In this paper, we study a food chain chemostat model with Michaelis-Menten function response and double delays. Applying the stability theory of functional differential equations, we discuss the conditions for the stability of three equilibria, respectively. Furthermore, we analyze the sufficient conditions for the Hopf bifurcation of the system at the positive equilibrium. Finally, we present some numerical examples to verify the correctness of the theoretical analysis and give some valuable conclusions and further discussions at the end of the paper.
Citation: Xin Xu, Yanhong Qiu, Xingzhi Chen, Hailan Zhang, Zhiyuan Liang, Baodan Tian. Bifurcation analysis of a food chain chemostat model with Michaelis-Menten functional response and double delays[J]. AIMS Mathematics, 2022, 7(7): 12154-12176. doi: 10.3934/math.2022676
In this paper, we study a food chain chemostat model with Michaelis-Menten function response and double delays. Applying the stability theory of functional differential equations, we discuss the conditions for the stability of three equilibria, respectively. Furthermore, we analyze the sufficient conditions for the Hopf bifurcation of the system at the positive equilibrium. Finally, we present some numerical examples to verify the correctness of the theoretical analysis and give some valuable conclusions and further discussions at the end of the paper.
[1] | H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, 1995. |
[2] | V. Sree Hari Rao, P. Raja Sekhara Rao, Basic chemostat model revisited, Differ. Equ. Dyn. Syst., 17 (2009), 3–16. http://dx.doi.org/10.1007/s12591-009-0001-2 doi: 10.1007/s12591-009-0001-2 |
[3] | H. Veldkamp, Ecological studies with the chemostat, In: Advances in microbial ecology, Boston, MA: Springer, 1977: 59–94. http://dx.doi.org/10.1007/978-1-4615-8219-9_2 |
[4] | P. Praveen, D. T. T. Nguyen, K. C. Loh, Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat, Biochem. Eng. J., 94 (2015), 125–133. https://doi.org/10.1016/j.bej.2014.11.014 doi: 10.1016/j.bej.2014.11.014 |
[5] | D. H. Nguyen, N. N. Nguyen, G. Yin, General nonlinear stochastic systems motivated by chemostat models: Complete characterization of long-time behavior, optimal controls, and applications to wastewater treatment, Stoch. Proc. Appl., 130 (2020), 4608–4642. https://doi.org/10.1016/j.spa.2020.01.010 doi: 10.1016/j.spa.2020.01.010 |
[6] | M. Ahmed, A. Mydlarczyk, A. Abusam, Kinetic modeling of GAC-IFAS chemostat for petrochemical wastewater treatment, Journal of Water Resource and Hydraulic Engineering, 6 (2017), 27–33. https://doi.org/10.5963/JWRHE0602002 doi: 10.5963/JWRHE0602002 |
[7] | A. Novick, L. Szilard, Description of the chemostat, Science, 112 (1950), 715–716. https://doi.org/10.1126/science.112.2920.715 doi: 10.1126/science.112.2920.715 |
[8] | Z. P. Qiu, J. Yu, Y. Zou, The asymptotic behavior of a chemostat model with the Beddington-DeAngelis functional response, Math. Biosci., 187 (2004), 175–187. https://doi.org/10.1016/j.mbs.2003.10.001 doi: 10.1016/j.mbs.2003.10.001 |
[9] | L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017 |
[10] | H. Nie, J. H. Wu, Coexistence of an unstirred chemostat model with Beddington-DeAngelis functional response and inhibitor, Nonlinear Anal. Real, 11 (2010), 3639–3652. https://doi.org/10.1016/j.nonrwa.2010.01.010 doi: 10.1016/j.nonrwa.2010.01.010 |
[11] | L. Zou, X. W. Chen, S. G. Ruan, W. N. Zhang, Dynamics of a model of allelopathy and bacteriocin with a single mutation, Nonlinear Anal. Real, 12 (2011), 658–670. https://doi.org/10.1016/j.nonrwa.2010.07.008 doi: 10.1016/j.nonrwa.2010.07.008 |
[12] | C. Q. Xu, S. L. Yuan, An analogue of break-even concentration in a simple stochastic chemostat model, Appl. Math. Lett., 48 (2015), 62–68. https://doi.org/10.1016/j.aml.2015.03.012 doi: 10.1016/j.aml.2015.03.012 |
[13] | D. Herbert, R. Elsworth, R. C. Telling, The continuous culture of bacteria; a theoretical and experimental study, Journal of General Microbiology, 14 (1956), 601–622. https://doi.org/10.1099/00221287-14-3-601 doi: 10.1099/00221287-14-3-601 |
[14] | L. Michaelis, M. L. Menten, Die kinetik der invertinwirkung, Biochemische Zeitschrift, 49 (1913), 333–369. |
[15] | C. P. L. Grady Jr, G. T. Daigger, N. G. Love, C. D. M. Filipe, Biological wastewater treatment, CRC press, 2011. |
[16] | B. Li, Y. Kuang, Simple food chain in a chemostat with distinct removal rates, J. Math. Anal. Appl., 242 (2000), 75–92. https://doi.org/10.1006/jmaa.1999.6655 doi: 10.1006/jmaa.1999.6655 |
[17] | L. Wang, D. Jiang, Ergodicity and threshold behaviors of a predator-prey model in stochastic chemostat driven by regime switching, Math. Method. Appl. Sci., 44 (2021), 325–344. https://doi.org/10.1002/mma.6738 doi: 10.1002/mma.6738 |
[18] | E. Ali, M. Asif, A. H. Ajbar, Study of chaotic behavior in predator–prey interactions in a chemostat, Ecol. Model., 259 (2013), 10–15. https://doi.org/10.1016/j.ecolmodel.2013.02.029 doi: 10.1016/j.ecolmodel.2013.02.029 |
[19] | G. Rajchakit, R. Sriraman, C. P. Lim, B. Unyong, Existence, uniqueness and global stability of clifford-valued neutral-type neural networks with time delays, Math. Comput. Simulat., in press. https://doi.org/10.1016/j.matcom.2021.02.023 |
[20] | R. Xu, Global dynamics of an SEIRI epidemiological model with time delay, Appl. Math. Comput., 232 (2014), 436–444. https://doi.org/10.1016/j.amc.2014.01.100 doi: 10.1016/j.amc.2014.01.100 |
[21] | C. Huang, H. Zhang, J. Cao, H. Hu, Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Int. J. Bifurcat. Chaos, 29 (2019), 1950091. https://doi.org/10.1142/S0218127419500913 doi: 10.1142/S0218127419500913 |
[22] | X. W. Jiang, X. Y. Chen, M. Chi, J. Chen, On Hopf bifurcation and control for a delay systems, Appl. Math. Comput., 370 (2020), 124906. https://doi.org/10.1016/j.amc.2019.124906 doi: 10.1016/j.amc.2019.124906 |
[23] | W. Qi, G. Zong, H. R. Karimi, $L_{\infty}$ control for positive delay systems with semi-Markov process and application to a communication network model, IEEE Trans. Ind. Electron., 66 (2018), 2081–2091. https://doi.org/10.1109/TIE.2018.2838113 doi: 10.1109/TIE.2018.2838113 |
[24] | H. Y. Zhao, N. Ding, Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays, Appl. Math. Comput., 183 (2006), 464–470. https://doi.org/10.1016/j.amc.2006.05.087 doi: 10.1016/j.amc.2006.05.087 |
[25] | Q. K. Song, Z. D. Wang, An analysis on existence and global exponential stability of periodic solutions for BAM neural networks with time-varying delays, Nonlinear Anal. Real, 8 (2007), 1224–1234. https://doi.org/10.1016/j.nonrwa.2006.07.002 doi: 10.1016/j.nonrwa.2006.07.002 |
[26] | C. Huang, J. Cao, M. Xiao, A. Alsaedi, T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput., 292 (2016), 210–227. https://doi.org/10.1016/j.amc.2016.07.029 doi: 10.1016/j.amc.2016.07.029 |
[27] | Y. Xiao, L. Chen, An SIS epidemic model with stage structure and a delay, Acta Mathematicae Applicatae Sinica, English Series, 18 (2002), 607–618. https://doi.org/10.1007/s102550200063 doi: 10.1007/s102550200063 |
[28] | T. Zhang, J. Liu, Z. Teng, Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure, Nonlinear Anal. Real, 11 (2010), 293–306. https://doi.org/10.1016/j.nonrwa.2008.10.059 doi: 10.1016/j.nonrwa.2008.10.059 |
[29] | L. Zhu, G. Guan, Y. Li, Nonlinear dynamical analysis and control strategies of a network-based SIS epidemic model with time delay, Appl. Math. Model., 70 (2019), 512–531. https://doi.org/10.1016/j.apm.2019.01.037 doi: 10.1016/j.apm.2019.01.037 |
[30] | Y. Song, J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1–21. https://doi.org/10.1016/j.jmaa.2004.06.056 doi: 10.1016/j.jmaa.2004.06.056 |
[31] | F. Li, H. Li, Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey, Math. Comput. Model., 55 (2012), 672–679. https://doi.org/10.1016/j.mcm.2011.08.041 doi: 10.1016/j.mcm.2011.08.041 |
[32] | X. Jiang, X. Chen, T. Huang, H. Yan, Bifurcation and control for a predator-prey system with two delays, IEEE Trans. Circuits Syst. II, 68 (2020), 376–380. https://doi.org/10.1109/TCSII.2020.2987392 doi: 10.1109/TCSII.2020.2987392 |
[33] | S. Ruan, G. S. K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay, J. Math. Anal. Appl., 204 (1996), 786–812. https://doi.org/10.1006/jmaa.1996.0468 doi: 10.1006/jmaa.1996.0468 |
[34] | G. S. K. Wolkowicz, H. Xia, Global asymptotic behavior of a chemostat model with discrete delays, SIAM J. Appl. Math., 57 (1997), 1019–1043. https://doi.org/10.1137/S0036139995287314 doi: 10.1137/S0036139995287314 |
[35] | B. Tian, S. Zhong, N. Chen, X. Liu, Impulsive control strategy for a chemostat model with nutrient recycling and distributed time-delay, Math. Method. Appl. Sci., 37 (2018), 496–507. https://doi.org/10.1002/mma.2807 doi: 10.1002/mma.2807 |
[36] | S. Sun, C. Guo, X. Liu, Hopf bifurcation of a delayed chemostat model with general monotone response functions, Comp. Appl. Math., 37 (2018), 2714–2737. https://doi.org/10.1007/s40314-017-0476-3 doi: 10.1007/s40314-017-0476-3 |
[37] | X. Yu, S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Cont. Dyn. Syst. B, 25 (2020), 2373–2390. https://doi.org/10.3934/dcdsb.2020014 doi: 10.3934/dcdsb.2020014 |
[38] | J. K. Hale, S. M. Verduyn Lunel, Introduction of functional differential equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4612-4342-7 |
[39] | S. B. Hsu, Ordinary differential equations with applications, 2 Eds., World Scientific Publishing Company, 2013. https://doi.org/10.1142/8744 |
[40] | S. Ruan, J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 863–874. |
[41] | B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge: Cambridge University Press, 1981. |
[42] | H. I. Freedman, Y. Kuang, Stability switches in linear scalar neutral delay equations, Funkc. Ekvacioj, 34 (1991), 187–209. |
[43] | O. Tagashira, T. Hara, Delayed feedback control for a chemostat model, Math. Biosci., 201 (2006), 101–112. https://doi.org/10.1016/j.mbs.2005.12.014 doi: 10.1016/j.mbs.2005.12.014 |
[44] | Y. Kuang, Delay differential equations with applications in population dynamics, Boston: Academic Press, 1993. |
[45] | F. A. Rihan, C. Rajivganthi, Dynamics of fractional-order delay differential model of prey-predator system with Holling-type Ⅲ and infection among predators, Chaos Soliton. Fract., 141 (2020), 110365. https://doi.org/10.1016/j.chaos.2020.110365 doi: 10.1016/j.chaos.2020.110365 |