In this paper, we established a $ T1 $ criterion for the boundedness of Laguerre-Calderón-Zygmund operators on BMO$ _{L_{\alpha}}(0, \infty) $ associated with Laguerre operators $ L_\alpha(\alpha > -\frac{1}{2}) $. As applications, we proved the boundedness on BMO$ _{L_{\alpha}}(0, \infty) $ of variation operators for semigroups related to the Laguerre operator $ L_\alpha $.
Citation: Fan Chen, Houwei Du, Jinglan Jia, Ping Li, Zhu Wen. The boundedness on $ BMO_{L_\alpha} $ space of variation operators for semigroups related to the Laguerre operator[J]. AIMS Mathematics, 2024, 9(8): 22486-22499. doi: 10.3934/math.20241093
In this paper, we established a $ T1 $ criterion for the boundedness of Laguerre-Calderón-Zygmund operators on BMO$ _{L_{\alpha}}(0, \infty) $ associated with Laguerre operators $ L_\alpha(\alpha > -\frac{1}{2}) $. As applications, we proved the boundedness on BMO$ _{L_{\alpha}}(0, \infty) $ of variation operators for semigroups related to the Laguerre operator $ L_\alpha $.
[1] | G. David, J. L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. Math., 120 (1984), 371–397. |
[2] | T. Hytönen, A operator-valued $Tb$ theorem, J. Funct. Anal., 234 (2006), 420–463. https://doi.org/10.1016/j.jfa.2005.11.001 doi: 10.1016/j.jfa.2005.11.001 |
[3] | T. Hytönen, L. Weis, A $T1$ theorem for integral transformations with operator-valued kernel, J. Reine Angew. Math., 599 (2006), 155–200. https://doi.org/10.1515/CRELLE.2006.081 doi: 10.1515/CRELLE.2006.081 |
[4] | L. Grafakos, Classical and modern fourier analysis, Pearson Education Inc., 2004. |
[5] | Y. S. Han, Y. C. Han, J. Li, Criterion of the boundedness of singular integals on spaces of homogeneous type, J. Funct. Anal., 271 (2016), 3423–3464. https://doi.org/10.1016/j.jfa.2016.09.006 doi: 10.1016/j.jfa.2016.09.006 |
[6] | J. J. Betancor, R. Crescimbeni, J. C. Fariña, P. R. Stinga, J. L. Torrea, A $T1$ criterion for Hermite-Calderón-Zygmund operators on the $BMO_{H}(\mathbb{R}^n)$ spaces and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 157–187. |
[7] | T. Ma, P. R. Stinga, J. L. Torrea, Z. Chao, Regularity estimates in Hölder spaces for Schrödinger operators via a $T1$ theorem, Ann. Mat. Pur. Appl., 193 (2014), 561–589. |
[8] | T. A. Bui, J. Li, F. K. Ly, $T1$ criteria for generalised Calderón-Zygmund type operators on Hardy and $BMO$ spaces associated to Schrödinger operators and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 203–239. |
[9] | G. Szegö, Orthogonal polynomials, Providence, RI: American Mathematical Society, 1975. |
[10] | K. Stempak, J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal., 202 (2003), 443–472. https://doi.org/10.1016/S0022-1236(03)00083-1 doi: 10.1016/S0022-1236(03)00083-1 |
[11] | T. A. Gillespie, J. L. Torrea, Dimension free estimates for the oscillation of Riesz transforms, Israel J. Math., 141 (2004), 125–144. https://doi.org/10.1007/BF02772215 doi: 10.1007/BF02772215 |
[12] | R. Crescimbeni, R. A. Macías, T. Menárguez, J. L. Torrea, B. Viviani, The $\rho$-variation as an operator between maximal operators and singular integrals, J. Evol. Equ., 9 (2009), 81–102. https://doi.org/10.1007/s00028-009-0003-0 doi: 10.1007/s00028-009-0003-0 |
[13] | R. Crescimbeni, F. J. Martín-Reyes, A. de la Torre, J. L. Torrea, The $\rho$-variation of the Hermitian Riesz transform, Acta Math. Sin. English Ser., 26 (2010), 1827–1838. https://doi.org/10.1007/s10114-010-9122-3 doi: 10.1007/s10114-010-9122-3 |
[14] | P. Li, C. Ma, Y. Hou, The Oscillation of the Poisson semigroup associated to parabolic Hermite operator, Acta Math. Sci., 38 (2018), 1214–1226. https://doi.org/10.1016/S0252-9602(18)30809-9 doi: 10.1016/S0252-9602(18)30809-9 |
[15] | Y. Wen, X. Hou, The boundedness of variation associated with the commutators of approximate identities, J. Inequal. Appl., 2021 (2021), 140. https://doi.org/10.1186/s13660-021-02679-8 doi: 10.1186/s13660-021-02679-8 |
[16] | Z. Fu, L. Grafakos, Y. Lin, Y. Wu, S. Yang, Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 66 (2023), 211–235. https://doi.org/10.1016/j.acha.2023.05.003 doi: 10.1016/j.acha.2023.05.003 |
[17] | Z. Fu, Y. Lin, D. Yang, S. Yang, Fractional fourier transforms meet Riesz potentials and image processing, SIAM J. Imaging Sci., 17 (2024), 476–500. https://doi.org/10.1137/23M1555442 doi: 10.1137/23M1555442 |
[18] | G. Li, J. Li, The boundedness of the bilinear oscillatory integral along a parabola, Pro. Edinb. Math. Soc., 66 (2023), 54–88. https://doi.org/10.1017/S0013091523000032 doi: 10.1017/S0013091523000032 |
[19] | F. Liu, Z. Fu, Y. Wu, Variation operators for commutators of rough singular integrals on weighted morrey spaces, J. Appl. Anal. Comput., 14 (2024), 263–282. https://doi.org/10.11948/20230210 doi: 10.11948/20230210 |
[20] | Y. Ma, M. Chen, C. Yan, P. Li, The oscillation of the Poisson semigroup associated with parabolic Bessel operator, J. Cent. China Norm. Univ. Nat. Sci., 57 (2023), 335–340. |
[21] | Y. Xiao, P. Li, The oscillation of the semigroups associated with discrete Laplacian, J. Cent. China Norm. Univ. Nat. Sci., 56 (2022), 922–927. |
[22] | J. J. Betancor, J. C. Fariña, L. Rodŕguez-Mesa, A. Sanabria, J. L. Torrea, Transference between Laguerre and Hermite settings, J. Funct. Anal., 254 (2008), 826–850. https://doi.org/10.1016/j.jfa.2007.10.014 doi: 10.1016/j.jfa.2007.10.014 |
[23] | J. Dziubański, Hardy spaces for Laguerre expansions, Constr. Approx., 27 (2008), 269–287. https://doi.org/10.1007/s00365-006-0667-y doi: 10.1007/s00365-006-0667-y |
[24] | J. J. Betancor, J. Dziubański, G. Garrigós, Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions, Tôhoku Math. J., 62 (2010), 215–231. https://doi.org/10.2748/tmj/1277298646 |
[25] | J. J. Betancor, S. M. Molina, L. Rodríguez-Mesa, Area Littlewood-paley functions associated with Hermite and Laguerre operators, Potential Anal., 34 (2011), 345–369. https://doi.org/10.1007/s11118-010-9197-6 doi: 10.1007/s11118-010-9197-6 |
[26] | J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., 249 (2005), 329–356. https://doi.org/10.1007/s00209-004-0701-9 doi: 10.1007/s00209-004-0701-9 |
[27] | L. Cha, H. Liu, BMO space for Laguerre expansions, Taiwanse J. Math., 16 (2012), 2153–2186. https://doi.org/10.11650/twjm/1500406845 doi: 10.11650/twjm/1500406845 |
[28] | Z. Fu, S. Lu, S. Shi, Two characterizations of central BMO space via the commutators of Hardy operators, Forum Math., 33 (2021), 505–529. https://doi.org/10.1515/forum-2020-0243 doi: 10.1515/forum-2020-0243 |
[29] | S. Shi, S. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl., 429 (2015), 713–732. https://doi.org/10.1016/j.jmaa.2015.03.083 doi: 10.1016/j.jmaa.2015.03.083 |
[30] | M. Yang, Y. Zi, Z. Fu, An application of BMO-type space to Chemotaxis-fluid equations, Acta Math. Sin. English Ser., 39 (2023), 1650–1666. https://doi.org/10.1007/s10114-023-1514-2 doi: 10.1007/s10114-023-1514-2 |
[31] | G. Zhang, Q. Li, Q. Wu, The weighted Lp and BMO estimates for fractional Hausdorff operators on the Heisenberg group, J. Funct. Spaces, 2020 (2020), 5247420. https://doi.org/10.1155/2020/5247420 doi: 10.1155/2020/5247420 |
[32] | L. Zhang, S. Shi, A characterization of central BMO space via the commutator of fractional Hardy operator, J. Funct. Spaces, 2020 (2020), 3543165. https://doi.org/10.1155/2020/3543165 doi: 10.1155/2020/3543165 |