Research article

Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces

  • Received: 15 June 2023 Revised: 14 August 2023 Accepted: 21 August 2023 Published: 05 September 2023
  • MSC : 42B20, 42B25, 42B35

  • The main purpose of this paper is to establish the weighted boundedness result of vector valued bilinear $ \varpi(t) $-type Calderón-Zygmund operators in variable exponents Herz-Morrey spaces, where $ \varpi $ being nondecreasing and $ \varpi\in \rm{Dini}(1) $.

    Citation: Yanqi Yang, Qi Wu. Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces[J]. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310

    Related Papers:

  • The main purpose of this paper is to establish the weighted boundedness result of vector valued bilinear $ \varpi(t) $-type Calderón-Zygmund operators in variable exponents Herz-Morrey spaces, where $ \varpi $ being nondecreasing and $ \varpi\in \rm{Dini}(1) $.



    加载中


    [1] K. Yabuta, Generalizations of Calderón-Zygmund operators, Stud. Math., 82 (1985), 17–31. https://doi.org/10.4064/SM-82-1-17-31 doi: 10.4064/SM-82-1-17-31
    [2] D. Maldonado, V. Naibo, Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl., 15 (2009), 218–261. https://doi.org/10.1007/s00041-008-9029-x doi: 10.1007/s00041-008-9029-x
    [3] G. Lu, P. Zhang, Multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, Nonlinear Anal., 107 (2014), 92–117. https://doi.org/10.1016/j.na.2014.05.005 doi: 10.1016/j.na.2014.05.005
    [4] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^{n})$, Math. Inequal. Appl., 7 (2004), 255–265.
    [5] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
    [6] A. Almeida, P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258 (2010), 1628–1655. https://doi.org/10.1016/j.jfa.2009.09.012 doi: 10.1016/j.jfa.2009.09.012
    [7] M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
    [8] S. Wang, J. Xu, Boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents, Chin. Ann. Math. Ser. B, 42 (2021), 693–720. https://doi.org/10.1007/s11401-021-0286-1 doi: 10.1007/s11401-021-0286-1
    [9] C. Pérez, R. Trujillo-González, Sharp weighted estimates for vector-valued singular integral operators and commutators, Tohoku Math. J., 55 (2003), 109–129. https://doi.org/10.2748/TMJ/1113247449 doi: 10.2748/TMJ/1113247449
    [10] A. Huang, J. Xu, Multilinear singular integral and commutators in variable exponent Lebesgue space, Appl. Math., 25 (2010), 69–77. https://doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
    [11] Y. Sawano, Theory of Besov spaces, Springer Verlag, 2018. https://doi.org/10.1007/978-981-13-0836-9
    [12] D. Cruz-Uribe, J. M. Martell, C. Pérez, Extrapolation from $A_{\infty}$ weights and applications, J. Funct. Anal., 213 (2004), 412–439. https://doi.org/10.1016/j.jfa.2003.09.002 doi: 10.1016/j.jfa.2003.09.002
    [13] D. Cruz-Uribe, L. A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/TRAN/6730 doi: 10.1090/TRAN/6730
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1161) PDF downloads(64) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog