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Abstract: Newton’s identities of an infinite polynomial with complex-conjugate roots n−(+it) and 

n−(−it) are multiple zeta functions for n1,), R and tR. All Newton’s identities can be 

represented by Macdonald determinants. In a special case of the Riemann hypothesis, the multiple 

zeta function of the first order is equal to zero, (+it)+(−it)=0. The special case includes all 

non-trivial zeros. The value of the last, infinite multiple zeta function, in the special case, changes the 

structure of the determinant that can be calculated. The result is the reciprocal of the factorial value 

(n!)−1. The general value of the infinite multiple zeta function is calculated based on Vieta’s rules and 

is equal to (n!)−2. The identity based on the relation of the special case and the general case 

(n!)−1=(n!)−2 is reduced to the equation −1=−2. The value of the critical line for all non-trivial 

zeros is singular, =½. 
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1. Introduction 

In 1737, Leonard Euler (1707–1783) established the relationship of the zeta function (s) of the 

argument s and the product (1−p−s)−1, pNp is prime. In his famous 1859 article “On the Number 

of Primes Less Than a Given Magnitude”, Bernhard Riemann (1826–1866) extends Euler’s product 

to a complex variable. According to historical data, Bernhard Riemann calculated the first few 

http://www.aimspress.com/journal/Math
mailto:ilijat@uns.ac.rs


13557 

AIMS Mathematics  Volume 8, Issue 6, 13556–13571. 

non-trivial zeros of the zeta function during his lifetime. The results of his calculations were revealed 

only after his death. The infinite number of non-trivial zeros, as well as many other important 

properties of the zeta function, were proved after the death of Bernard Riemann. The functional 

equation from the famous article from 1859 still represents the starting point of the millennium 

problem: the Riemann hypothesis. 

The non-trivial zeros of the zeta function are organized into complex-conjugate pairs. The 

product (1−p−s)−1, for a complex argument s, can be considered as a product of a monomial with one 

complex argument, i.e., polynomial for the value of real x=1 in the pole of the zeta function and 

complex roots. The development of this infinite polynomial has no real coefficients. However, if the 

product is expanded with monomials containing the conjugate of the complex argument, we obtain a 

polynomial with complex-conjugate roots analogous to the organization of non-trivial zeros of the 

zeta function. 

Synthesis of zeta function and polynomial is more recent. Almost a century ago, George 

Pólya (1887–1985) proved that the Riemann Hypothesis is equivalent to the hyperbolicity of Jensen 

polynomials 1. From the wide opus, we shall single out research on relationships between the zeta 

function and Apostol-Euler polynomials 2, Bernoulli polynomials 3, Geometric polynomials 4, 

Legendre polynomials 5, analogies with Chebyshev polynomials 6, etc. In 1990, Kohji 

Matsumoto introduced the polynomial in the zeta function 7. Unlike the listed 1–6 and similar 

unlisted results, the “Matsumoto Zeta function” variety is a generalization of many classical zeta 

functions (Ap is polynomial). At the same time, “Matsumoto zeta function” directly refers us to the 

potentially “deep” polynomial structure of the zeta function. The variable of that polynomial can 

only be x=1, in the pole of the zeta function. The roots of the polynomial are functions of the prime 

numbers of the argument s. The existence of monomials is obvious (1): 
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(1) 

The development of the multiple zeta function began in 1992. Nobushige Kurokawa proposed 

the form of multiple zeta functions. Zeros and poles of multiple zeta functions correspond to sums of 

zeros and poles of the Riemann zeta function 8. Ken Kamano was the first to develop the harmonic 

product formula in which the recurrence relation of multiple zeta functions of identical argument was 

established 9. However, in the long term, the research of multiple zeta functions remains at the 

level of double zeta functions with some rare results of triple and quadruple zeta functions 10–13. 

Therefore, until now there has been no attempt to calculate the critical axis parameter of the Riemann 

hypothesis 14,15 using multiple zeta functions of a higher order than two 16,17. The problem was 

overcome by introducing the zeta function in the polynomial. Applying the identity of Sir Isaac 

Newton (1643–1727), Matsumoto et al. 18 confirm Kaman’s harmonic product formula of multiple 

zeta functions. They define a number of new properties of multiple zeta functions with 

interasymptotic and intertrivial zeros. From the described chronology, it is obvious that Kurokawa 8 

and Kamano 9 developed multiple zeta functions from a deep mathematical intuition and that 

Matsumoto et al., by applying Newton’s identities 18, subsequently proved the correctness of their 

approach using polynomials. However, Kurokawa’s and Kaman’s concept is still based on only one 

complex argument, while Matsumoto et al. limited their concept only to a realistic argument. 

Synthesis of these two concepts, i.e., the introduction of a complex-conjugate argument into the 
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multiple zeta function can open up new possibilities for the calculation of the critical line of the 

Riemann hypothesis. Structurally, current solutions of multiple zeta functions are proven to be based 

on Newton’s identities of symmetric polynomials. Therefore, before introducing the 

complex-conjugate argument to multiple zeta functions, let us consider the polynomial structure of 

the zeta function. 

2. Polynomial structure of the zeta function 

The non-trivial zeros of the zeta function are organized identically to polynomials with 

complex-conjugate roots. For the known property of the zeta function (2): 

)s()s(  = . (2) 

For all complex roots s≠1, the zeros of the Riemann zeta function are symmetric around the real 

axis. Above the critical line of the zeta function of assumed value =½, we have a known polynomial. 

The roots of this polynomial correspond to the non-trivial zeros of only one complex argument of the 

zeta function. To fully correspond, it is necessary to introduce a conjugated argument. Thanks to the 

finding of Godfrey Harold Hardy (1877–1947) from 1914, we can project an infinite polynomial 

with roots-non-trivial zeros of the zeta function (3): 
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Values t1=14.135…, t2=21.022…, t3=25.010…, etc. are known from the first finding of Bernard 

Riemann to the results of Platt and Trudgian 19. Perhaps this polynomial has no particular 

theoretical value for the research of the zeta function, but it carries one important illustration–the 

simultaneous introduction of a complex-conjugate argument into the zeta function is not possible. 

However, it is possible in a multiple zeta function. The basic form of the zeta function is (4): 
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For the application of Newton’s identities, the most suitable polynomial is for the real x=1 in the 

pole of the zeta function and roots (1−ps)−1. The zeta function (4), or the multiple zeta function of the 

first order also reduces to the polynomial (5): 
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Further, we can form the product of zeta functions of complex-conjugate arguments (it) in 

the value of pole of the zeta function x=1(6): 
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(6) 

The association to the polynomial is now complete because the roots in the monomials are 

complex conjugate. Also, we can easily express the form of the inverse value of the product of the 

zeta function with complex conjugate arguments, which directly justifies the choice for the value 

x=1(6): 
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It must be noted here that the “Matsumoto zeta function” (1) is defined by the product of all 

complex roots of the polynomial (7), i.e., only for the polynomial −1(s)=(1−p−s). The product of a 

polynomial with a conjugate argument is missing. If the polynomial Ap from (1) is projected 

analogously to the conjugate argument, then (7) can be reduced to (1). The idea of approaching the 

zeta function with two polynomials has already been established and is not new 20. 

Now, based on the results from 18, the product of all the roots points us to the rules of 

Franciscus Vieta (1540−1603), i.e., to the multiple zeta function of infinite order. This fact will play a 

key role in calculating the critical line. 

For each value of convergence of the value argument (½itk) for known values of tk, kN: 

t1=14.135…, t2=21.022…, t3=25.010…, the product of zeta function of the complex-conjugate 

argument from (6) converges (8). Research on this product 16,17 pointed to the importance of the 

basic double zeta function and the Hurwitz-Lerch type double zeta function. 

00 22 →→→→ )s()s()s(       ,)s()s()s(  . (8) 

At the same time, this approach is a reasonable justification for the long lack of interest in 

researching multiple zeta functions of higher order than two. The product (8) is an obligatory 

member of the binomial expansion (9) of the sum of the zeta functions of complex-conjugate 

arguments: 
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Under the conditions of the Riemann hypothesis, for non-trivial zeros from the polynomial (3), 

the value of the binomial development expansion (9) is equal to zero. The product searched in (6)–(8), 

i.e., the double zeta function of the complex-conjugate argument, was created from the sum of the 

basic zeta functions of the complex-conjugate argument. Therefore, it is necessary to find an 

adequate polynomial analogous to the results from 18 which, by applying Newton’s identities, will 

establish a relationship between the product and the sum of the zeta functions of the 

complex-conjugate argument. 

3. Coefficients of the polynomial of the multiple zeta function of the complex-conjugate 

argument 

The required polynomial has the form (10). The applied concept is analogous to the 

development of multiple zeta functions with identical real arguments 18: 
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When expressing Newton’s identities, the standard approach and notation from 18 will be 

applied, where pk is equal to the k-th (kR) power of all the roots of the polynomial (11): 
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Although infinite, we know that the polynomial (8) is of even degree, because of the even 

number of complex-conjugate roots. The first Newton’s identity is equal to the sum of all the roots of 

the polynomial (10), i.e., sum of individual zeta functions of complex-conjugate arguments (12): 
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Newton’s second identity is equal to pairs of products of all roots (13): 
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The first and second members are equal to the sum of double zeta functions of identical 

complex-conjugate arguments, and the third member is equal to the product of zeta functions of 

complex-conjugate arguments (14): 
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which is in accordance with Newton’s second identity e2 (15): 
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The first way of developing Newton’s polynomial identities (10), i.e., multiple zeta function of a 

higher order, is possible by individual calculations as in the case of double zeta functions (13)−(15). 

The second way is based on the application of the form for expressing elementary symmetric 

polynomials in terms of power sums: ek=(−1)k(k!)−1Bk(−p1,−1!p2,−2!p3,…,−(k−1)!pk), where the Bk is 

the complete exponential polynomial established by Eric Temple Bell (1883−1960). 

The third way, in this case the most suitable, is based on the results obtained by Ian Grant 

Macdonald 21. Newton’s identities, i.e., multiple zeta functions can be calculated based on the 
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product of the reciprocal of the factorial and special determinants. Let us first prepare an expression 

for the reciprocal value of the factorial (16): 
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By applying (16), according to the results obtained by Macdonald 21, the determinants of 

Newton’s identities are (17)−(22). These identities are simultaneously multiple zeta functions of the 

complex-conjugate argument: 
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Newton’s identity of order kN, i.e., multiple zeta function of order k is given by (21): 

!k

D

pppppp

kppppp

kpppp

ppp

pp

p

n
)s,s(e k

k

n

kkk

kkk

kkk

kk =

−

−

== 
=

−−

−−−

−−−
1

12321

12321

1222

123

12

1

1

02

000

0002

00001

1















 . (21) 

Thanks to the findings of Macdonald 21, the last coefficient of the infinite polynomial (10) 

that converges to the value en→, i.e., multiple zeta function of order n→, can be presented as a 

product of the reciprocal value of the factorial from (16) and the infinite determinant D (22): 
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According to the rules of Franciscus Vieta (1540−1603), we know that the last member of a 

polynomial is equal to the product of all the roots. By applying Vieta’s rules, the value of the 

determinant (22) can be directly expressed by (23). The solution (23) is a general solution of (22) for 

any value of the real argument ! 
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All the necessary coefficients of the infinite polynomial (10) are thus formed. The general form 

of the Multiple zeta function en→ of order n→ is obtained from (23) for the specific value of the 

first Newton’s identity p1. The Newton’s identities pk of order k>1 are functionally dependent on the 

first Newton’s identity. 

4. The solution of the infinite determinant under the conditions of the Riemann hypothesis 

By using the obtained coefficients (17)−(21), the polynomial (10) in its developed form is equal 

to (24). Coefficient en→, i.e., the multiple zeta function of the complex-conjugate argument of order 

n, has to be positive due to the even number of roots of the polynomial (10). If we expand the 

product of the monomial (10), a polynomial with coefficients (24) is obtained. The coefficients of 

this polynomial are multiple zeta functions (24): 
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Under the specific conditions of the Riemann hypothesis (25): 
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The first coefficient of the polynomial (22) is equal to zero p1=e1=0. From (12), hold (26): 
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By introducing the condition of Riemann hypothesis (26) into the infinite determinant (22), all 

values on the main diagonal are equal to zero (27): 
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By introducing the conditions of the Riemann hypothesis (26) into the determinant (27), a key 

question arises: is there a finite value of the infinite determinant D (27)? 

By applying Vieta’s rules in (23), it has been proved that the last coefficient of the infinite 

polynomial (10) shown in (24) as en→, functionally depends only on the real part  of the complex 

argument s=it. Condition (26) includes all pairs of symmetrically distributed non-trivial zeros. The 

final value of the infinite determinant D would enable the formation of the special identity 

emphasized in (23). Now, we add the second column to the first, so we get (28): 








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2
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p

D

nnnnnn

nnnnnn

−−−−−
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

+

−+

+

+

+

= . (28) 

Multiple the first row of determinant by –p2 and add it to the second row, then multiple the first 

row by −(p3+p2) and add it to the third row, i.e., multiple the first row by −(pn+p(n−1)) and add to n-th 

row. We get a determinant that has a value of 1 in the first column only on the main diagonal of the 

determinant (29): 
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






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−

−

−

−

= . (29) 

Then, multiple the third column of determinants by (p2+1)/2 and add to the second column (30): 






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−

= . (30) 

All the elements of the second column from the third row are successively eliminated by 

multiple the second row with a corresponding number (31): 


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

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
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

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
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


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= . 
(31) 

Now, multiple the fourth column of determinants by (1−2p3)/3 and add to the third column (32): 
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






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
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=
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(32) 

All the elements of the third column from the fourth row are successively eliminated by 

multiple the third row with the corresponding number (33): 


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



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

 −
−




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−




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−






 +
+−−








 −
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





 +
+−−








 +
+−−

=
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(33) 

For kN, the concept is as follows (a are determinant members): to obtain a unit on the main 

diagonal in the k-th row and k-th column, the (k+1) column is always used where ak,k+1=k. We notice 

that the values ak,1, ak,2, ak,k−1, as well as ak,k+2, ak,k+3, ak,k+2,… are equal to zero. The values ak,k and 

ak,k+1 are only non-zero members in the k-th row. The value ak,k+1 is multiple by the corresponding 

function ak+1,j=fk+1,j (p2, p3, …, pk+1), jk+1,), which results in the value on the main diagonal 

ak,k=1. Then, using the values on the main diagonal, we reduce all the values in the k-th column 

below the main diagonal to zero, whereby in the (k+1) column, new functions fk+2,j (p2, p3, …, pk+1, 

pk+2) are obtained. The values in the other columns do not change because they are multiple by zero. 

According to the established concept, values of 1 are obtained on the main diagonal and values 

of zeros below the main diagonal, i.e., we get the value of the determinant. The value of the 

determinant converges to 1 (34). We obtain this result due to the initial conditions from the 

determinant (29) in which all values on the main diagonal are based on (26), i.e., equal to zero. The 

value that sets 1 on the main diagonal is a1,2=1. 



13566 

AIMS Mathematics  Volume 8, Issue 6, 13556–13571. 

.

n

D 1

1000000

1100000

0010000

0041000

0003100

0000210

0000011

→

−

=



















 (34) 

5. Values of the critical line =½ and the factorial function 

Expressions (22) and (23) refer to the convergences of an identical multiple zeta function for the 

same initial conditions (25) and (26) for general and specific conditions. Therefore, with (34) we can 

form the identity (35): 
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(35) 

The real value of complex-conjugate arguments of non-trivial zeros of the coefficient en→ is 

singular, there is only one solution: =½! 

The catalytic role of the polynomial (10) for the derivation of multiple zeta functions can also 

be considered through the polynomial Q(x,it) with the inverse values of the roots in the 

monomials (36): 



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−+ −−=
1n

itit )nx)(nx()it,x(Q  . (36) 

In the polynomial (36), qk are the sums of zeta functions of the complex-conjugate argument. qk 

is essential for the obtaining Newton’s identities and polynomial coefficients (37): 
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2

1
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2121

11
. (37) 

For the polynomial (36), the relations between the Newton’s identities represented by the 

Macdonald determinants (17)−(21) are also valid. It is expressed with the coefficients e(−k), i.e., 

Newton’s identities with a negative index. The concept of Newton’s identities with a negative index 

has already been successfully used in the new “New-nacci” method for calculating the roots of 

polynomials based on the convergence of Newton’s identities 22. 

Obtained from the product of monomials, the polynomial (36) has the form (38) with 

coefficients that are multiple zeta functions, as follows: 
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The significance of the coefficient en→ for the polynomial, i.e., multiple zeta functions of 

order n→ (24), is essential, and this coefficient is the lowest common denominator of all 

polynomial coefficients (10). If we consider that the zeta function (11) is a multiple zeta function of 

the first order e1=1(+it, −it) (36), it follows (39): 
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For k1, ) respecting Newton’s identities with a negative index, for all multiple zeta 

functions hold (40): 
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The relations between polynomials (10), (24), (36) and (38) in the pole of the zeta function for 

x=1 are: 
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which is easily proven from the quotient of the polynomials P(x, it) (10) and Q(x, it) (36) in the 

pole of the zeta function x=1: 
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 (42) 

Let us emphasize once again that the lowest common denominator en→ of the initial 

polynomial (10) is simultaneously the reciprocal value of the factorial function and the multiple zeta 

function of the complex-conjugate argument (40). The order of this multiple zeta function is n→. 

The exponent −2 for the calculated value =½ (35) is equal to the value −1=ei. 

6. Conclusions 

Since Bernhard Riemann’s famous manuscript from 1859, over a period of 163 years, more 

than 160 failed attempts to prove the Riemann Hypothesis (RH) have been recorded. The group of 

failed proofs is followed by a large number of extremely important results based on RH. In the 

opposition, there are stances that present doubts about the sustainability of the RH. The eventual 
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success of the opposing stances would ultimately cause unfathomable consequences in number 

theory. 

For now, the starting point of all the failed evidence of the RH and the results of opposites is 

common. It is based only on the complex argument, without the conjugate. The introduction of 

complex-conjugate solutions in RH (25) easily highlighted the singular result of the real part of the 

non-trivial zeros =½ of the complex-conjugate argument (35). However, this solution is based on 

the convergence of the last member of the special infinite polynomial (10). The existence of this 

convergence is confirmed, this member is the lowest common denominator of the infinite polynomial 

(10) or the denominator of all multiple zeta functions. The multiple zeta function of the 

complex-conjugate argument of the order n→, expressed through Newton’s identity with en→, 

converges to the reciprocal value of the infinite factorial, i.e., values of the infinite factorial with the 

exponent from Leonard Euler’s famous formula −1=ei (43): 
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The established convergence of the last member of the infinite polynomial (10, 24) is the main 

reason for the failure of all authors from supporters to opponents of the RH. In other words, the 

current conditions of access to the Riemann hypothesis are limiting, at the same time they prevent 

the proof and negation of RH. Such a state will remain until the Riemann Hypothesis is redefined. 

The experience of the previous 163 years should be respected. According to the findings in this 

manuscript, Berhard Riemann’s functional equation from 1859 is the result of convergence. The 

circumstances for solving the Riemann hypothesis are historically analogous to the case of 

polynomials of the 5th degree and higher. The roots of these polynomials cannot be calculated using 

mathematical radicals, but can be calculated using other methods based on convergence. Therefore, it 

is necessary to additionally relax the conditions of proof of the RH with the approved convergence. 

Although, with this relaxation RH has already been proven with absolute probability 23. The 

summary of the alternative calculation of the critical axis of the RH is: 

• The basic zeta function is a multiple zeta function of the first order (11). 

• Multiple zeta functions of the complex-conjugate argument were applied (17)–(23). 

• Initial conditions are based on complex-conjugate non-trivial zeros (26). 

• The calculation of the critical axis is based on the convergence of the inverse value of the 

factorial function (35). 

The obtained result goes in favor of RH: Riemann’s hypothesis is correct. The critical line of 

non-trivial zeros is singular. The values of the real part of the complex-conjugate argument of the 

non-trivial zeros of the zeta function converge to =½! 

The appearance of the reciprocal value of the factorial at the first degree (2=1) in the form of 

the smallest common denominator of all multiple zeta functions is a confirmation of the monolithic 

structure of number theory even in “deep” infinity. Any opposite result that deviates from the value 

=½ or the singularity of the critical line (the appearance of two or more critical lines of different 

values, of which one can be equal to ½) would be in favor of transitory deformations or permanent 

deviations of the number system. The most critical positions would certainly be in prime numbers. 

An alternative approach to the Riemann hypothesis particularly highlights the multiple zeta 

functions of order n→. The basis of the solution is the factorial of all natural numbers. Its exponent 

contains the three most important mathematical constants i=√−1, =3.141592… and e=2.718281… 

from the famous identity ei+1=0 by Leonard Euler. 
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7. Guidelines for further research 

Future research should primarily be focused on Eq (26). The first Newton’s identity of the 

polynomial (10), the sum of zeta functions of the complex-conjugate argument, according to current 

assumptions, has exceptional properties. The value (+it)+(−it) develops as an oscillatory sum. 

For the assumed value =½, the oscillation axes of the sum (26) have impulse changes by segments. 

The segments are approximately determined by the quotient t/2, t/4, t/6…, t/2k. It is observed 

that the segments of the oscillation axes of the sum (26) are functionally connected to the trivial 

zeros of the zeta function: −2, −4, −6, …. In the last segment for the values n(t/2,), the 

oscillation axis stabilizes. If t corresponds to the values of non-trivial zeros of the zeta function, the 

axis of oscillation of the last segment will be equal to zero. Oscillations in the last segment 

seemingly converge. However, these oscillations have divergent periods and amplitudes. Regardless 

of these divergences, the sums are regularized (Figure 1). 

 

Figure 1. Development of the sum (26) for =½ and the 300000th non-trivial zero of the 

zeta function, imaginary part t=201090.1439061... with enlarged details. 

According to previous findings, for the value ½, the oscillation axes of the sum (26) have 

impulse changes by segments, too. However, the stabilized oscillation axis of the last segment 

n(t/2,) cannot be centered in the value zero, because only non-trivial zeros of the zeta function 

are symmetric, as stated in (2). In general, the zeta function is not symmetric. Therefore, future 

research is focused on a new, alternative approach to the Riemann hypothesis based on the dual 

functional Eq (44): 
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Applying the result (26), the dual functional Eq (44) is equal to (45): 
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