The purpose of this research is to present, study, and prove numerous features of soft γ-open ($\mathcal{S} $γo) and soft γ-closed ($\mathcal{S} $γc) sets in soft topological structure ($\mathcal{S} $τs). Also, we show that the collection of $\mathcal{S} $γo sets is a soft supra topology ($\mathcal{S} $sτ) by stating and proving the conditions. Finally, we study soft γ-continuous functions and soft γ-irresolute functions. Some related properties of these new soft of discussed with help of some examples.
Citation: Samirah Alzahrani, A. A. Nasef, N. Youns, A. I. EL-Maghrabi, M. S. Badr. Soft topological approaches via soft γ-open sets[J]. AIMS Mathematics, 2022, 7(7): 12144-12153. doi: 10.3934/math.2022675
The purpose of this research is to present, study, and prove numerous features of soft γ-open ($\mathcal{S} $γo) and soft γ-closed ($\mathcal{S} $γc) sets in soft topological structure ($\mathcal{S} $τs). Also, we show that the collection of $\mathcal{S} $γo sets is a soft supra topology ($\mathcal{S} $sτ) by stating and proving the conditions. Finally, we study soft γ-continuous functions and soft γ-irresolute functions. Some related properties of these new soft of discussed with help of some examples.
[1] | C. G. Aras, A. Sonmez, H. Çakall, On soft mappings, arXiv, 2013. Available from: https://arXiv.org/abs/1305.4545. |
[2] | I. Arockiarani, A. A. Lancy, Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces, Int. J. Math. Arch., 4 (2013), 1-7. |
[3] | S. Bayramov, C. G. Aras, Soft locally compact spaces and soft paracompact spaces, J. Math. Syst. Sci., 3 (2013), 122. |
[4] | B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287-294. |
[5] | F. Feng, Y. B. Jun, U. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011 doi: 10.1016/j.camwa.2008.05.011 |
[6] | S. Hussain, B. Ahmad, Some properties in soft topological spaces, Comput. Math. Appl., 62 (2011), 4058-4067. https://doi.org/10.1016/j.camwa.2011.09.051 doi: 10.1016/j.camwa.2011.09.051 |
[7] | J. Mahanta, P. K. Das, On soft topological space via semiopen and semiclosed soft sets, arXiv, 2012. Available from: https://arXiv.org/abs/1203.4133. |
[8] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6 |
[9] | D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[10] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006 |
[11] | Y. Yumak, A. K. Kaymakei, Soft β-open sets and their applications, arXiv, 2013. Available from: https://arXiv.org/abs/1312.6964. |
[12] | T. M. Al-shami, E. A. Abo-Tabl, Soft α-separation axioms and α-fixed soft points, AIMS Math., 6 (2021), 5675-5694. https://doi.org/10.3934/math.2021335 doi: 10.3934/math.2021335 |
[13] | C. Janki, D. Sreeja, A new class of homomorphism in soft topological spaces, Int. J. Sc. Res., 3 (2014), 810-814. |