Newton's identities of an infinite polynomial with complex-conjugate roots n−(σ+it) and n−(σ−it) are multiple zeta functions for n∈[1, ∞), σ∈R and t∈R. All Newton's identities can be represented by Macdonald determinants. In a special case of the Riemann hypothesis, the multiple zeta function of the first order is equal to zero, ζ(σ+it)+ζ(σ−it) = 0. The special case includes all non-trivial zeros. The value of the last, infinite multiple zeta function, in the special case, changes the structure of the determinant that can be calculated. The result is the reciprocal of the factorial value (n!)−1. The general value of the infinite multiple zeta function is calculated based on Vieta's rules and is equal to (n!)−2σ. The identity based on the relation of the special case and the general case (n!)−1 = (n!)−2σ is reduced to the equation −1 = −2σ. The value of the critical line for all non-trivial zeros is singular, σ = ½.
Citation: Ilija Tanackov, Željko Stević. Calculation of the value of the critical line using multiple zeta functions[J]. AIMS Mathematics, 2023, 8(6): 13556-13571. doi: 10.3934/math.2023688
Newton's identities of an infinite polynomial with complex-conjugate roots n−(σ+it) and n−(σ−it) are multiple zeta functions for n∈[1, ∞), σ∈R and t∈R. All Newton's identities can be represented by Macdonald determinants. In a special case of the Riemann hypothesis, the multiple zeta function of the first order is equal to zero, ζ(σ+it)+ζ(σ−it) = 0. The special case includes all non-trivial zeros. The value of the last, infinite multiple zeta function, in the special case, changes the structure of the determinant that can be calculated. The result is the reciprocal of the factorial value (n!)−1. The general value of the infinite multiple zeta function is calculated based on Vieta's rules and is equal to (n!)−2σ. The identity based on the relation of the special case and the general case (n!)−1 = (n!)−2σ is reduced to the equation −1 = −2σ. The value of the critical line for all non-trivial zeros is singular, σ = ½.
[1] | M. Griffin, K. Ono, L. Rolen, D. Zagier, Jensen polynomials for the Riemann zeta function and other sequences, Proc. Natl. Acad. Sci. U. S. A., 116 (2019), 11103–11110. https://doi.org/10.1073/pnas.1902572116 doi: 10.1073/pnas.1902572116 |
[2] | L. Q. Ming, Some formulas for Apostol-Euler polynomials associated with Hurwitz zeta function at rational arguments, Appl. Anal. Discrete Math., 3 (2009), 336–346. https://doi.org/10.2298/AADM0902336L doi: 10.2298/AADM0902336L |
[3] | A. P. Veselov, J. P. Ward, On the real zeroes of the Hurwitz zeta-function and Bernoulli polynomials, J. Math. Anal. Appl., 305 (2005), 712–721. https://doi.org/10.1016/j.jmaa.2004.12.046 doi: 10.1016/j.jmaa.2004.12.046 |
[4] | K. N. Boyadzhiev, A. Dil, Geometric polynomials: properties and applications to series with zeta values, Anal. Math., 42 (2016), 203–224. https://doi.org/10.1007/s10476-016-0302-y doi: 10.1007/s10476-016-0302-y |
[5] | S. Choi, J. W. Chung, K. S. Kim, Relation between primes and nontrivial zeros in the Riemann hypothesis; Legendre polynomials, modified zeta function and Schrödinger equation, J. Math. Phys., 53 (2012), 122108–122116. https://doi.org/10.1063/1.4770050 |
[6] | W. M. Abd-Elhameed, J. A. T. Machado, Y. H. Youssri, Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations, Int. J. Nonlinear Sci. Numer. Simul., 23 (2021), 0124. https://doi.org/10.1515/ijnsns-2020-0124 doi: 10.1515/ijnsns-2020-0124 |
[7] | K. Matsumoto, Value-distribution of zeta-functions, Springer, 1990. https://doi.org/10.1007/BFb0097134 |
[8] | N. Kurokawa, Multiple zeta functions: an example, Adv. Stud. Pure Math., 21 (1992), 219–226. https://doi.org/10.2969/aspm/02110219 doi: 10.2969/aspm/02110219 |
[9] | K. Kamano, The multiple Hurwitz zeta function and a generalization of Lerch's formula, Tokyo J. Math., 29 (2006), 61–73. https://doi.org/10.3836/tjm/1166661867 doi: 10.3836/tjm/1166661867 |
[10] | Y. Komori, K. Matsumoto, H. Tsumura, Functional equations and functional relations for the Euler double zeta-function and its generalization of Eisenstein type, Publ. Math. Debrecen, 77 (2010), 15–31. https://doi.org/10.5486/pmd.2010.4532 doi: 10.5486/pmd.2010.4532 |
[11] | I. Kiuchi, Y. Tanigawa, W. Zhai, Analytic properties of double zeta functions, Indag. Math., 21 (2011), 16–29. https://doi.org/10.1016/j.indag.2010.12.001 doi: 10.1016/j.indag.2010.12.001 |
[12] | K. Matsumoto, H. Tsumura, Mean value theorems for the double zeta-function, J. Math. Soc. Japan, 67 (2015), 383–406. https://doi.org/10.2969/jmsj/06710383 doi: 10.2969/jmsj/06710383 |
[13] | K. Matsumoto, M. Shoji, Numerical computations on the zeros of the Euler double zeta-function Ⅱ, Eur. J. Math., 6 (2020), 488–507. https://doi.org/10.1007/s40879-019-00339-2 doi: 10.1007/s40879-019-00339-2 |
[14] | E. Bombieri, Problems of the millennium: the Riemann hypothesis, Clay Mathematics Institute, 2000. |
[15] | P. Sarnak, Problems of the millennium: the Riemann hypothesis, Princeton University Courant Institute of Mathematical Sciences, 2004. |
[16] | K. Matsumoto, On the bounded term in the mean square formula for the approximate functional equation of ζ2(s), Arch. Math., 64 (1995), 323–332. https://doi.org/10.1007/BF01198087 doi: 10.1007/BF01198087 |
[17] | A. Ivić, K. Matsumoto, On the error term in the mean square formula for the Riemann zeta-function in the critical strip, Monat. Math., 121 (1996), 213–229. https://doi.org/10.1007/BF01298951 doi: 10.1007/BF01298951 |
[18] | K. Matsumoto, T. Matsusaka, I. Tanackov, On the Behavior of multiple zeta-functions with identical arguments on the real line, J. Number Theory, 239 (2022), 151–182. https://doi.org/10.1013/j.jnt.2021.11.008 doi: 10.1013/j.jnt.2021.11.008 |
[19] | D. Platt, T. Trudgian, The Riemann hypothesis is true up to 3·1012, Bull. London Math. Soc., 53 (2021), 792–797. https://doi.org/10.1112/blms.12460 doi: 10.1112/blms.12460 |
[20] | K. Matsumoto, L. Weng, Zeta-functions defined by two polynomials, Springer, 2002. https://doi.org/10.1007/978-1-4757-3675-5_13 |
[21] | I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1995. |
[22] | I. Tanackov, I. Pavkov, Ž. Stević, The new new-nacci method for calculating the roots of a univariate polynomial and solution of quintic equation in radicals, Mathematics, 8 (2020), 746. https://doi.org/10.3390/math8050746 |
[23] | I. J. Good, R. F. Churchhouse, The Riemann hypothesis and pseudorandom features of the Möbius sequence, Math. Comput., 22 (1968), 857–861. https://doi.org/10.2307/2004584 doi: 10.2307/2004584 |