Research article

Certain dynamic iterative scheme families and multi-valued fixed point results

  • Received: 01 March 2022 Revised: 30 March 2022 Accepted: 07 April 2022 Published: 22 April 2022
  • MSC : 46T99, 47H10, 54H25

  • The article presents a systematic investigation of an extension of the developments concerning $ F $-contraction mappings which were proposed in 2012 by Wardowski. We develop the notion of $ F $-contractions to the case of non-linear ($ F $, $ F_{H} $)-dynamic-iterative scheme for Branciari Ćirić type-contractions and prove multi-valued fixed point results in controlled-metric spaces. An approximation of the dynamic-iterative scheme instead of the conventional Picard sequence is determined. The paper also includes a tangible example and a graphical interpretation that displays the motivation for such investigations. The work is illustrated by providing an application of the proposed non-linear ($ F $, $ F_{H} $)-dynamic-iterative scheme to the Liouville-Caputo fractional derivatives and fractional differential equations.

    Citation: Amjad Ali, Muhammad Arshad, Eskandar Emeer, Hassen Aydi, Aiman Mukheimer, Kamal Abodayeh. Certain dynamic iterative scheme families and multi-valued fixed point results[J]. AIMS Mathematics, 2022, 7(7): 12177-12202. doi: 10.3934/math.2022677

    Related Papers:

  • The article presents a systematic investigation of an extension of the developments concerning $ F $-contraction mappings which were proposed in 2012 by Wardowski. We develop the notion of $ F $-contractions to the case of non-linear ($ F $, $ F_{H} $)-dynamic-iterative scheme for Branciari Ćirić type-contractions and prove multi-valued fixed point results in controlled-metric spaces. An approximation of the dynamic-iterative scheme instead of the conventional Picard sequence is determined. The paper also includes a tangible example and a graphical interpretation that displays the motivation for such investigations. The work is illustrated by providing an application of the proposed non-linear ($ F $, $ F_{H} $)-dynamic-iterative scheme to the Liouville-Caputo fractional derivatives and fractional differential equations.



    加载中


    [1] N. Alamgir, Q. Kiran, H. Isık, H. Aydi, Fixed point results via a Hausdorff controlled type metric, Adv. Differ. Equ., 2020 (2020), 24. https://doi.org/10.1186/s13662-020-2491-8 doi: 10.1186/s13662-020-2491-8
    [2] A. Ali, M. Arshad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized $\theta _{b}$-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 37. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8
    [3] I. Altun, G. MIsıknak, H. Dag, Multivalued F-contractions on complete metric space, J. Nonlinear Convex A., 2015,659–666. https://doi.org/10.15388/NA.2016.2.4 doi: 10.15388/NA.2016.2.4
    [4] A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Physica A, 538 (2020), 122669. https://doi.org/10.1016/j.physa.2019.122669 doi: 10.1016/j.physa.2019.122669
    [5] A. Ali, H. Isik, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued-contraction maps and related applications, Open Math., 18 (2020), 386–399. https://doi.org/10.1515/math-2020-0139 doi: 10.1515/math-2020-0139
    [6] A. Ali, M. Arshad, A. Asif, E. Savas, C. Park, D. Y. Shin, On multivalued maps for $\Phi $-contractions involving orbits with application, AIMS Math., 6 (2021), 7532–7554. https://doi.org/10.3934/math.2021440 doi: 10.3934/math.2021440
    [7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 1922.
    [8] L. Budhia, H. Aydi, A. H. Ansari, D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.-Model., 25 (2020), 580–597. https://doi.org/10.15388/namc.2020.25.17928 doi: 10.15388/namc.2020.25.17928
    [9] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531–536. https://doi.org/10.1155/S0161171202007524 doi: 10.1155/S0161171202007524
    [10] P. Debnath, N. Konwar, S. Radenovi, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Springer, 2022. https://doi.org/10.1007/978-981-16-4896-0
    [11] D. Gopal, M. Abbas, D. K. Patel, C. Vetro, Fixed points of $ \alpha $-type F-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci., 36 (2016), 957–970. https://doi.org/10.1016/S0252-9602(16)30052-2 doi: 10.1016/S0252-9602(16)30052-2
    [12] D. Gopal, P. Agarwal, P. Kumam, Metric structures and fixed point theory, CRC Press, 2021.
    [13] D. Gopal, P. Kumam, M. Abbas, Background and recent developments of metric fixed point theory, CRC Press, 2017. https://doi.org/10.1201/9781351243377
    [14] A. Gholidahneh, S. Sedghi, V. Parvaneh, Some fixed point results for Perov-Ćirić-Prešić type $F$-contractions with application, J. Funct. Space., 2020 (2020). https://doi.org/10.1155/2020/1464125 doi: 10.1155/2020/1464125
    [15] H. Işık, V. Parvaneh, B. Mohammadi, I. Altun, Common fixed point results for generalized Wardowski type contractive multi-valued mappings, Mathematics, 7 (2019), 1130. https://doi.org/10.3390/math7111130 doi: 10.3390/math7111130
    [16] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
    [17] D. Klim, D. Wardowski, Fixed points of dynamic process of set-valued F-contractions and application to functional equations, Fixed Point Theory A., 2015 (2015), 22. https://doi.org/10.1186/s13663-015-0272-y doi: 10.1186/s13663-015-0272-y
    [18] E. Karapinar, P. Shahiand, K. Tas, Generalized $\alpha -\psi $ contractive type mappings of integral type and related fixed point theorems, J. Inequal. Appl., 2014 (2014), 160. https://doi.org/10.1186/1029-242X-2014-160 doi: 10.1186/1029-242X-2014-160
    [19] T. Kamran, M. Samreen, Q. Ul Ain, A Generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [20] H. Lakzian, D. Gopal, W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory A., 18 (2016), 251–266. https://doi.org/10.1007/s11784-015-0275-7 doi: 10.1007/s11784-015-0275-7
    [21] Z. Liu, J. Li, S. M. Kang, Fixed point theorems of contractive mappings of integral type, J. Fixed Point Theory A., 2013. https://doi.org/10.1155/2021/6648527 doi: 10.1155/2021/6648527
    [22] B. Mohammadi, V. Parvaneh, H. Aydi, On extended interpolative Ćirić-Reich-Rus type $F$-contractions and an application, J. Inequal. Appl., 2019 (2019), 290. https://doi.org/10.1186/s13660-019-2227-z doi: 10.1186/s13660-019-2227-z
    [23] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
    [24] S. B. Nadler, Multi-valued-valued contraction mappings, Pac. J. Math., 1969,475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475
    [25] H. K. Nashine, D. Gopal, D. Jain, A. Al-Rawashdeh, Solutions of initial and boundary value problems via F-contraction mappings in metric-like space, Int. J. Nonlinear Anal., 9 (2018), 129–145. https://doi.org/10.22075/IJNAA.2017.1725.1452 doi: 10.22075/IJNAA.2017.1725.1452
    [26] A. Pansuwan, W. Sintunavarat, V. Parvaneh, Y. J. Cho, Some fixed point theorems for $(\alpha, \theta, k)$-contractive multi-valued mappings with some applications, Fixed Point Theory A., 2015, 1–11.
    [27] B. E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 2003, 4007–4013. https://doi.org/10.1155/S0161171203208024 doi: 10.1155/S0161171203208024
    [28] S. Shuklaa, D. Gopal, J. Martínez-Morenoc, Fixed points of set-valued F-contractions and its application to non-linear integral equations, Filomat, 31 (2017), 3377–3390. https://doi.org/10.2298/FIL1711377S doi: 10.2298/FIL1711377S
    [29] H. M. Srivastava, A. Ali, A. Hussain, M. Arshad, H. Al-Sulami, A certain class of $\theta _{L}$-type non-linear operatorsand some related fixed point results, J. Nonlinear Var. Anal., 6 (2022), 69–87. https://doi.org/10.23952/jnva.6.2022.1.05 doi: 10.23952/jnva.6.2022.1.05
    [30] M. E. Samei, V. Hedayati, G. K. Ranjbar, The existence of solution for k-dimensional system of Langevin Hadamard-type fractional differential inclusions with 2k different fractional orders, Mediterr. J. Math., 50 (2020), 17–36. https://doi.org/10.30755/NSJOM.06942 doi: 10.30755/NSJOM.06942
    [31] M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. https://doi.org/10.2298/FIL1307259S doi: 10.2298/FIL1307259S
    [32] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory A., 2012 (2012), 94. https://doi.org/doi:10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [33] M. Younis, D. Singh, D. Gopal, A. Goyal, M. S. Rathore, On applications of generalized F-contraction to differential equations, Nonlinear Funct. Anal. Appl., 2019,155–174.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1608) PDF downloads(84) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog