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Abstract: Newton’s identities of an infinite polynomial with complex-conjugate roots n " and
n~©= are multiple zeta functions for ne[1,0), ceR and reR. All Newton’s identities can be
represented by Macdonald determinants. In a special case of the Riemann hypothesis, the multiple
zeta function of the first order is equal to zero, {(c+it)+{(c—it)=0. The special case includes all
non-trivial zeros. The value of the last, infinite multiple zeta function, in the special case, changes the
structure of the determinant that can be calculated. The result is the reciprocal of the factorial value
(n!)"!. The general value of the infinite multiple zeta function is calculated based on Vieta’s rules and
is equal to (n!)2°. The identity based on the relation of the special case and the general case
(n!)"'=(n")"%° is reduced to the equation —1=—2c. The value of the critical line for all non-trivial
zeros is singular, 6=".
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1. Introduction

In 1737, Leonard Euler (1707-1783) established the relationship of the zeta function ¢{s) of the
argument s and the product (1-p=)~!, {peN|p is prime}. In his famous 1859 article “On the Number
of Primes Less Than a Given Magnitude”, Bernhard Riemann (1826-1866) extends Euler’s product
to a complex variable. According to historical data, Bernhard Riemann calculated the first few
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non-trivial zeros of the zeta function during his lifetime. The results of his calculations were revealed
only after his death. The infinite number of non-trivial zeros, as well as many other important
properties of the zeta function, were proved after the death of Bernard Riemann. The functional
equation from the famous article from 1859 still represents the starting point of the millennium
problem: the Riemann hypothesis.

The non-trivial zeros of the zeta function are organized into complex-conjugate pairs. The
product (1-p=)~!, for a complex argument s, can be considered as a product of a monomial with one
complex argument, i.e., polynomial for the value of real x=1 in the pole of the zeta function and
complex roots. The development of this infinite polynomial has no real coefficients. However, if the
product is expanded with monomials containing the conjugate of the complex argument, we obtain a
polynomial with complex-conjugate roots analogous to the organization of non-trivial zeros of the
zeta function.

Synthesis of zeta function and polynomial is more recent. Almost a century ago, George
Poélya (1887-1985) proved that the Riemann Hypothesis is equivalent to the hyperbolicity of Jensen
polynomials [1]. From the wide opus, we shall single out research on relationships between the zeta
function and Apostol-Euler polynomials [2], Bernoulli polynomials [3], Geometric polynomials [4],
Legendre polynomials [5], analogies with Chebyshev polynomials [6], etc. In 1990, Kohji
Matsumoto introduced the polynomial in the zeta function [7]. Unlike the listed [1-6] and similar
unlisted results, the “Matsumoto Zeta function” variety is a generalization of many classical zeta
functions (A4, is polynomial). At the same time, “Matsumoto zeta function” directly refers us to the
potentially “deep” polynomial structure of the zeta function. The variable of that polynomial can
only be x=1, in the pole of the zeta function. The roots of the polynomial are functions of the prime
numbers of the argument s. The existence of monomials is obvious (1):

1 1-p3+p° 1 S_1
#s)=T1 _S=H'°—_S'O=HA—(1—D_S j
prime Ap P prime ~ ApP prime p p
root

(1)

monomial

The development of the multiple zeta function began in 1992. Nobushige Kurokawa proposed
the form of multiple zeta functions. Zeros and poles of multiple zeta functions correspond to sums of
zeros and poles of the Riemann zeta function [8]. Ken Kamano was the first to develop the harmonic
product formula in which the recurrence relation of multiple zeta functions of identical argument was
established [9]. However, in the long term, the research of multiple zeta functions remains at the
level of double zeta functions with some rare results of triple and quadruple zeta functions [10-13].
Therefore, until now there has been no attempt to calculate the critical axis parameter of the Riemann
hypothesis [14,15] using multiple zeta functions of a higher order than two [16,17]. The problem was
overcome by introducing the zeta function in the polynomial. Applying the identity of Sir Isaac
Newton (1643-1727), Matsumoto et al. [18] confirm Kaman’s harmonic product formula of multiple
zeta functions. They define a number of new properties of multiple zeta functions with
interasymptotic and intertrivial zeros. From the described chronology, it is obvious that Kurokawa [8]
and Kamano [9] developed multiple zeta functions from a deep mathematical intuition and that
Matsumoto et al., by applying Newton’s identities [18], subsequently proved the correctness of their
approach using polynomials. However, Kurokawa’s and Kaman’s concept is still based on only one
complex argument, while Matsumoto et al. limited their concept only to a realistic argument.
Synthesis of these two concepts, i.e., the introduction of a complex-conjugate argument into the
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multiple zeta function can open up new possibilities for the calculation of the critical line of the
Riemann hypothesis. Structurally, current solutions of multiple zeta functions are proven to be based
on Newton’s identities of symmetric polynomials. Therefore, before introducing the
complex-conjugate argument to multiple zeta functions, let us consider the polynomial structure of
the zeta function.

2. Polynomial structure of the zeta function

The non-trivial zeros of the zeta function are organized identically to polynomials with
complex-conjugate roots. For the known property of the zeta function (2):

$(s)=<(5). @)

For all complex roots s#1, the zeros of the Riemann zeta function are symmetric around the real
axis. Above the critical line of the zeta function of assumed value 6="%, we have a known polynomial.
The roots of this polynomial correspond to the non-trivial zeros of only one complex argument of the
zeta function. To fully correspond, it is necessary to introduce a conjugated argument. Thanks to the
finding of Godfrey Harold Hardy (1877-1947) from 1914, we can project an infinite polynomial
with roots-non-trivial zeros of the zeta function (3):

P(x)=[[(x—(o +it ))(x—(o it ). 3)
k=1

Values 11=14.135..., =21.022..., +=25.010..., etc. are known from the first finding of Bernard
Riemann to the results of Platt and Trudgian [19]. Perhaps this polynomial has no particular
theoretical value for the research of the zeta function, but it carries one important illustration—the
simultaneous introduction of a complex-conjugate argument into the zeta function is not possible.
However, it is possible in a multiple zeta function. The basic form of the zeta function is (4):

§(S)=Zi=]_[ L = L : L : L ! (4)
n:]_ns primel— p—S 1—2_5 1—3_5 1—5_S 1— p—S

For the application of Newton’s identities, the most suitable polynomial is for the real x=1 in the
pole of the zeta function and roots (1-p*)~'. The zeta function (4), or the multiple zeta function of the
first order also reduces to the polynomial (5):

1 1_ p—S + p—S 1_ p—S p—S
)=l —==I1——=—=11I —+t——
primel— P ° prime 1= P ° prime\ 1— P P 1-p7
p~° 1 1 5
e [ [ (E . X
prime 1-p prime P —=1) prime\ x4 1-p
%/_J
root
monomial

Further, we can form the product of zeta functions of complex-conjugate arguments (c=it) in
the value of pole of the zeta function x=1(6):
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11 1 1
5)= —=I1|1- 1-———|. 6
¢(s)e(s) pgel_ 1 p plri_n[qe( . ps]( . ps) (6)

The association to the polynomial is now complete because the roots in the monomials are
complex conjugate. Also, we can easily express the form of the inverse value of the product of the
zeta function with complex conjugate arguments, which directly justifies the choice for the value
x=1(6):

1 1 1
S o ) EPNE I P
2(5)C(s) pH[ pJ( ij @

It must be noted here that the “Matsumoto zeta function” (1) is defined by the product of all
complex roots of the polynomial (7), i.e., only for the polynomial £~!(s)=I1(1-p~). The product of a
polynomial with a conjugate argument is missing. If the polynomial A4, from (1) is projected
analogously to the conjugate argument, then (7) can be reduced to (1). The idea of approaching the
zeta function with two polynomials has already been established and is not new [20].

Now, based on the results from [18], the product of all the roots points us to the rules of
Franciscus Vieta (1540-1603), i.e., to the multiple zeta function of infinite order. This fact will play a
key role in calculating the critical line.

For each value of convergence of the value argument (‘2titx) for known values of #%, keN:
tn=14.135..., ©=21.022..., 13=25.010..., the product of zeta function of the complex-conjugate
argument from (6) converges (8). Research on this product [16,17] pointed to the importance of the
basic double zeta function and the Hurwitz-Lerch type double zeta function.

£(S)S(5)—>¢%(s) =0, £(s)(5)—>¢%(5)—0. 8)

At the same time, this approach is a reasonable justification for the long lack of interest in
researching multiple zeta functions of higher order than two. The product (8) is an obligatory
member of the binomial expansion (9) of the sum of the zeta functions of complex-conjugate
arguments:

k . .
(5(5)+§(§))k=i(jjﬂ_’(s)é'(ﬂ 9)

j=0

Under the conditions of the Riemann hypothesis, for non-trivial zeros from the polynomial (3),
the value of the binomial development expansion (9) is equal to zero. The product searched in (6)—(8),
i.e., the double zeta function of the complex-conjugate argument, was created from the sum of the
basic zeta functions of the complex-conjugate argument. Therefore, it is necessary to find an
adequate polynomial analogous to the results from [18] which, by applying Newton’s identities, will
establish a relationship between the product and the sum of the zeta functions of the
complex-conjugate argument.

3. Coefficients of the polynomial of the multiple zeta function of the complex-conjugate
argument

The required polynomial has the form (10). The applied concept is analogous to the
development of multiple zeta functions with identical real arguments [18]:
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. ke 1 1
P(x,ailt)=g(><—na+it j(x_na—itj' (10)
When expressing Newton’s identities, the standard approach and notation from [18] will be
applied, where pr is equal to the k-th (k€R) power of all the roots of the polynomial (11):
< 1
Z k(o+|t) Z k(o0 =¢(ks)+g(ks). (1)

m=1 Ny

Although infinite, we know that the polynomial (8) is of even degree, because of the even
number of complex-conjugate roots. The first Newton’s identity is equal to the sum of all the roots of
the polynomial (10), i.e., sum of individual zeta functions of complex-conjugate arguments (12):

G(sS)=e=p= Yt Y —E = (s)+L(5). 12)
n=1M n,=1 M2

Newton’s second identity is equal to pairs of products of all roots (13):

€2 = i ( 01+|t a:l-letj+ i [ crl it nal—itJ—i_i[ cilt}i(nal—it} (13)

1<m<np\My N 1<m<ny \ M 2 m=1\M np=1\ M2

The first and second members are equal to the sum of double zeta functions of identical
complex-conjugate arguments, and the third member is equal to the product of zeta functions of
complex-conjugate arguments (14):

< 1 1 2
5 (M nmj £(s)= ) <2s),

1<m<np nl 2
S 1 1 ¢(s) —¢(25)
Kénz(n{"” s j $H(5)= 5 (14)
i{%}f{ f.tJ £(S)S).
m=1\ np=1\ N
which is in accordance with Newton’s second identity ez (15):
plzzel2 P2
o, = S0 =€(25)+((5) ~£(25)+20(s)(5) _ ((s)+(S)F ~(¢(2)+(25)  (39)
2 2

The first way of developing Newton’s polynomial identities (10), i.e., multiple zeta function of a
higher order, is possible by individual calculations as in the case of double zeta functions (13)—(15).

The second way is based on the application of the form for expressing elementary symmetric
polynomials in terms of power sums: ex=(—1)*(k!)"'Bx(=p1,~1!p2,—2!ps,...,—~(k—1)!px), where the By is
the complete exponential polynomial established by Eric Temple Bell (1883-1960).

The third way, in this case the most suitable, is based on the results obtained by lan Grant
Macdonald [21]. Newton’s identities, i.e., multiple zeta functions can be calculated based on the
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product of the reciprocal of the factorial and special determinants. Let us first prepare an expression
for the reciprocal value of the factorial (16):

(16)

By applying (16), according to the results obtained by Macdonald [21], the determinants of
Newton’s identities are (17)—(22). These identities are simultaneously multiple zeta functions of the
complex-conjugate argument:

1 | D,
e, = S’S = — = —_ =—,
1 =¢1(s.8)= 3 (Py) n1‘[=1n||01| 1 (17)
1. 21|pp 1| D,
ey =¢5(8,5)==— - =|]1- ==,
2 =¢>(s.5) 2!(p1 Py) r£[1n 0, bl 2 (18)
1 0
1, 3 (M Ds
e3=¢5(8,8)=—(py —=3p P, +2p3)=[]>|P2 P 2|=—, (19)
3l no1n 3
Pz P2 P
ppb 1 0 O
N 1, 4 2 2 41lp, p 2 0| D,
84 =¢4(8,5)=—(py -6 +3p; +8 -6p,)=|]- =—
4=¢4(85) 4!(91 Pi P, +3p2 +8p; P3 —6p,) Wiles p, o 3| @ (20)
P4 P3 P2 P
Newton’s identity of order k€N, i.e., multiple zeta function of order £ is given by (21):
Py 1 0 0 0 0
P, [ 2 0 0 0
k1 P3 P2 PP 0 0 0 D
ek=§k(31§)=l_[ﬁ :k_': (21)
"o Pz Pz PP k=200
Pke1 Pk2 Pka 0 P2 pr k-l
Pk Pkt P2 P Ps P2 P

Thanks to the findings of Macdonald [21], the last coefficient of the infinite polynomial (10)
that converges to the value ex—«, 1.€., multiple zeta function of order n—o0, can be presented as a
product of the reciprocal value of the factorial from (16) and the infinite determinant Do, (22):
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p 1 0 0 0 0 0
[} Py 2 0 0 0
P3 P2 P 3 0 0 0
©q ©q P4 P3 P2 Py .3 0 0 0 .1
en—>w=§n(s’§)=DwHH=HH e (22)
" " bk, Pks Pea Pes Pop k=20 00
Pkt Pk2 Pks Pks © P2 P k-1
Pk Pk P2 Pks © P3P P1

According to the rules of Franciscus Vieta (1540-1603), we know that the last member of a
polynomial is equal to the product of all the roots. By applying Vieta’s rules, the value of the
determinant (22) can be directly expressed by (23). The solution (23) is a general solution of (22) for
any value of the real argument !

€ o = é, ( S’§) = i T ’ DOO - = .
n— n g na+|t na—lt g nZG g n }:[1 n20 (23)

%/_/ %/_/
special form  general form

All the necessary coefficients of the infinite polynomial (10) are thus formed. The general form
of the Multiple zeta function en—» of order n—oo is obtained from (23) for the specific value of the
first Newton’s identity pi1. The Newton’s identities px of order £>1 are functionally dependent on the
first Newton’s identity.

4. The solution of the infinite determinant under the conditions of the Riemann hypothesis

By using the obtained coefficients (17)—(21), the polynomial (10) in its developed form is equal
to (24). Coefficient ex, 1.€., the multiple zeta function of the complex-conjugate argument of order
n, has to be positive due to the even number of roots of the polynomial (10). If we expand the
product of the monomial (10), a polynomial with coefficients (24) is obtained. The coefficients of
this polynomial are multiple zeta functions (24):

P(x,o%it)=x"—ex" L +e,x12 —egx" P e x4 (1) e X" K+ ve,

€y =é’k(s,§), keN. (24)

Under the specific conditions of the Riemann hypothesis (25):
¢(s)=0ng(5)=0= ¢(s)+4(5)=p =6, =¢31(s,5)=0. (25)
The first coefficient of the polynomial (22) is equal to zero pi=e1=0. From (12), hold (26):

£(8)+(5) = icostln(n):ﬁisintln(n) N icostln(n)n—aisintln(n)
n=1 n=1
o (26)
= ch%ln(n) = p =6 =¢1(s,5)=0.
n=1

from (25)
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By introducing the condition of Riemann hypothesis (26) into the infinite determinant (22), all
values on the main diagonal are equal to zero (27):

0 1 0 0 0 0 0
[ 0 2 0 0 0 0
P3 P2 0 3 0 0 0
Py P3P 0 4 0 0
Do.=|Ps P4 P P2 O 0 0 (27)
Ph-i Pn2 Pn3 Phnsa Pns : 0 n-1
Pn Ph-1 Pn—2 Pn-3 Pn-s : [ 0

By introducing the conditions of the Riemann hypothesis (26) into the determinant (27), a key
question arises: is there a finite value of the infinite determinant Do, (27)?

By applying Vieta’s rules in (23), it has been proved that the last coefficient of the infinite
polynomial (10) shown in (24) as en—, functionally depends only on the real part 6 of the complex
argument s=c=it. Condition (26) includes all pairs of symmetrically distributed non-trivial zeros. The
final value of the infinite determinant D. would enable the formation of the special identity
emphasized in (23). Now, we add the second column to the first, so we get (28):

1 1 0 0 0O - 0 0
[ 0 2 0 0 0 0
P3+ P2 P 0 3 0 0 0
Pa+ P3 pg P2 O 4 0 0
D, =| Ps+ Py Py P3 953 0 0 0 (28)
Pha+Pr2 Pr2 Pns Pha Pps : 0 n-1

Ph+Pn1 Pni Pn2 Pns Phga : P2 O

Multiple the first row of determinant by —p2 and add it to the second row, then multiple the first
row by —(p3+p2) and add it to the third row, i.e., multiple the first row by —(p»*+p@x-1)) and add to n-th
row. We get a determinant that has a value of 1 in the first column only on the main diagonal of the
determinant (29):
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1 1 0 0 0 0 0
0 -pp 2 0 O 0 0
0 -p3 0 3 0 0 0
0 -ps P 0 4 0 0
D,=0 -ps Pz P2 0 0 o0 (29)
O —prta Pn3 Pna Pns : 0 n-1
0 —Pn Pn2 Pns Pha : P2 0

Then, multiple the third column of determinants by (p2+1)/2 and add to the second column (30):

1 1 0 0 0 - 0 0
0 1 2 0 0 0 0
0 - Ps3 0 3 0 0 0
0 —m+p{pgﬂj P, 0 4 0 0
+1
D, =0 —p5+p3[p22 j P P 0 « 0 0 - (30)
. +1 ' ' .
0 —ppgt pn—3( p22 j Pn-3 Pn-4a Ppns 0 n-1
+1 .
0 —py+ pn—Z[ p22 J Ph-2 Pn3 Ppa : P2 O

All the elements of the second column from the third row are successively eliminated by
multiple the second row with a corresponding number (31):

11 0 0 o0 0 0
01 2 0 o0 0 0
00 23 3 0 0 0
00 m+2p4—2m(pg”} 0 4 0 o0
+1
D, =0 0 p3+2p5_2p3(p22 j D, 0O - 0 0 . (31)
° ° . p2+1 . . ..
0 0 pn3+2Py1-2pPn3 5 Ph4a Pps : 0 n-1 .-
+1 .
0 m4+2m—pm{p2 j Prs Pna : P2 O

Now, multiple the fourth column of determinants by (1-2p3)/3 and add to the third column (32):
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11 0 0 0 0 0
01 2 0 0 0 0
00 1 3 0 0 0
00 p2+2p4—2p2[p22+1 0 4 0 0
p,+1 1-2p,
00 2D —2 1-2ps 0 . 0 0 .
D, = P3+2Ps Pg( > j+ Pz[ 3 P2 (32)
. , +1 1-2 S
0 0 prs3+2p,1—2 pn_3[ p22 )+ pn_‘{ 3 p3j Phea Pns : 0 n-1
+1 1-2
0 Pn—2 +2Pp — Pn—z( p22 j+ pn—S( 3 sz Pn-3  Pn-s p, O

All the elements of the third column from the fourth row are successively eliminated by
multiple the third row with the corresponding number (33):

110 0 0 0 0
01 2 0 0 0 0
00 1 3 0 0 0
000 —3@—6p4+6m(pg”J 4 0 0
+1 1-2
Doozo 00 p2—3p3—6p5+6p3(p22 j—3p2( 3p3j 0 0 0 (33)
(p,+1 1-2 S
000 mF4—3pm3—6pW4+6pW3(B%;—j—3pw4[ 3p3J Ps 0 n-1
+1 1-2 .
000 pn_s—spn_z—epn+6pn_2(p22 j—spn_{ 3"3) Pos © P2 O

For keN, the concept is as follows (a are determinant members): to obtain a unit on the main
diagonal in the £-th row and k-th column, the (k+1) column is always used where axi+1=k. We notice
that the values ax,1, ak2, akik-1, as well as ari+2, ari+3, ari+2,... are equal to zero. The values akkr and
aki+1 are only non-zero members in the k-th row. The value ari+1 is multiple by the corresponding
function ak+1,=fk+1, (P2, p3, ..., px+1), j€[k+1,0), which results in the value on the main diagonal
aki=1. Then, using the values on the main diagonal, we reduce all the values in the k-th column
below the main diagonal to zero, whereby in the (k+1) column, new functions fi+2,; (p2, p3, ..., pk+i,
pi+2) are obtained. The values in the other columns do not change because they are multiple by zero.

According to the established concept, values of 1 are obtained on the main diagonal and values
of zeros below the main diagonal, i.e., we get the value of the determinant. The value of the
determinant converges to 1 (34). We obtain this result due to the initial conditions from the
determinant (29) in which all values on the main diagonal are based on (26), i.e., equal to zero. The
value that sets 1 on the main diagonal is a12=1.
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11000 0 0
01200 0 0
00130 0 0
0001 4 0 0
D,=0 0 0 0 1 0 0 -{-oL (34)
00000 1 n-1
00000 1

5.  Values of the critical line =" and the factorial function

Expressions (22) and (23) refer to the convergences of an identical multiple zeta function for the
same initial conditions (25) and (26) for general and specific conditions. Therefore, with (34) we can
form the identity (35):

from34
_ =1 — 21 =~ 1
é’n(S,S)=en_)oo:DwH—1: 1 H—1= HTO‘ =1=20=>0=—
n-1n n=lM poth (35)
%r_/ Hr_/
from (22) from (23)
special form general form

The real value of complex-conjugate arguments of non-trivial zeros of the coefficient en—« is
singular, there is only one solution: c="5!

The catalytic role of the polynomial (10) for the derivation of multiple zeta functions can also
be considered through the polynomial Q(x,ctif) with the inverse values of the roots in the
monomials (36):

Q(x,aiit)zﬁ(x—n““)(x—n"_it). (36)

In the polynomial (36), gk are the sums of zeta functions of the complex-conjugate argument. g«
is essential for the obtaining Newton’s identities and polynomial coefficients (37):

o k(o+Ht) | o k(o-it) _ = 1 & 1 -
EDNINAREDWKSENEDY o) T 2 oy = 6 (ks +4(KS). (37)
n=1 n,=1 n=1N n,=1M5

For the polynomial (36), the relations between the Newton’s identities represented by the
Macdonald determinants (17)—(21) are also valid. It is expressed with the coefficients e, i.e.,
Newton’s identities with a negative index. The concept of Newton’s identities with a negative index
has already been successfully used in the new ‘“New-nacci” method for calculating the roots of
polynomials based on the convergence of Newton’s identities [22].

Obtained from the product of monomials, the polynomial (36) has the form (38) with
coefficients that are multiple zeta functions, as follows:
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Q(X,O'i |t) = Xn —E(_l)Xn_l +E(_2)Xn_2 —E(_s)Xn_B...-i-(—1)ke(_k)Xn_k + ...+ E(_n)*)w . (38)

The significance of the coefficient e,—>o for the polynomial, i.e., multiple zeta functions of
order n—oo (24), is essential, and this coefficient is the lowest common denominator of all
polynomial coefficients (10). If we consider that the zeta function (11) is a multiple zeta function of
the first order e1=¢i(o+it, 6—if) (36), it follows (39):

P(x,aiit):en_m( Lo & x”‘1+e—2x”‘2...+(—1)ke—kx”‘k+...+1]. (39)
n

—>00 en—)OO en—)OO en—)OO

For ke[l, o) respecting Newton’s identities with a negative index, for all multiple zeta
functions hold (40):

M=C(—n+k)(3,§)=

- =€(—nik)- 40
Cosn(55) ey O (40)

The relations between polynomials (10), (24), (36) and (38) in the pole of the zeta function for
x=1 are:

. 1 € e e e
oo [
N—o e”—>°° en—>°0 en—>oo en—m

(41)
n—m (e( n)—ow e( n+1) +e( n+2)"" +( 1) e( n+k) e( 1) +1)

Q(x,o%it)

which is easily proven from the quotient of the polynomials P(x, o+tif) (10) and Q(x, o+tif) (36) in the
pole of the zeta function x=1:

x 1 1 1 1
P(Lo *it) }_[1(1_ n(Hitj(l_ naitj ﬁ(l_ o+it j(l_ na—it)

(l,O'iIt) ﬁ(l_na+it )(1_na—it) 1(1- n6+|t)(1 o~ |t)
"~ (42)
(_1)2(1_ncr+it )(1_no'_it)
~ o no'+itn0'—it B - _ _ .
ey Ulnzo Hn s = n(55),

Let us emphasize once again that the lowest common denominator es. of the initial
polynomial (10) is simultaneously the reciprocal value of the factorial function and the multiple zeta
function of the complex-conjugate argument (40). The order of this multiple zeta function is n—oo.
The exponent —2c for the calculated value 6= (35) is equal to the value —1=¢'*.

6. Conclusions
Since Bernhard Riemann’s famous manuscript from 1859, over a period of 163 years, more
than 160 failed attempts to prove the Riemann Hypothesis (RH) have been recorded. The group of

failed proofs is followed by a large number of extremely important results based on RH. In the
opposition, there are stances that present doubts about the sustainability of the RH. The eventual
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success of the opposing stances would ultimately cause unfathomable consequences in number
theory.

For now, the starting point of all the failed evidence of the RH and the results of opposites is
common. It is based only on the complex argument, without the conjugate. The introduction of
complex-conjugate solutions in RH (25) easily highlighted the singular result of the real part of the
non-trivial zeros 6= of the complex-conjugate argument (35). However, this solution is based on
the convergence of the last member of the special infinite polynomial (10). The existence of this
convergence is confirmed, this member is the lowest common denominator of the infinite polynomial
(10) or the denominator of all multiple zeta functions. The multiple zeta function of the
complex-conjugate argument of the order n—o0, expressed through Newton’s identity with e,—»o,
converges to the reciprocal value of the infinite factorial, i.e., values of the infinite factorial with the
exponent from Leonard Euler’s famous formula —1=¢'" (43):

é’n(s:s):en—m:H 20 :H 2(l):Hn 1:Hne . (43)
n n=ln~2’ n=l n=1

n=1

The established convergence of the last member of the infinite polynomial (10, 24) is the main
reason for the failure of all authors from supporters to opponents of the RH. In other words, the
current conditions of access to the Riemann hypothesis are limiting, at the same time they prevent
the proof and negation of RH. Such a state will remain until the Riemann Hypothesis is redefined.
The experience of the previous 163 years should be respected. According to the findings in this
manuscript, Berhard Riemann’s functional equation from 1859 is the result of convergence. The
circumstances for solving the Riemann hypothesis are historically analogous to the case of
polynomials of the 5th degree and higher. The roots of these polynomials cannot be calculated using
mathematical radicals, but can be calculated using other methods based on convergence. Therefore, it
is necessary to additionally relax the conditions of proof of the RH with the approved convergence.
Although, with this relaxation RH has already been proven with absolute probability [23]. The
summary of the alternative calculation of the critical axis of the RH is:

The basic zeta function is a multiple zeta function of the first order (11).

Multiple zeta functions of the complex-conjugate argument were applied (17)—-23).

Initial conditions are based on complex-conjugate non-trivial zeros (26).

The calculation of the critical axis is based on the convergence of the inverse value of the

factorial function (35).
The obtained result goes in favor of RH: Riemann’s hypothesis is correct. The critical line of
non-trivial zeros is singular. The values of the real part of the complex-conjugate argument of the
non-trivial zeros of the zeta function converge to c="5!

The appearance of the reciprocal value of the factorial at the first degree (20=1) in the form of
the smallest common denominator of all multiple zeta functions is a confirmation of the monolithic
structure of number theory even in “deep” infinity. Any opposite result that deviates from the value
o=" or the singularity of the critical line (the appearance of two or more critical lines of different
values, of which one can be equal to ’2) would be in favor of transitory deformations or permanent
deviations of the number system. The most critical positions would certainly be in prime numbers.

An alternative approach to the Riemann hypothesis particularly highlights the multiple zeta
functions of order n—o0. The basis of the solution is the factorial of all natural numbers. Its exponent
contains the three most important mathematical constants i=v—1, 1=3.141592... and ¢=2.718281...
from the famous identity ¢/+1=0 by Leonard Euler.
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7. Guidelines for further research

Future research should primarily be focused on Eq (26). The first Newton’s identity of the
polynomial (10), the sum of zeta functions of the complex-conjugate argument, according to current
assumptions, has exceptional properties. The value {(o+it)+{(o—if) develops as an oscillatory sum.
For the assumed value =%, the oscillation axes of the sum (26) have impulse changes by segments.
The segments are approximately determined by the quotient #/2m, t/4n, t/6m..., t/2kn. It is observed
that the segments of the oscillation axes of the sum (26) are functionally connected to the trivial
zeros of the zeta function: -2, —4, —6, .... In the last segment for the values ne([#/2n],0), the
oscillation axis stabilizes. If # corresponds to the values of non-trivial zeros of the zeta function, the
axis of oscillation of the last segment will be equal to zero. Oscillations in the last segment
seemingly converge. However, these oscillations have divergent periods and amplitudes. Regardless
of these divergences, the sums are regularized (Figure 1).
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Figure 1. Development of the sum (26) for 6="2 and the 300000th non-trivial zero of the
zeta function, imaginary part r=201090.1439061... with enlarged details.

According to previous findings, for the value o#'2, the oscillation axes of the sum (26) have
impulse changes by segments, too. However, the stabilized oscillation axis of the last segment
ne([#/2n],0) cannot be centered in the value zero, because only non-trivial zeros of the zeta function
are symmetric, as stated in (2). In general, the zeta function is not symmetric. Therefore, future

research is focused on a new, alternative approach to the Riemann hypothesis based on the dual
functional Eq (44):

S(s)+<(5)=27° sm(zjl“(l s)(1-s)+257° sm[ )1‘(1 $)(1-5) . (44)
Applying the result (26), the dual functional Eq (44) is equal to (45):

(2;;)5-1sin(?jr(l—s)§(1—5)+(2n)5—1sin( jl"(l 5)C(1-5)= ZCOS“”(”) (45)
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