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1. Introduction

It is well-known that the T1 theorem plays a critical role in the analysis of L2 boundedness of
Calderón-Zygmund singular integral operators (see [1–3] and [4] (p. 590)). There are analogue T1
criterions of Calderón-Zygmund singular integral operators T for the endpoint boundedness, to be
precise, T is bounded on H1(Rn) if and only if T ∗1=0, and bounded on BMO(Rn) if and only if T1=0
(see e.g., [5]).

Betancor et al. [6] established a T1 criterion for Hermite-Calderón-Zygmund operators on
BMOH(Rn) related to Hermite operator H = −∆ + |x|2. They then utilized this T1 criterion to
demonstrate the boundedness on BMOH(Rn) of several singular integral operators associated with H,
including Riesz transforms, maximal operators, Littlewood-Paley g-functions, and variation operators.
Ma et al. [7] established an analogous T1 criterion for γ-Schrödinger-Calderón-Zygmund operators on
Campanato space BMOαL(Rn) associated with the Schrödinger operator L = −∆ + V with nonnegative
potential V satisfying the reverse Hölder inequality. As applications, they obtained regularity estimates
for certain harmonic operators associated with L, including maximal operators, square functions,
Laplace transform type multipliers, negative powers L−

γ
2 , and Riesz transforms. More recently, Bui
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et al. [8] provided necessary and sufficient conditions in terms of T1 criteria for a generalize Calderón-
Zygmund type operators to be bounded on Hp

L(Rn) and BMOL(Rn) with respect to the Schrödinger
operator L = −∆ + V with nonnegative potential V that satisfies the reverse Hölder inequality. Their
applications included proving the boundedness for certain singular operators associated with L, and
their results not only recovered exiting results in [7], but also introduced new results.

Assume that n ∈ N, α > −1, the Laguerre function of Hermite type φα on (0,∞) is defined as

φαn (y) =
( Γ(n + 1)
Γn + 1 + α

)1/2
e−y2/2yαLαn (y2)(2y)1/2, y ∈ (0,∞),

where Lαn (x) represents the Laguerre polynomial of degree n and order α, see [9]. It is well-known
that for every α > −1 the system {φαn }

∞
n=0 forms an orthonormal basis of L2(0,∞). Furthermore, these

functions are eigenfunctions of the Laguerre differential operator

Lα =
1
2

(
−

d2

dy2 + y2 +
α2 − 1/4

y2

)
satisfying Lαφαn = (2n+α+1)φαn , and Lα can be extended to a positive self-adjoint operator on L2(0,∞)
by giving a suitable domain of definition, see [10]. Let α > −1/2, the auxiliary function ρLα related to
Laguerre operator Lα is defined as

ρLα(x) =
1
8

min
(
x, 1/x

)
, x > 0. (1.1)

Our aim of this paper is to study the boundedness of variation operators for semigroups related
to Laguerre operator Lα(α > −1/2) on BMOLα(0,∞). Inspired by [6], we first establish a simple
T1 criterion of Laguerre-Calderón operators to be bounded on BMOLα(0,∞) related to the Laguerre
operator, and then use this T1 criterion to obtain the boundedness of this variation operator on
BMOLα(0,∞).

We now introduce the following Laguerre-Calderón-Zygmund operators associated with the
Laguerre operator Lα for α > −1/2.

Definition 1.1. Let T be a bounded linear opterator on L2(0,∞) such that

T f (x) =
∫ ∞

0
K(x, y) f (y)dy, f ∈ L2

c(0,∞) and a.e. x < supp( f ).

We say that T is a Laguerre-Calderón-Zygmund operator if

(i) |K(x, y)| ≤ C
|x−y|e

−c|x−y|2 , for all x, y ∈ (0,∞) and x , y,

(ii) |K(x, y) − K(x, z)| + |K(y, x) − K(z, x)| ≤ C |y−z|
|x−y|2 , when |x − y| > 2|y − z|.

Obviously, Laplace operator L = −∆ and Hermite operator H = −∆ + |x|2 satisfy (i) (ii) above. For
convenience, we also write as T ∈ LCZO if T is a Laguerre-Calderón-Zygmund operator. Note that
each Laguerre-Calderón-Zygmund operator is also a classical Calderón-Zygmund operator, see [4].

Our first main result is the following T1 type theorem for Laguerre-Calderón-Zygmund operator T
above to be bounded on BMOLα(0,∞) associated with Laguerre operator Lα, and the precise definition
and properties of BMOLα(0,∞), we refer to Section 2.
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Theorem 1.2. Let T be a Laguerre-Calderón-Zygmund operator. Then T is a bounded operator on
BMOLα(0,∞) if and only if there exists constant C > 0 such that

(i) 1
|B(x,ρLα (x))|

∫
B(x,ρLα (x))

|T1(y)|dy ≤ C, x ∈ (0,∞);

(ii)
(
1 + log

(ρLα (x)
r

)) 1
|B(x,r)|

∫
B(x,r)
|T1(y) − (T1)B(x,r)|dy ≤ C, x ∈ (0,∞) and 0 < r ≤ ρLα(x), where ρLα

defined in (1.1).

Here (T1)B(x,r) =
1

|B(x,r)|

∫
B(x,r)

T1(y)dy.

Remark 1.3. Some further comments on Theorem 1.2:

(i) Theorem 1.2 also holds for vector valued setting, also see Remark 1.1 in [6].

(ii) Suppose that T1 is a bounded function in (0,∞). Then T1 satisfies the first condition of
Theorem 1.2. The second condition is fulfilled whenever there exists 0 < α ≤ 1 such that
|T1(x) − T1(y)| ≤ C|x − y|α for x, y ∈ (0,∞). For example, if ∇T1 ∈ L∞(0,∞), then condition (ii)
holds.

As applications, we will use Theorem 1.2 to prove the boundedness on BMOLα(0,∞) of several
variation operators for the semigroups and Riesz transforms related to Laguerre operator Lα.

We now turn to variation operators. Let (X,F , µ) be a measure space, {Tt}t>0 be an uniparametric
family of bounded operators in Lp(X) for 1 ≤ p < ∞, and limt→0+ Tt f exists for a.e. x ∈ X. Over the
past few years, many papers have focused on researching the speed of convergence of the limit above
in terms of the boundedness properties of ρ-variation operatorsVρ(Tt)(ρ > 2) defined as

Vρ(Tt)( f )(x) = sup
t j↘0

( ∞∑
j=1

|Tt j f (x) − Tt j+1 f (x)|ρ
) 1
ρ

, (1.2)

where the supremum is taken over all the sequences of real numbers {t j} j∈N that decrease to zero.
Gillespie and Torrea [11] studied the dimension free estimates of the oscillation for Riesz transforms.
The Lp-theory of the variation operators related to the heat semigroup {WH

t }t>0 and Poisson semigroup
{PH

t }t>0 generated by Hermite operator H = −∆ + |x|2, and the truncated integral operators of the
Herimte-Riesz transform were studied in [12, 13]. Betancor et al. [6] studied the boundedness on
BMOH(Rn) for the variation operators associated to the heat and Poisson semigroups generated by
Hermite operator, and the case of truncated integral operators for Hermite-Riesz transform was also
studied. Ping Li et al. [14] studied the variation operator associated with parabolic Hermite operator.
They obtained the Lp boundedness of this variation operator, and the boundedness of the endpoint
case is also considered. Y. Wen and X. Hou [15] studied the boundedness of variation related to
commutators. For more papers about Riesz transform and variation operator, see [16–19]. Y. Ma et al.
studied the oscillation of the Poisson semigroup associated with the parabolic Bessel operator, and
they obtained the Lp boundedness of this oscillation operator, see [20]. Yali Xiao and Ping Li [21]
studied the oscillation of the semigroups associated with discrete Laplacian, and they obtained the
ℓp-boundedness of this oscillation operator, the endpoint case was also considered.

Here, we will consider the boundedness on BMOLα(0,∞) for variation operators related to the heat
semigroup {WLα

t }t>0 and Poisson semigroup {PLα
t }t>0 generated by the Laguerre operator Lα. We have

the following theorem.
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Theorem 1.4. Let ρ > 2. Denote by {Tt}t>0 any of the uniparametric families of operators {WLα
t }t>0 or

{PLα
t }t>0. Then the variation operatorsVρ(Tt) are bounded from BMOLα(0,∞) into itself.

Betancor et al. [22] studied the transference between Laguerre and Hermite settings and obtained
some new properties of the Laguerre operators. Dziubański [23] studied the Hardy space H1

Lα(0,∞)
related to the Laguerre operator Lα for α > −1/2, and the author utilized the maximal function related
to the heat-diffusion semigroup generated by Lα and atomic decompositions to characterize this Hardy
space. In the sequel, Betancor et al. [24] characterized Hardy space associated with certain Laguerre
expansions using the Laguerre-Riesz transform. Betancor et al. [25] studied the Lp-boundedness of
the area Littlewood-Paley g-functions associated with Hermite and Laguerre operators. Dziubański
et al. [26] studied BMO spaces related to Schrödinger operators with potentials satisfying a reverse
Hölder inequality. Cha and Liu [27] studied BMOLα(0,∞) related to Lα for α > −1/2, which is
identified as the dual space of H1

Lα(0,∞) associated with Lα. They characterized the BMOLα(0,∞)
by Carleson measures related to appropriate square functions, and obtained the boundedness on
BMOLα(0,∞) of fractional integral operator and the Riesz transform related to Lα. For more references
about BMO space, see [28–32].

The outline of this paper is as follows. In Section 2, we mostly introduce some definitions and
lemmas needed in the process of proof. In Section 3, we prove Theorem 1.2 by combining the
properties of T1. In Section 4, we are devoted to establishing the boundedness of variational operators
on BMOLα(0,∞), that is, we give the proof of Theorem 1.4.

Throughout this paper, C and c always denote suitable positive constants, though they are not
necessarily the same in each occurrence. We will repeatedly apply the inequality tαe−βt ≤ C, α ≥
0, β > 0.

2. Preliminaries

In this section, we first introduce the definition of BMOLα(0,∞) related to the Laguerre operator Lα
for α > −1/2, and then give some properties that are used frequently later, see e.g., [27].

Let α > −1
2 , Bs(y) be any ball in (0,∞) with the center y and the radius s. A locally integrable

function f on (0,∞) belongs to BMOLα(0,∞) if there exists C > 0 independent of s and y such that

(i) 1
|Bs(y)|

∫
Bs(y)
| f (x) − fBs(y)|dx ≤ C, for s < ρLα(y);

(ii) 1
|Bs(y)|

∫
Bs(y)
| f (x)|dx ≤ C, for s ≥ ρLα(y),

where fBs(y) =
1

|Bs(y)|

∫
Bs(y)

f (x)dx and the critical radii ρLα defined in (1.1). Let ∥ f ∥BMOLα
denote the

smallest C in the two inequalities above.

Lemma 2.1. ( [27, Lemma 1]) Suppose that x0 = 1, x j = x j+1+ρLα(x j−1) for j > 1, and x j = x j+1−ρLα(x j+1)

for j < 1. Let B = {Bk}
∞
k=−∞, where Bk = {x ∈ (0,∞) : |x − xk| < ρLα(xk)}. Then we have

(i) ∪∞k=−∞Bk = (0,∞);

(ii) For every k ∈ Z, Bk ∩ B j = ∅ provided that j < {k − 1, k, k + 1};

(iii) For any y0 ∈ (0,∞), at most three balls in B have nonempty intersection with B(y0, ρLα(y0)).
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It is not hard to check that for every BR(x) ⊆ (0,∞) with R > ρLα(y0), there exists C > 0 such that

|BR(x)| ≤
∑

Bk∈B,Bk∩BR(x),∅

|Bk| ≤ C|BR(x)|.

Lemma 2.2. ( [26], p.341) Let α > −1
2 . An operator V defined on BMOLα(0,∞) is bounded from

BMOLα(0,∞) into itself if there exists C > 0 such that for every f ∈ BMOLα and k ∈ N,

(i) 1
|Bk |

∫
Bk
|V f (x)|dx ≤ C∥ f ∥BMOLα

;

(ii) ∥V f ∥BMOLα
≤ C∥ f ∥BMOLα

.

Here ∥ f ∥BMOLα
= supBk

1
|B∗k |

∫
B∗k
| f (x)− fB∗k

|dy. For a ball B, B∗ denotes the ball with the same center than
B and twice radius.

3. Proof of Theorem 1.2

In this section, we are devoting to proving Theorem 1.2. Before proving Theorem 1.2 we first
introduce the definition of T f for f ∈ BMOLα(0,∞).
Definition of T f for f ∈BMOLα(0,∞). Assume that f ∈ L2(0,∞). For every R > 0, let BR = B(0,R),
then we can write

T f = T ( fχBR) + T ( fχBc
R
) = T ( fχBR) + lim

n→∞
T ( fχBc

R∩Bn), (3.1)

where the limit is understood in L2(0,∞). The identity (3.1) suggests to define the operator T on
MBOLα(0,∞) as follows. Suppose that f ∈BMOLα(0,∞) and R > 1. For every x ∈ BR, by using the
condition (i) in Definition 1.1, it follows that∫

Bc
R

|K(x, y)|| f (y)|dy ≤ C
∞∑
j=1

∫
2 jR<|y|<2 j+1R

e−c|x−y|2

|x − y|
| f (y)|dy

≤ C
∞∑
j=1

1
(2 jR)2

∫
2 jR<|y|<2 j+1R

| f (y)|dy

≤ C
∞∑
j=1

1
(2 jR)2

∫
|y|<2 j+1R

| f (y)|dy

≤
C
R
∥ f ∥BMOLα

.

Moreover, if R < r, it holds that

T ( fχBr ) − T ( fχBR) = T ( fχBr\BR)(x) =
∫

Br\BR

K(x, y) f (y)dy

=

∫
BRc

K(x, y) f (y)dy −
∫

Bc
r

K(x, y) f (y)dy, a.e. x ∈ BR.

For R > 1, we define

T̃ f = T ( fχBR) +
∫

Bc
R

K(x, y) f (y)dy, a.e. x ∈ BR. (3.2)

AIMS Mathematics Volume 9, Issue 8, 22486–22499.
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Note that the definition of T̃ f in (3.2) is consistent in the choice of R > 1 in the sense that if r > R > 1
then the definition using Br coincides almost everywhere in BR with the one just given.

In order to prove our main conclusion, we derive an expression of T̃ f . We write for B = B(x0, r0),

f = ( f − fB)χB∗ + ( f − fB)χ(B∗)c + fB =: f1 + f2 + f3. (3.3)

Choosing R > 0 such that B∗ ⊂ BR, it follows from (3.3) that

T̃ f (x) =T ( fχBR)(x) +
∫

Bc
R

K(x, y) f (y)dy

=T (( f − fB)χB∗)(x) + T (( f − fB)χBR−B∗)(x) + fBT (χBR)(x)

+

∫
Bc

R

K(x, y)( f (y) − fB)dy + fB

∫
Bc

R

K(x, y)dy

=T
(
( f − fB)χB∗

)
(x) +

∫
(B∗)c

K(x, y)
(
f (y) − fB

)
dy + fBT̃1(x)

= : I1 + I2 + I3, a.e. x ∈ B∗.

(3.4)

Proof of Theorem 1.2. We prove that conditions (i) and (ii) of Theorem 1.2 can deduce that T is a
bounded operator on BMOLα(0,∞).

We first compute the first term I1. Notice that T is bounded on L2(0,∞), thanks to Hölder’s
inequality and John-Nirenberg inequality we have

1
|Bk|

∫
Bk

I1dx ≤ C
( 1
|Bk|

∫
Bk

|T (( f − fB)χB∗k
)(x)|2dx

) 1
2

≤ C
( 1
|Bk|

∫
B∗k

|( f (x) − f (Bk))|
2dx
) 1

2
≤ C∥ f ∥BMOLα

.

For the second term I2. It holds that

|I2| ≤

∫
(B∗k)c
|K(x, y)|| f (y) − fBk |dy

≤

∞∑
j=1

∫
2 jrk<|y|<2 j+1rk

e−|x−y|2

|x − y|
| f (y) − fBk |dy

≤

∞∑
j=1

∫
|y|<2 j+1rk

1
|x − y|2

| f (y) − fBk |dy

≤
1
r
∥ f ∥BMOLα

.

Hence, we obtain that
1
|Bk|

∫
Bk

|I2|dx ≤ ∥ f ∥BMOLα
. (3.5)

Finally, according to condition (i) of Theorem 1.2 and Corollary 5 in [27], then it follows that

1
|Bk|

∫
Bk

|I3|dx =
1
|Bk|

∫
Bk

| fBk T̃1(x)|dx

= | fBk |
1
|Bk|

∫
Bk

|T̃1(x)|dx ≤ C∥ f ∥BMOLα
.

(3.6)

AIMS Mathematics Volume 9, Issue 8, 22486–22499.



22492

Combining with all computations above, it immediately obtain that T̃ satisfies the condition (i) of
Lemma 2.2 that does not depent on K.

Next we prove that T̃ satisfies the condition (ii) of Lemma 2.2. Let B = B(x0, r0) ⊆ B∗k where
x0 ∈ (0,∞) and r0 > 0. We divide into r0 > ρLα(x0) and r0 ≤ ρLα(x0) two cases to show our conclusion.

If r0 > ρLα(x0). Notice that ρLα(x0) ∼ ρLα(xk) ∼ r0. Hence proceeding as above we obtain that

1
|B|

∫
B
|T̃ f (x) − (T̃ f )B|dx ≤

2
|B|

∫
B
|T̃ f (x)|dx ≤ C∥ f ∥BMOLα

.

By the definition of T , it follows that

T1(x) =
∫ ∞

0
K(x, y)dy = T (χB∗∗k

)(x) +
∫

(B∗∗k )c
K(x, y)dy, x ∈ B∗k.

Applying condition (i) of Theorem 1.2 and Hölder’ s inequality, it follows that

1
|B|

∫
B
|T1(x)|dx ≤

1
|Bk|

∫
Bk

|T1(x)|dx +
1
|B∗k|

∫
B∗k\Bk

|T1(x)|dx

≤ C +
( 1
|B∗k|

∫
B∗k

|T (χB∗∗k
)(x)|2dx

) 1
2
+

1
|B∗k|

∫
B∗k\Bk

∫
(B∗∗k )c
|K(x, y)|dydx

≤ C +C∥T (χB∗∗k
)∥L2 +

1
|B∗k|

∫
(B∗∗k )c

∫
B∗k\Bk

e−|x−y|2

|x − y|
dxdy ≤ C.

If r0 ≤ ρLα(x0). By using (3.3) and (3.4) we have

1
|B|

∫
B
|T̃ f (x) − (T̃ f )B|dx ≤

1
|B|

∫
B

1
|B|

∫
B
|T f1(x) − T f1(z)|dzdx

+
1
|B|

∫
B

1
|B|

∫
B

∣∣∣∣ ∫
(B∗)c

(K(x, y) − K(z, y)) f2(y)dy
∣∣∣∣dzdx

+
1
|B|

∫
B
|T̃ f3(x) − (T̃ f3)B|dx

=:J1 + J2 + J3, x, z ∈ B.

For the first term J1, noting that T is bounded on L2(0,∞), applying Hölder’ s inequality we have

J1 ≤
2
|B|

∫
B
|T f1(x)|dx ≤ C

( 1
|B|

∫
B∗
| f (x) − fB|

2dx
) 1

2

≤ C∥ f ∥BMOLα
.

For the second term J2, by using the same argument with J1, it holds that

J2 ≤ C
1
|B|

∫
B

1
|B|

∫
B
∥ f ∥BMOLα

dzdx ≤ C∥ f ∥BMOLα
.

Now we estimate J3. Thanks to Corollary 5 in [27], it follows that

J3 ≤
| fB|

|B|

∫
B
|T̃1(x) − (T̃1)B|dx

≤ C∥ f ∥BMOLα

(
1 + log

ρLα(x)

r

) 1
|B|

∫
B
|T̃1(x) − (T̃1)B|dx

≤ C∥ f ∥BMOLα
.
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Hence, we obtain that for all B ∈ B∗k,

1
|B|

∫
B
|T̃ f (x) − (T̃ f )B|dx ≤ C∥ f ∥BMOLα

.

Hence, T̃ satisfies the condition (ii) of Lemma 2.2. So by Lemma 2.2 we immediately get that T is
bounded operator form BMOLα into itself.

Now, we prove the necessity of the Theorem 1.2. Assume that T is bounded from BMOLα into itself.
Since the function f (x) = 1, x ∈ (0,∞), belongs to BMOLα , and T̃1 ∈BMOLα . Then, condition (i) holds
in Theorem 1.2, and there exists C > 0 such that for every ball B,

1
|B|

∫
B
|T̃1(y) − (T̃1)B|dy ≤ C.

Let x0 ∈ (0,∞) and 0 < r0 < ρLα(x0), we define

f (·, r0, x0) =: χ[0,r0](|x − x0|) log
(ρLα(x0)

r0

)
+ χ[r0,ρLα(x0)](|x − x0|) log

( ρLα(x0)

|x − x0|

)
. (3.7)

Similar to the proof of Lemma 2.1 in [6], we get that f (·, r0, x0) belongs to BMOLα . By the same
argument with J3 above, it holds that

log
(ρLα(x0)

r0

) 1
|B|

∫
B
|T̃1(y) − (T̃1)B|dy ≤ C.

Then, condition (ii) in Theorem 1.2 holds.
Hence, the proof of Theorem 1.2 is completed.

Corollary 3.1. Let g be a measurable function on (0,∞). We define the multiplier operator Tg( f ) =
f g, f ∈BMOLα , then Tg is bounded on BMOLα if and only if

(i) g ∈ L∞(0,∞);

(ii) there exists C > 0 such that

log
(ρLα(x0)

r0

) 1
|B(x0, r0)|

∫
B(x0,r0)

|g(y) − gB(x0,r0)|dy ≤ C,

for every x0 ∈ (0,∞) and every ball B(x0, r0) with 0 < r0 <
ρLα(x0)

2 .

Proof. Let g be a measurable function on (0,∞) satisfying the conditions (i) and (ii) in Corollary 3.1.
By the same argument with the proof of Theorem 1.2, we konw that g defines pointwise multiplier in
BMOLα , and the kernel of operator T = Tg is zero.

Suppose that g is a pointwise multiplier in BMOLα . Note that the function f (·, r0, x0) defined in (3.7)
belongs to BMOLα , for any ball B = B(x0, r0) with 0 < r0 <

ρLα(x0)

2 , applying Corollary 5 in [27] it
holds that

log
(ρLα(x0)

r0

) 1
|B|

∫
B
|g(x)|dx =

1
|B|

∫
B
| f (x)g(x)|dx

≤
1
|B|

∫
B
|( f g)(x) − ( f g)B|dx + ( f g)B

≤ C∥ f ∥BMOLα
+ log

(ρLα(x0)

r0

)
∥ f g∥BMOLα

≤ C log
(ρLα(x0)

r0

)
∥ f ∥BMOLα

.
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Hence, |g|B ≤ C where C is independent of B. Thus we obtain that g is bounded on BMOLα .
On the other hand, if x0 ∈ (0,∞) and 0 < r0 <

ρLα(x0)

2 , by the boundedness on BMOLα of Tg we have

log
(ρLα(x0)

r0

) 1
|B(x0, r0)|

∫
B(x0,r0)

|g(x) − gB(x0,r0)|dx

≤
1

|B(x0, r0)|

∫
B(x0,r0)

|g(x) f (x, r0, x0) −
(
g f (x, r0, x0)

)
B(x0,r0)|dx

≤∥g f (·, r0, x0)∥BMOLα

≤C∥ f (·, r0, x0)∥BMOLα
.

Here, the constants C > 0 appearing in this proof do not depend on x0 ∈ (0,∞) and 0 < r0 < ρLα(x0). □

Remark 3.1. For example, if g is a Lipschitz function, then the condition (ii) in Corollary 3.1
is fulfilled.

Let T be a Laguerre-Calderón-Zygmund operator, then T1 defines a pointwise multiplier in BMOLα

space. By Corollary 3.1 and Theorem 1.2, we immediately obtain that T is a bounded operator on
BMOLα sapce.

4. Proof of Theorem 1.4

In this section, we are devoted to proving Theorem 1.4. We first introduce some definitions
and properties of the heat-diffusion semigroup generated by Laguerre operator Lα for α > −1

2 , see
e.g., [23, 27].

For f ∈ L2(0,∞), the heat-diffusion semigroup {WLα
t }t>0 generated by Lα is given by

WLα
t f (x) ≡ e−tLα f (x) =

∫ ∞

0
Wα

t (x, y) f (y)dy, x ∈ (0,∞), t > 0, (4.1)

with the kernel
Wα

t (x, y) =
( 2e−t

1 − e−2t

) 1
2
( 2xye−t

1 − e−2t

) 1
2 Iα
( 2xye−t

1 − e−2t

)
e−

1
2

1+e−2t

1−e−2t (x2+y2), (4.2)

where Iα is the modified Bessel function of the first kind and order α. The heat semigroup {WLα
t }t>0 is

contractive in Lp(0,∞) for 1 ≤ p < ∞, and selfadjoint in L2(0,∞) but it is not Markovian. Moreover,
for every f ∈ Lp(0,∞) with 1 ≤ p < ∞, then lim

t→0+
WLα

t f (x) = f (x) in Lp(0,∞) and a.e. x ∈ (0,∞).

By Bochner’s subordination formula, the Poisson semigroup {PLα
t }t>0 associated with Lα is given by

PLα
t f (x) ≡ e−t

√
Lα f (x) =

1
Γ(1

2 )

∫ ∞

0
e−

t2
4u Lα f (x)e−u du

u
1
2

, t > 0. (4.3)

Assume now that for f ∈BMOLα , it is clearly that for every t > 0 and x ∈ (0,∞) the integral

Wα
t f (x) ≡

∫ ∞

0
Wα

t (x, y) f (y)dy

is absolutely convergent. Hence, for f ∈BMOLα we define WLα
t f and PLα

t f by (4.1) and (4.3),
respectively.
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Let r = e−2t. Thanks to (4.2) we have

Wα
t (x, y) = H(r, x, y)Φ(r, x, y)Ψα(r, x, y), (4.4)

where H(r, x, y) = (1+r)
1
2

(1−r)
1
2
e−

1
2

1+r
1−r |x−y|2 , Φ(r, x, y) =

√
2r

1
4

(1+r)
1
2
e−

1−r
(1+
√

r)2
xy
, and

Ψα(r, x, y) =
(2r

1
2 xy

1 − r

) 1
2 e−

2r
1
2 xy

1−r Iα
(2r

1
2 xy

1 − r

)
.

For every x, y ∈ (0,∞) and t > 1, we have

Wα
t (x, y) ≤ Ce−cte−c |x−y|2

t

( 2xye−t

1 − e−2t

) 1
2+α

e−
2xye−t

1−e−2t ≤ Ce−cte−c|x−y|2 . (4.5)

For every x, y ∈ (0,∞) and 0 < t ≤ 1, we have

Wα
t (x, y) ≤ Ct−

1
2 e−c |x−y|2

t e−txy 1
√

2π
e

2xye−t

1−e−2t e−
2xye−t

1−e−2t
(
1 + O(

1
z

)
)
≤ Ct−

1
2 e−c |x−y|2

t e−txy. (4.6)

Hence, for every x, y ∈ (0,∞) and t > 0, it follows that

Wα
t (x, y) ≤ Ct−

1
2 e−c |x−y|2

t e−txyχ(0,1](t) +Ce−cte−c|x−y|2χ(1,∞)(t). (4.7)

We also use frequently the following properties of Bessel function Iα:

Iα(z) ∼ zα, z→ 0; (4.8)

z
1
2 Iα(z) =

1
√

2π
ez(1 + O(

1
z

)), z→ ∞; (4.9)

d
dz

(
z−αIα(z)

)
= z−αIα+1(z), z ∈ (0,∞). (4.10)

Now, we begin to show Theorem 1.4. Here, we prove only Theorem 1.4 for the heat semigroup
{WLα

t }t>0, since the case of Poisson semigroup {WLα
t }t>0 proceeds identically. We will use Theorem 1.2

in a vector-valued setting(see Remark 1.3) to obtain our results.
We first consider the Banach space Eρ which is defined as follows. A complex function g defined

in [0,∞) is in Eρ, ρ > 2, then

∥g∥Eρ =: sup
t j↘0

( ∞∑
j=1

|g(t j) − g(t j+1)|ρ
) 1
ρ
< ∞.

Applying the kernel Wα
t (x, y) in (4.2), we can get the kernel of variation operator Vρ(W

Lα
t ). It is

clearly
Vρ(Wα

t ) f (x) = ∥Wα
t f (x)∥Eρ , x ∈ (0,∞).

It is well know that variation operatorVρ(Wα
t ) is bounded from L2(0,∞) into itself. In order to prove

thatVρ(Wα
t ) is bounded form BMOLα into itself, by using Theorem 1.2 in a vector-valued setting (see

Remark 1.3), it is enough to prove that the operator Υρ defined by

Υρ( f ) = (Wα
t f )t>0, f ∈ BMOLα ,

is bounded from BMOLα(0,∞) into BMOLα
(
(0,∞); Eρ

)
. Finally, in order to use Theorem 1.2 in a

vector-valued setting, we need to check that the kernel ofVρ(Wα
t ) satisfies the following proposition.
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Proposition 4.1. Let ρ > 2. There exist constants C such that

(i) ∥Wα
t (x, y)∥Eρ ≤

C
|x−y|e

−|x−y|2 , x, y ∈ (0,∞), x , y;

(ii) ∥∇xWα
t (x, y)∥Eρ ≤

C
|x−y|2 , x, y ∈ (0,∞), x , y;

(iii) Υρ(1) ∈ L∞
(
(0,∞); Eρ

)
and ∇Υρ(1) ∈ L∞

(
(0,∞); Eρ

)
.

Proof. (i) Suppose that {t j} j>0 ⊂ (0, 1) is a decreasing sequence and lim
j→∞

t j = 0. By (4.4) and (4.8)–

(4.10), then we have for x, y ∈ (0,∞), x , y,

( ∞∑
j=1

|Wα
t j

(x, y) −Wα
t j+1

(x, y)|ρ
) 1
ρ
≤

∞∑
j=1

|Wα
t j

(x, y) −Wα
t j+1

(x, y)|

≤

∫ ∞

0
|∂tWα

t (x, y)|dt

≤ C
∫ 1

0
e−c |x−y|2

t dt +C
∫ ∞

1
e−cte−c|x−y|2dt

≤ C
1
|x − y|

e−|x−y|2 .

(ii) Similar to the proof of Proposition 4.4 in [6], we obtain the desired conclusion.
(iii) By (4.4)–(4.10), we can obtain that Vρ(Wα

t )(1)(x) ≤ C. Hence Υρ(1) ∈ L∞
(
(0,∞); Eρ

)
.

Similarly, we get that for x ∈ (0,∞),

∞∑
j=1

∣∣∣∣∇(Wα
t j

1(x)) −Wα
t j+1

1(x)
)∣∣∣∣

≤C
∞∑
j=1

∣∣∣∣((4t j − t3
j )e
−c(4t j−t3j )|x|

2
− (4t j+1 − t3

j+1)e−c(4t j+1−t3j+1)|x|2
)
|x|χ(0,1)(t)

∣∣∣∣
≤C
∫ 1

0

∣∣∣∣|x|∂t(4t − t3)e−c(4t−t3)|x|2
∣∣∣∣dt

≤C
∫ 1

0

∣∣∣∣ 4 − 3t2

(4t − t3)
1
2

(4t − t3)
1
2 |x|e−c(4t−t3)|x|2 −

4 − 3t2

(4t − t3)
1
2

((4t − t3)|x|2)
3
2 e−c(4t−t3)|x|2

∣∣∣∣dt ≤ C.

As a result, ∇Υρ(1) ∈ L∞
(
(0,∞); Eρ

)
.

Hence, by using Proposition 4.1 and Theorem 1.2 in a vector-valued setting (see Remark 1.3), we
finished the proof of Theorem 1.4. □

5. Conclusions

In this work, we first established a T1 criterion of the boundedness on BMOLα(0,∞) of Laguerre-
Calderón-Zygmund operators associated with the Laguerre operators Lα(α > −1

2 ), and then used this
T1 criterion to prove the boundedness on BMOLα(0,∞) of variation operators for semigroups related
to the Laguerre operator Lα.
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