Research article

Bifurcation for a fractional-order Lotka-Volterra predator-Cprey model with delay feedback control

  • Received: 27 July 2020 Accepted: 10 October 2020 Published: 27 October 2020
  • MSC : 34A08, 34A34, 34C23, 34H20

  • This paper addresses the bifurcation control of a fractional-order Lokta-Volterra predator-prey model by using delay feedback control. By employing time delay as a bifurcation parameter, the conditions of bifurcation are gained for controlled systems. Then, it indications that the onset of bifurcation can be postponed as feedback gain decreases. An example numerical results are ultimately exploited to validate the correctness of the the proposed scheme.

    Citation: Zhouhong Li, Wei Zhang, Chengdai Huang, Jianwen Zhou. Bifurcation for a fractional-order Lotka-Volterra predator-Cprey model with delay feedback control[J]. AIMS Mathematics, 2021, 6(1): 675-687. doi: 10.3934/math.2021040

    Related Papers:

  • This paper addresses the bifurcation control of a fractional-order Lokta-Volterra predator-prey model by using delay feedback control. By employing time delay as a bifurcation parameter, the conditions of bifurcation are gained for controlled systems. Then, it indications that the onset of bifurcation can be postponed as feedback gain decreases. An example numerical results are ultimately exploited to validate the correctness of the the proposed scheme.


    加载中


    [1] N. Bairagi, D. Adak, Switching from simple to complex dynamics in a predator-prey-parasite model: An interplay between infection rate and incubation delay, Math. Biosci., 277 (2016), 1-14. doi: 10.1016/j.mbs.2016.03.014
    [2] R. M. Eide, A. L. Krause, N. T. Fadai, R. A. V. Gorder, Predator-prey-subsidy population dynamics on stepping-stone domains, J. Theor. Biol., 451 (2018), 19-34. doi: 10.1016/j.jtbi.2018.04.038
    [3] M. Peng, Z. D. Zhang, X. D. Wang, Hybrid control of Hopf bifurcation in a Lotka-Volterra predator-prey model with two delays, Adv. Differ. Equ., 387 (2017), 1-12.
    [4] Z. Li, D. Q. Jiang, D. O'Regan, T. Hayat, B. Ahmad, Ergodic property of a Lotka-Volterra predator-prey model with white noise higher order perturbation under regime switching, Appl. Math. Comput., 330 (2018), 93-102.
    [5] Z. Z. Ma, F. D. Chen, C. Q. Wu, W. L. Chen, Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference, Appl. Math. Comput., 219 (2013), 7945-7953.
    [6] R. Q. Shi, L. S. Chen, Staged-structured Lotka-Volterra predator-prey models for pest management, Appl. Math. Comput., 203 (2008), 258-265.
    [7] S. X. Pan, Asymptotic spreading in a Lotka-Volterra predator-prey system, J. Math. Anal. Appl., 407 (2013), 230-236. doi: 10.1016/j.jmaa.2013.05.031
    [8] C. J. Xu, Y. S. Wu, L. Lu, Permanence and global attractivity in a discrete Lotka-Volterra predator- prey model with delays, Adv. Differ. Equ., 208 (2014), 1-15.
    [9] Z. L. Luo, Y. P. Lin, Y. X. Dai, Rank one chaos in periodically kicked Lotka-Volterra predator-prey system with time delay, Nonlinear Dynam., 85 (2016), 797-811. doi: 10.1007/s11071-016-2723-3
    [10] J. Xia, Z. X. Yu, R. Yuan, Stability and Hopf bifurcation in a symmetric Lotka-Volterra predator- prey system with delays, Electron. J. Differ. Equ., 2013 (2013), 118-134. doi: 10.1186/1687-1847-2013-118
    [11] L. Men, B. S. Chen, G. Wang, Z. W. Li, W. Liu, Hopf bifurcation and nonlinear state feedback control for a modified Lotka-Volterra differential algebraic predator-prey system, In: Fifth Int. Conference on Intelligent Control and Information Processing, 2015 (2015), 233-238.
    [12] C. J. Xu, M. X. Liao, X. F. He, Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays, Int. J. Appl. Math. Comput. Sci., 21 (2011), 97-107.
    [13] G. M. Mahmoud, Periodic solutions of strongly non-linear Mathieu oscillators, Int. J. NonLinear Mechanics, 32 (1997), 1177-1185. doi: 10.1016/S0020-7462(96)00126-6
    [14] K. W. Chung, C. L. Chan, Z. Xu, G. M. Mahmoud, A perturbation-incremental method for strongly nonlinear autonomous oscillators with many degrees of freedom, Nonlinear Dyn., 28 (2002), 243- 259. doi: 10.1023/A:1015620928121
    [15] X. W. Jiang, X. Y. Chen, T. W. Huang, H. C. Yang, Bifurcation and control for a predator-prey system with two delays, IEEE T. Circuits II, 99 (2020), 1-1.
    [16] X. P. Yan, C. H. Zhang, Hopf bifurcation in a delayed Lokta-Volterra predator-prey system, Nonlinear Anal., 9 (2008), 114-127. doi: 10.1016/j.nonrwa.2006.09.007
    [17] N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135-3145. doi: 10.1103/PhysRevE.62.3135
    [18] F. Wang, Y. Q. Yang, Quasi-synchronization for fractional-order delayed dynamical networks with heterogeneous nodes, Appl. Math. Comput., 339 (2018), 1-14. doi: 10.1016/j.cam.2018.03.008
    [19] R. Chinnathambi, F. A. Rihan, Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response, Nonlinear Dyn., 92 (2018), 1637-1648. doi: 10.1007/s11071-018-4151-z
    [20] J. Alidousti, M. M. Ghahfarokhi, Stability and bifurcation for time delay fractional predator-prey system by incorporating the dispersal of prey, Appl. Math. Model., 72 (2019), 385-402. doi: 10.1016/j.apm.2019.03.029
    [21] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682. doi: 10.1016/j.na.2007.08.042
    [22] A. A. Elsadany, A. E. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator- prey model and its discretization, J. Appl. Math. Comput., 49 (2015), 269-283. doi: 10.1007/s12190-014-0838-6
    [23] M. Javidi, N. Nyamoradi, Dynamic analysis of a fractional order prey-predator interaction with harvesting, Appl. Math. Model., 37 (2015), 8946-8956.
    [24] F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan, E. Ahmed, Fractional-order delayed predator-prey systems with Holling type-Ⅱ functional response, Nonlinear Dyn., 80 (2015), 777- 789. doi: 10.1007/s11071-015-1905-8
    [25] C. D. Huang, X. Y. Song, B. Fang, M. Xiao, J. D. Cao, Modeling, analysis and bifurcation control of a delayed fractional-order predator-prey model, Int. J. Bifurcat. Chaos, 28 (2018), 1850117. doi: 10.1142/S0218127418501171
    [26] C. D. Huang, J. D. Cao, Comparative study on bifurcation control methods in a fractional-order delayed predator-prey system, Sci. China Technol. Sci., 62 (2018), 298-307.
    [27] K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-Ⅲ functional response, Adv. Differ. Equ., 82 (2018), 1-20.
    [28] Z. H. Li, C. D. Huang, Y. Zhang, Comparative analysis on bifurcation of four-neuron fractional ring networks without or with leakage delays, Adv. Differ. Equ., 2019 (2019), 1-22. doi: 10.1186/s13662-018-1939-6
    [29] L. Wu, Z. H. Li, Y. Zhang, B. G. Xie, Complex behavior analysis of a fractional-order land dynamical model with Holling-Ⅱ type land reclamation rate on time delay, Discrete Dyn. Nat. Soc., 2020 (2020), 1-10.
    [30] P. Song, H. Y. Zhao, X. B. Zhang, Dynamic analysis of a fractional order delayed predator-prey system with harvesting, Theor. Biosci., 135 (2016), 1-14. doi: 10.1007/s12064-016-0224-z
    [31] K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos Soliton. Fractal., 103 (2017), 544-554. doi: 10.1016/j.chaos.2017.07.013
    [32] R. Chinnathambi, F. A. Rihan, Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response, Nonlinear Dyn., 92 (2018), 1637-1648. doi: 10.1007/s11071-018-4151-z
    [33] M. Xiao, W. X. Zheng, J. X. Lin, G. P. Jiang, L. D. Zhao, J. D. Cao, Fractional-order PD control at Hopf bifurcations in delayed fractional-order small-world networks, J. Frankl. Inst., 354 (2017), 7643-7667. doi: 10.1016/j.jfranklin.2017.09.009
    [34] C. D. Huang, H. Li, J. D. Cao, A novel strategy of bifurcation control for a delayed fractional predator-prey model, Appl. Math. Comput., 347 (2019), 808-838.
    [35] C. J. Xu, Y. S. Wu, Bifurcation and control of chaos in a chemical system, Appl. Math. Model., 39 (2015), 2295-2310. doi: 10.1016/j.apm.2014.10.030
    [36] D. W. Ding, X. Y. Zhang, J. D. Cao, N. Wang, D. Liang, Bifurcation control of complex networks model via PD controller, Neurocomputing, 175 (2016), 1-9. doi: 10.1016/j.neucom.2015.09.094
    [37] J. N. Luo, M. L. Li, X. Z. Liu, W. H. Tian, S. M. Zhong, K. B. Shi, Stabilization analysis for fuzzy systems with a switched sampled-data control, J. Frankl. Inst., 357 (2020), 39-58. doi: 10.1016/j.jfranklin.2019.09.029
    [38] K. B. Shi, J. Wang, S. M. Zhong, Y. Y. Tang, J. Cheng, Hybrid-driven finite-time H sampling synchronization control for coupling memory complex networks with stochastic cyber attacks, Neurocomputing, 387 (2020), 241-254. doi: 10.1016/j.neucom.2020.01.022
    [39] K. B. Shi, J. Wang, Y. Y. Tang, S. M. Zhong, Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies, Fuzzy Set Syst., 381 (2020), 1-25. doi: 10.1016/j.fss.2018.11.017
    [40] K. B. Shi, J. Wang, S. M. Zhong, Y. Y. Tang, J. Cheng, Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Set Syst., 394 (2020), 40-64. doi: 10.1016/j.fss.2019.09.001
    [41] C. X. Zhu, Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers, Appl. Math. Comput., 216 (2010), 3126-3132.
    [42] C. D. Yang, C. H. Tao, P. Wang, Comparison of feedback control methods for a hyperchaotic lorenz system, Phys. Lett. A, 374 (2010), 729-732. doi: 10.1016/j.physleta.2009.11.064
    [43] G. M. Mahmoud, A. A. Arafa, T. M. Abed-Elhameed, E. E. Mahmoud, Chaos control of integer and fractional orders of chaotic Burke-Shaw system using time delayed feedback control, Chaos Soliton. Fractal., 104 (2017), 680-692. doi: 10.1016/j.chaos.2017.09.023
    [44] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [45] D. Matignon, Stability results for fractional differential equations with applications to control processing, IEEE-SMC Pro., 2 (1996), 963-968.
    [46] S. Bhalekar, D. Varsha, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Int. J. Fract. Calc. Appl., 1 (2011), 1-9.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4044) PDF downloads(234) Cited by(8)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog