X. Liu, M. Jia, Solvability for Riemann-Stieltjes integral boundary value problems
of Bagley-Torvik equations at resonance, J. Appl. Anal. Comput., 10 (2020), 1937-1953.
http://dx.doi.org/10.11948/20190289

28. B. Ahmad, A. Alsaedi, A. Alruwauly, On Riemann-Stieltjes integral boundary value problems
of Caputo-Riemann-Liouville type fractional integro-differential equations, Filomat, 34 (2020),
2723-2738. http://dx.doi.org/10.2298/FIL2008723A

29. B. Ahmad, A. Alsaedi, Y. Alruwaily, S. K. Ntouyas, Nonlinear multi-term fractional differential
equations with Riemann-Stieltjes integro-multipoint boundary conditions, AIMS Math., 5 (2020),
1446-1461. http://dx.doi.org/10.3934/math.2020099

30. S. Aljoudi, B. Ahmad, A. Alsaedi, Existence and uniqueness results for a coupled system of
Caputo-Hadamard fractional differential equations with nonlocal Hadamard type integral boundary
conditions, Fractal Fract., 4 (2020), 13. http://dx.doi.org/10.3390/fractalfract4020013

31. B. Ahmad, Y. Alruwaily, A. Alsaedi, S. K. Ntouyas, Riemann-Stieltjes integral boundary value
problems involving mixed Riemann-Liouville and Caputo fractional derivatives, J. Nonlinear
Funct., 2021 (2021), 1-19. http://dx.doi.org/10.23952/jnfa.2021.11

AIMS Mathematics Volume 8, Issue 6, 13572—-13592.


http://dx.doi.org/http://dx.doi.org/10.1186/s13661-018-0950-x
http://dx.doi.org/http://dx.doi.org/10.2298/FIL1410149A
http://dx.doi.org/http://dx.doi.org/10.1002/fld.299
http://dx.doi.org/http://dx.doi.org/10.1007/s12190-009-0278-x
http://dx.doi.org/http://dx.doi.org/10.1007/s00030-007-4067-7
http://dx.doi.org/http://dx.doi.org/10.1007/s00030-007-4067-7
http://dx.doi.org/http://dx.doi.org/10.1016/j.na.2008.12.047
http://dx.doi.org/http://dx.doi.org/10.1186/s13662-018-1650-7
http://dx.doi.org/http://dx.doi.org/10.3390/math7030249
http://dx.doi.org/http://dx.doi.org/10.11948/20190289
http://dx.doi.org/http://dx.doi.org/10.2298/FIL2008723A
http://dx.doi.org/http://dx.doi.org/10.3934/math.2020099
http://dx.doi.org/http://dx.doi.org/10.3390/fractalfract4020013
http://dx.doi.org/http://dx.doi.org/10.23952/jnfa.2021.11

13591

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47

. C. Nuchpong, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for
Hilfer type sequential fractional differential equations and inclusions involving Riemann-
Stieltjes integral multi-strip boundary conditions, Adv. Differ. Equ., 2021 (2021), 268.
http://dx.doi.org/10.1186/s13662-021-03424-7

M. 1. Abbas, M. Fekan, Investigation of an implicit Hadamard fractional differential equation
with Riemann-Stieltjes integral boundary condition, Math. Slovaca, 72 (2022), 925-934.
http://dx.doi.org/10.1515/ms-2022-0063

M. A. Yuan, J. I. Dehong, Existence of solutions to a system of Riemann-Liouville fractional
differential equations with coupled Riemann-Stieltjes integrals boundary conditions, Fractal Fract.,
6 (2022), 543. http://dx.doi.org/10.3390/fractalfract6 100543

W. M. Whyburn, Differential equations with general boundary conditions, B. Am. Math. Soc.,
48 (1942), 692-705. http://dx.doi.org/10.1090/S0002-9904-1942-07760-3

R. Conti, Recent trends in the theory of boundary value problems for ordinary differential
equations, Bolletino dell Unione Mat. Ital., 22 (1967), 135-178.

B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, Existence theory for coupled
nonlinear third-order ordinary differential equations with nonlocal multi-point anti-periodic
type boundary conditions on an arbitrary domain, AIMS Math., 4 (2019), 1634-1663.
http://dx.doi.org/10.3934/math.2019.6.1634

A. Alsaedi, M. Alsulami, H. M. Srivastav, B. Ahmad, S. K. Ntouyas, Existence theory for nonlinear
third-order ordinary differential equations with nonlocal multi-point and multi-strip boundary
conditions, Symmetry, 11, (2019), 281. http://dx.doi.org/10.3390/sym1102028 1

B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, Second-order ordinary differential equations
and inclusions with a new kind of integral and multi-strip boundary conditions, Differ. Equ. Appl.,
11 (2019), 183-202. http://dx.doi.org/10.7153/dea-2019-11-07

B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, A study of a coupled system of nonlinear
second-order ordinary differential equations with nonlocal integral multi-strip boundary conditions
on an arbitrary domain, J. Comput. Anal. Appl., 29 (2021), 215-235.

H. M. Srivastava, S. K. Ntouyas, M. Alsulami, A. Alsaedi, B. Ahmad, A self-adjoint coupled
system of nonlinear ordinary differential equations with nonlocal multi-point boundary conditions
on anarbitrary domain, Appl. Sci., 11 (2021), 4798. http://dx.doi.org/10.3390/app11114798

D. R. Smart, Fixed point theorems, London: Cambridge University Press Archive, 1980.

A. Granas, J. Dugundji, Fixed point theory, New York: Springer,  2003.
http://dx.doi.org/10.1007/978-0-387-21593-8

K. Deimling, Multivalued differential equations, Berlin: De Gruyter, 1992.
http://dx.doi.org/10.1515/9783110874228

S. Hu, N. Papageorgiou, Handbook of multivalued analysis, Dordrecht: Kluwer, 1997.
http://dx.doi.org/10.1007/978-1-4615-4665-8

H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J.
Math., 8 (1970), 5-11. http://dx.doi.org/10.1007/BF02771543

. M. Kisielewicz, Differential inclusions and optimal control, Dordrecht: Kluwer, 1991.

AIMS Mathematics Volume 8, Issue 6, 13572—-13592.


http://dx.doi.org/http://dx.doi.org/10.1186/s13662-021-03424-7
http://dx.doi.org/http://dx.doi.org/10.1515/ms-2022-0063
http://dx.doi.org/http://dx.doi.org/10.3390/fractalfract6100543
http://dx.doi.org/http://dx.doi.org/10.1090/S0002-9904-1942-07760-3
http://dx.doi.org/http://dx.doi.org/10.3934/math.2019.6.1634
http://dx.doi.org/http://dx.doi.org/10.3390/sym11020281
http://dx.doi.org/http://dx.doi.org/10.7153/dea-2019-11-07
http://dx.doi.org/http://dx.doi.org/10.3390/app11114798
http://dx.doi.org/http://dx.doi.org/10.1007/978-0-387-21593-8
http://dx.doi.org/http://dx.doi.org/10.1515/9783110874228
http://dx.doi.org/http://dx.doi.org/10.1007/978-1-4615-4665-8
http://dx.doi.org/http://dx.doi.org/10.1007/BF02771543

13592

48. H. F. Bohnenblust, S. Karlin, On a theorem of Ville, In: Contributions to the theory of games (AM-
24), New Jersey: Princeton University Press, 1951. http://dx.doi.org/10.1515/9781400881727-014

49. A. Lasota, Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary
differential equations, Bull. Acad. Pol. Sci., Sr. Sci. Math. Astron. Phys., 13 (1965), 781-786.

@ AIMS Press

AIMS Mathematics

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 8, Issue 6, 13572—-13592.


http://dx.doi.org/http://dx.doi.org/10.1515/9781400881727-014
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary result
	Main results
	Existence of solutions
	Uniqueness of solutions

	The multi-valued case
	Conclusions

