The article presents a systematic investigation of an extension of the developments concerning $ F $-contraction mappings which were proposed in 2012 by Wardowski. We develop the notion of $ F $-contractions to the case of non-linear ($ F $, $ F_{H} $)-dynamic-iterative scheme for Branciari Ćirić type-contractions and prove multi-valued fixed point results in controlled-metric spaces. An approximation of the dynamic-iterative scheme instead of the conventional Picard sequence is determined. The paper also includes a tangible example and a graphical interpretation that displays the motivation for such investigations. The work is illustrated by providing an application of the proposed non-linear ($ F $, $ F_{H} $)-dynamic-iterative scheme to the Liouville-Caputo fractional derivatives and fractional differential equations.
Citation: Amjad Ali, Muhammad Arshad, Eskandar Emeer, Hassen Aydi, Aiman Mukheimer, Kamal Abodayeh. Certain dynamic iterative scheme families and multi-valued fixed point results[J]. AIMS Mathematics, 2022, 7(7): 12177-12202. doi: 10.3934/math.2022677
The article presents a systematic investigation of an extension of the developments concerning $ F $-contraction mappings which were proposed in 2012 by Wardowski. We develop the notion of $ F $-contractions to the case of non-linear ($ F $, $ F_{H} $)-dynamic-iterative scheme for Branciari Ćirić type-contractions and prove multi-valued fixed point results in controlled-metric spaces. An approximation of the dynamic-iterative scheme instead of the conventional Picard sequence is determined. The paper also includes a tangible example and a graphical interpretation that displays the motivation for such investigations. The work is illustrated by providing an application of the proposed non-linear ($ F $, $ F_{H} $)-dynamic-iterative scheme to the Liouville-Caputo fractional derivatives and fractional differential equations.
[1] | N. Alamgir, Q. Kiran, H. Isık, H. Aydi, Fixed point results via a Hausdorff controlled type metric, Adv. Differ. Equ., 2020 (2020), 24. https://doi.org/10.1186/s13662-020-2491-8 doi: 10.1186/s13662-020-2491-8 |
[2] | A. Ali, M. Arshad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized $\theta _{b}$-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 37. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8 |
[3] | I. Altun, G. MIsıknak, H. Dag, Multivalued F-contractions on complete metric space, J. Nonlinear Convex A., 2015,659–666. https://doi.org/10.15388/NA.2016.2.4 doi: 10.15388/NA.2016.2.4 |
[4] | A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Physica A, 538 (2020), 122669. https://doi.org/10.1016/j.physa.2019.122669 doi: 10.1016/j.physa.2019.122669 |
[5] | A. Ali, H. Isik, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued-contraction maps and related applications, Open Math., 18 (2020), 386–399. https://doi.org/10.1515/math-2020-0139 doi: 10.1515/math-2020-0139 |
[6] | A. Ali, M. Arshad, A. Asif, E. Savas, C. Park, D. Y. Shin, On multivalued maps for $\Phi $-contractions involving orbits with application, AIMS Math., 6 (2021), 7532–7554. https://doi.org/10.3934/math.2021440 doi: 10.3934/math.2021440 |
[7] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 1922. |
[8] | L. Budhia, H. Aydi, A. H. Ansari, D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.-Model., 25 (2020), 580–597. https://doi.org/10.15388/namc.2020.25.17928 doi: 10.15388/namc.2020.25.17928 |
[9] | A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531–536. https://doi.org/10.1155/S0161171202007524 doi: 10.1155/S0161171202007524 |
[10] | P. Debnath, N. Konwar, S. Radenovi, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Springer, 2022. https://doi.org/10.1007/978-981-16-4896-0 |
[11] | D. Gopal, M. Abbas, D. K. Patel, C. Vetro, Fixed points of $ \alpha $-type F-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci., 36 (2016), 957–970. https://doi.org/10.1016/S0252-9602(16)30052-2 doi: 10.1016/S0252-9602(16)30052-2 |
[12] | D. Gopal, P. Agarwal, P. Kumam, Metric structures and fixed point theory, CRC Press, 2021. |
[13] | D. Gopal, P. Kumam, M. Abbas, Background and recent developments of metric fixed point theory, CRC Press, 2017. https://doi.org/10.1201/9781351243377 |
[14] | A. Gholidahneh, S. Sedghi, V. Parvaneh, Some fixed point results for Perov-Ćirić-Prešić type $F$-contractions with application, J. Funct. Space., 2020 (2020). https://doi.org/10.1155/2020/1464125 doi: 10.1155/2020/1464125 |
[15] | H. Işık, V. Parvaneh, B. Mohammadi, I. Altun, Common fixed point results for generalized Wardowski type contractive multi-valued mappings, Mathematics, 7 (2019), 1130. https://doi.org/10.3390/math7111130 doi: 10.3390/math7111130 |
[16] | F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006 |
[17] | D. Klim, D. Wardowski, Fixed points of dynamic process of set-valued F-contractions and application to functional equations, Fixed Point Theory A., 2015 (2015), 22. https://doi.org/10.1186/s13663-015-0272-y doi: 10.1186/s13663-015-0272-y |
[18] | E. Karapinar, P. Shahiand, K. Tas, Generalized $\alpha -\psi $ contractive type mappings of integral type and related fixed point theorems, J. Inequal. Appl., 2014 (2014), 160. https://doi.org/10.1186/1029-242X-2014-160 doi: 10.1186/1029-242X-2014-160 |
[19] | T. Kamran, M. Samreen, Q. Ul Ain, A Generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[20] | H. Lakzian, D. Gopal, W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory A., 18 (2016), 251–266. https://doi.org/10.1007/s11784-015-0275-7 doi: 10.1007/s11784-015-0275-7 |
[21] | Z. Liu, J. Li, S. M. Kang, Fixed point theorems of contractive mappings of integral type, J. Fixed Point Theory A., 2013. https://doi.org/10.1155/2021/6648527 doi: 10.1155/2021/6648527 |
[22] | B. Mohammadi, V. Parvaneh, H. Aydi, On extended interpolative Ćirić-Reich-Rus type $F$-contractions and an application, J. Inequal. Appl., 2019 (2019), 290. https://doi.org/10.1186/s13660-019-2227-z doi: 10.1186/s13660-019-2227-z |
[23] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194 |
[24] | S. B. Nadler, Multi-valued-valued contraction mappings, Pac. J. Math., 1969,475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475 |
[25] | H. K. Nashine, D. Gopal, D. Jain, A. Al-Rawashdeh, Solutions of initial and boundary value problems via F-contraction mappings in metric-like space, Int. J. Nonlinear Anal., 9 (2018), 129–145. https://doi.org/10.22075/IJNAA.2017.1725.1452 doi: 10.22075/IJNAA.2017.1725.1452 |
[26] | A. Pansuwan, W. Sintunavarat, V. Parvaneh, Y. J. Cho, Some fixed point theorems for $(\alpha, \theta, k)$-contractive multi-valued mappings with some applications, Fixed Point Theory A., 2015, 1–11. |
[27] | B. E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 2003, 4007–4013. https://doi.org/10.1155/S0161171203208024 doi: 10.1155/S0161171203208024 |
[28] | S. Shuklaa, D. Gopal, J. Martínez-Morenoc, Fixed points of set-valued F-contractions and its application to non-linear integral equations, Filomat, 31 (2017), 3377–3390. https://doi.org/10.2298/FIL1711377S doi: 10.2298/FIL1711377S |
[29] | H. M. Srivastava, A. Ali, A. Hussain, M. Arshad, H. Al-Sulami, A certain class of $\theta _{L}$-type non-linear operatorsand some related fixed point results, J. Nonlinear Var. Anal., 6 (2022), 69–87. https://doi.org/10.23952/jnva.6.2022.1.05 doi: 10.23952/jnva.6.2022.1.05 |
[30] | M. E. Samei, V. Hedayati, G. K. Ranjbar, The existence of solution for k-dimensional system of Langevin Hadamard-type fractional differential inclusions with 2k different fractional orders, Mediterr. J. Math., 50 (2020), 17–36. https://doi.org/10.30755/NSJOM.06942 doi: 10.30755/NSJOM.06942 |
[31] | M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. https://doi.org/10.2298/FIL1307259S doi: 10.2298/FIL1307259S |
[32] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory A., 2012 (2012), 94. https://doi.org/doi:10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[33] | M. Younis, D. Singh, D. Gopal, A. Goyal, M. S. Rathore, On applications of generalized F-contraction to differential equations, Nonlinear Funct. Anal. Appl., 2019,155–174. |