Research article

Soft topological approaches via soft γ-open sets

  • Received: 21 February 2022 Revised: 05 April 2022 Accepted: 10 April 2022 Published: 22 April 2022
  • MSC : 54C99, 54D10, 54D15, 54D30, 54F05

  • The purpose of this research is to present, study, and prove numerous features of soft γ-open ($\mathcal{S} $γo) and soft γ-closed ($\mathcal{S} $γc) sets in soft topological structure ($\mathcal{S} $τs). Also, we show that the collection of $\mathcal{S} $γo sets is a soft supra topology ($\mathcal{S} $) by stating and proving the conditions. Finally, we study soft γ-continuous functions and soft γ-irresolute functions. Some related properties of these new soft of discussed with help of some examples.

    Citation: Samirah Alzahrani, A. A. Nasef, N. Youns, A. I. EL-Maghrabi, M. S. Badr. Soft topological approaches via soft γ-open sets[J]. AIMS Mathematics, 2022, 7(7): 12144-12153. doi: 10.3934/math.2022675

    Related Papers:

  • The purpose of this research is to present, study, and prove numerous features of soft γ-open ($\mathcal{S} $γo) and soft γ-closed ($\mathcal{S} $γc) sets in soft topological structure ($\mathcal{S} $τs). Also, we show that the collection of $\mathcal{S} $γo sets is a soft supra topology ($\mathcal{S} $) by stating and proving the conditions. Finally, we study soft γ-continuous functions and soft γ-irresolute functions. Some related properties of these new soft of discussed with help of some examples.



    加载中


    [1] C. G. Aras, A. Sonmez, H. Çakall, On soft mappings, arXiv, 2013. Available from: https://arXiv.org/abs/1305.4545.
    [2] I. Arockiarani, A. A. Lancy, Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces, Int. J. Math. Arch., 4 (2013), 1-7.
    [3] S. Bayramov, C. G. Aras, Soft locally compact spaces and soft paracompact spaces, J. Math. Syst. Sci., 3 (2013), 122.
    [4] B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287-294.
    [5] F. Feng, Y. B. Jun, U. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011 doi: 10.1016/j.camwa.2008.05.011
    [6] S. Hussain, B. Ahmad, Some properties in soft topological spaces, Comput. Math. Appl., 62 (2011), 4058-4067. https://doi.org/10.1016/j.camwa.2011.09.051 doi: 10.1016/j.camwa.2011.09.051
    [7] J. Mahanta, P. K. Das, On soft topological space via semiopen and semiclosed soft sets, arXiv, 2012. Available from: https://arXiv.org/abs/1203.4133.
    [8] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [9] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [10] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [11] Y. Yumak, A. K. Kaymakei, Soft β-open sets and their applications, arXiv, 2013. Available from: https://arXiv.org/abs/1312.6964.
    [12] T. M. Al-shami, E. A. Abo-Tabl, Soft α-separation axioms and α-fixed soft points, AIMS Math., 6 (2021), 5675-5694. https://doi.org/10.3934/math.2021335 doi: 10.3934/math.2021335
    [13] C. Janki, D. Sreeja, A new class of homomorphism in soft topological spaces, Int. J. Sc. Res., 3 (2014), 810-814.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1696) PDF downloads(110) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog