Citation: Zhouhong Li, Wei Zhang, Chengdai Huang, Jianwen Zhou. Bifurcation for a fractional-order Lotka-Volterra predator-Cprey model with delay feedback control[J]. AIMS Mathematics, 2021, 6(1): 675-687. doi: 10.3934/math.2021040
[1] | N. Bairagi, D. Adak, Switching from simple to complex dynamics in a predator-prey-parasite model: An interplay between infection rate and incubation delay, Math. Biosci., 277 (2016), 1-14. doi: 10.1016/j.mbs.2016.03.014 |
[2] | R. M. Eide, A. L. Krause, N. T. Fadai, R. A. V. Gorder, Predator-prey-subsidy population dynamics on stepping-stone domains, J. Theor. Biol., 451 (2018), 19-34. doi: 10.1016/j.jtbi.2018.04.038 |
[3] | M. Peng, Z. D. Zhang, X. D. Wang, Hybrid control of Hopf bifurcation in a Lotka-Volterra predator-prey model with two delays, Adv. Differ. Equ., 387 (2017), 1-12. |
[4] | Z. Li, D. Q. Jiang, D. O'Regan, T. Hayat, B. Ahmad, Ergodic property of a Lotka-Volterra predator-prey model with white noise higher order perturbation under regime switching, Appl. Math. Comput., 330 (2018), 93-102. |
[5] | Z. Z. Ma, F. D. Chen, C. Q. Wu, W. L. Chen, Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference, Appl. Math. Comput., 219 (2013), 7945-7953. |
[6] | R. Q. Shi, L. S. Chen, Staged-structured Lotka-Volterra predator-prey models for pest management, Appl. Math. Comput., 203 (2008), 258-265. |
[7] | S. X. Pan, Asymptotic spreading in a Lotka-Volterra predator-prey system, J. Math. Anal. Appl., 407 (2013), 230-236. doi: 10.1016/j.jmaa.2013.05.031 |
[8] | C. J. Xu, Y. S. Wu, L. Lu, Permanence and global attractivity in a discrete Lotka-Volterra predator- prey model with delays, Adv. Differ. Equ., 208 (2014), 1-15. |
[9] | Z. L. Luo, Y. P. Lin, Y. X. Dai, Rank one chaos in periodically kicked Lotka-Volterra predator-prey system with time delay, Nonlinear Dynam., 85 (2016), 797-811. doi: 10.1007/s11071-016-2723-3 |
[10] | J. Xia, Z. X. Yu, R. Yuan, Stability and Hopf bifurcation in a symmetric Lotka-Volterra predator- prey system with delays, Electron. J. Differ. Equ., 2013 (2013), 118-134. doi: 10.1186/1687-1847-2013-118 |
[11] | L. Men, B. S. Chen, G. Wang, Z. W. Li, W. Liu, Hopf bifurcation and nonlinear state feedback control for a modified Lotka-Volterra differential algebraic predator-prey system, In: Fifth Int. Conference on Intelligent Control and Information Processing, 2015 (2015), 233-238. |
[12] | C. J. Xu, M. X. Liao, X. F. He, Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays, Int. J. Appl. Math. Comput. Sci., 21 (2011), 97-107. |
[13] | G. M. Mahmoud, Periodic solutions of strongly non-linear Mathieu oscillators, Int. J. NonLinear Mechanics, 32 (1997), 1177-1185. doi: 10.1016/S0020-7462(96)00126-6 |
[14] | K. W. Chung, C. L. Chan, Z. Xu, G. M. Mahmoud, A perturbation-incremental method for strongly nonlinear autonomous oscillators with many degrees of freedom, Nonlinear Dyn., 28 (2002), 243- 259. doi: 10.1023/A:1015620928121 |
[15] | X. W. Jiang, X. Y. Chen, T. W. Huang, H. C. Yang, Bifurcation and control for a predator-prey system with two delays, IEEE T. Circuits II, 99 (2020), 1-1. |
[16] | X. P. Yan, C. H. Zhang, Hopf bifurcation in a delayed Lokta-Volterra predator-prey system, Nonlinear Anal., 9 (2008), 114-127. doi: 10.1016/j.nonrwa.2006.09.007 |
[17] | N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135-3145. doi: 10.1103/PhysRevE.62.3135 |
[18] | F. Wang, Y. Q. Yang, Quasi-synchronization for fractional-order delayed dynamical networks with heterogeneous nodes, Appl. Math. Comput., 339 (2018), 1-14. doi: 10.1016/j.cam.2018.03.008 |
[19] | R. Chinnathambi, F. A. Rihan, Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response, Nonlinear Dyn., 92 (2018), 1637-1648. doi: 10.1007/s11071-018-4151-z |
[20] | J. Alidousti, M. M. Ghahfarokhi, Stability and bifurcation for time delay fractional predator-prey system by incorporating the dispersal of prey, Appl. Math. Model., 72 (2019), 385-402. doi: 10.1016/j.apm.2019.03.029 |
[21] | V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682. doi: 10.1016/j.na.2007.08.042 |
[22] | A. A. Elsadany, A. E. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator- prey model and its discretization, J. Appl. Math. Comput., 49 (2015), 269-283. doi: 10.1007/s12190-014-0838-6 |
[23] | M. Javidi, N. Nyamoradi, Dynamic analysis of a fractional order prey-predator interaction with harvesting, Appl. Math. Model., 37 (2015), 8946-8956. |
[24] | F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan, E. Ahmed, Fractional-order delayed predator-prey systems with Holling type-Ⅱ functional response, Nonlinear Dyn., 80 (2015), 777- 789. doi: 10.1007/s11071-015-1905-8 |
[25] | C. D. Huang, X. Y. Song, B. Fang, M. Xiao, J. D. Cao, Modeling, analysis and bifurcation control of a delayed fractional-order predator-prey model, Int. J. Bifurcat. Chaos, 28 (2018), 1850117. doi: 10.1142/S0218127418501171 |
[26] | C. D. Huang, J. D. Cao, Comparative study on bifurcation control methods in a fractional-order delayed predator-prey system, Sci. China Technol. Sci., 62 (2018), 298-307. |
[27] | K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-Ⅲ functional response, Adv. Differ. Equ., 82 (2018), 1-20. |
[28] | Z. H. Li, C. D. Huang, Y. Zhang, Comparative analysis on bifurcation of four-neuron fractional ring networks without or with leakage delays, Adv. Differ. Equ., 2019 (2019), 1-22. doi: 10.1186/s13662-018-1939-6 |
[29] | L. Wu, Z. H. Li, Y. Zhang, B. G. Xie, Complex behavior analysis of a fractional-order land dynamical model with Holling-Ⅱ type land reclamation rate on time delay, Discrete Dyn. Nat. Soc., 2020 (2020), 1-10. |
[30] | P. Song, H. Y. Zhao, X. B. Zhang, Dynamic analysis of a fractional order delayed predator-prey system with harvesting, Theor. Biosci., 135 (2016), 1-14. doi: 10.1007/s12064-016-0224-z |
[31] | K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos Soliton. Fractal., 103 (2017), 544-554. doi: 10.1016/j.chaos.2017.07.013 |
[32] | R. Chinnathambi, F. A. Rihan, Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response, Nonlinear Dyn., 92 (2018), 1637-1648. doi: 10.1007/s11071-018-4151-z |
[33] | M. Xiao, W. X. Zheng, J. X. Lin, G. P. Jiang, L. D. Zhao, J. D. Cao, Fractional-order PD control at Hopf bifurcations in delayed fractional-order small-world networks, J. Frankl. Inst., 354 (2017), 7643-7667. doi: 10.1016/j.jfranklin.2017.09.009 |
[34] | C. D. Huang, H. Li, J. D. Cao, A novel strategy of bifurcation control for a delayed fractional predator-prey model, Appl. Math. Comput., 347 (2019), 808-838. |
[35] | C. J. Xu, Y. S. Wu, Bifurcation and control of chaos in a chemical system, Appl. Math. Model., 39 (2015), 2295-2310. doi: 10.1016/j.apm.2014.10.030 |
[36] | D. W. Ding, X. Y. Zhang, J. D. Cao, N. Wang, D. Liang, Bifurcation control of complex networks model via PD controller, Neurocomputing, 175 (2016), 1-9. doi: 10.1016/j.neucom.2015.09.094 |
[37] | J. N. Luo, M. L. Li, X. Z. Liu, W. H. Tian, S. M. Zhong, K. B. Shi, Stabilization analysis for fuzzy systems with a switched sampled-data control, J. Frankl. Inst., 357 (2020), 39-58. doi: 10.1016/j.jfranklin.2019.09.029 |
[38] | K. B. Shi, J. Wang, S. M. Zhong, Y. Y. Tang, J. Cheng, Hybrid-driven finite-time H∞ sampling synchronization control for coupling memory complex networks with stochastic cyber attacks, Neurocomputing, 387 (2020), 241-254. doi: 10.1016/j.neucom.2020.01.022 |
[39] | K. B. Shi, J. Wang, Y. Y. Tang, S. M. Zhong, Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies, Fuzzy Set Syst., 381 (2020), 1-25. doi: 10.1016/j.fss.2018.11.017 |
[40] | K. B. Shi, J. Wang, S. M. Zhong, Y. Y. Tang, J. Cheng, Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Set Syst., 394 (2020), 40-64. doi: 10.1016/j.fss.2019.09.001 |
[41] | C. X. Zhu, Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers, Appl. Math. Comput., 216 (2010), 3126-3132. |
[42] | C. D. Yang, C. H. Tao, P. Wang, Comparison of feedback control methods for a hyperchaotic lorenz system, Phys. Lett. A, 374 (2010), 729-732. doi: 10.1016/j.physleta.2009.11.064 |
[43] | G. M. Mahmoud, A. A. Arafa, T. M. Abed-Elhameed, E. E. Mahmoud, Chaos control of integer and fractional orders of chaotic Burke-Shaw system using time delayed feedback control, Chaos Soliton. Fractal., 104 (2017), 680-692. doi: 10.1016/j.chaos.2017.09.023 |
[44] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[45] | D. Matignon, Stability results for fractional differential equations with applications to control processing, IEEE-SMC Pro., 2 (1996), 963-968. |
[46] | S. Bhalekar, D. Varsha, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Int. J. Fract. Calc. Appl., 1 (2011), 1-9. |