We study a class of column upper-minus-lower (CUML) Toeplitz matrices, which are "close" to the Toeplitz matrices in the sense that their ()-cyclic displacements coincide with -cyclic displacement of some Toeplitz matrices. Among others, we derive the inverse formula for CUML Toeplitz matrices in the form of sums of products of factor circulants by constructing the corresponding displacement of the matrices. In addition, by the relationship between CUML Toeplitz matrices and CUML Hankel matrices, the inverse formula for CUML Hankel matrices is also obtained.
Citation: Yanpeng Zheng, Xiaoyu Jiang. Quasi-cyclic displacement and inversion decomposition of a quasi-Toeplitz matrix[J]. AIMS Mathematics, 2022, 7(7): 11647-11662. doi: 10.3934/math.2022649
[1] | Muhammad Farman, Ali Akgül, J. Alberto Conejero, Aamir Shehzad, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Analytical study of a Hepatitis B epidemic model using a discrete generalized nonsingular kernel. AIMS Mathematics, 2024, 9(7): 16966-16997. doi: 10.3934/math.2024824 |
[2] | Weam G. Alharbi, Abdullah F. Shater, Abdelhalim Ebaid, Carlo Cattani, Mounirah Areshi, Mohammed M. Jalal, Mohammed K. Alharbi . Communicable disease model in view of fractional calculus. AIMS Mathematics, 2023, 8(5): 10033-10048. doi: 10.3934/math.2023508 |
[3] | Ashish Awasthi, Riyasudheen TK . An accurate solution for the generalized Black-Scholes equations governing option pricing. AIMS Mathematics, 2020, 5(3): 2226-2243. doi: 10.3934/math.2020147 |
[4] | Hui Han, Chaoyu Yang, Xianya Geng . Research on the impact of green finance on the high quality development of the sports industry based on statistical models. AIMS Mathematics, 2023, 8(11): 27589-27604. doi: 10.3934/math.20231411 |
[5] | Badr Aloraini, Abdulaziz S. Alghamdi, Mohammad Zaid Alaskar, Maryam Ibrahim Habadi . Development of a new statistical distribution with insights into mathematical properties and applications in industrial data in KSA. AIMS Mathematics, 2025, 10(3): 7463-7488. doi: 10.3934/math.2025343 |
[6] | Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki . Industry 4.0 project prioritization by using q-spherical fuzzy rough analytic hierarchy process. AIMS Mathematics, 2023, 8(8): 18809-18832. doi: 10.3934/math.2023957 |
[7] | Mohamed S. Elhadidy, Waleed S. Abdalla, Alaa A. Abdelrahman, S. Elnaggar, Mostafa Elhosseini . Assessing the accuracy and efficiency of kinematic analysis tools for six-DOF industrial manipulators: The KUKA robot case study. AIMS Mathematics, 2024, 9(6): 13944-13979. doi: 10.3934/math.2024678 |
[8] | Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad . Computational analysis of COVID-19 model outbreak with singular and nonlocal operator. AIMS Mathematics, 2022, 7(9): 16741-16759. doi: 10.3934/math.2022919 |
[9] | Geoffrey McGregor, Jennifer Tippett, Andy T.S. Wan, Mengxiao Wang, Samuel W.K. Wong . Comparing regional and provincial-wide COVID-19 models with physical distancing in British Columbia. AIMS Mathematics, 2022, 7(4): 6743-6778. doi: 10.3934/math.2022376 |
[10] | Massoumeh Nazari, Mahmoud Dehghan Nayeri, Kiamars Fathi Hafshjani . Developing mathematical models and intelligent sustainable supply chains by uncertain parameters and algorithms. AIMS Mathematics, 2024, 9(3): 5204-5233. doi: 10.3934/math.2024252 |
We study a class of column upper-minus-lower (CUML) Toeplitz matrices, which are "close" to the Toeplitz matrices in the sense that their ()-cyclic displacements coincide with -cyclic displacement of some Toeplitz matrices. Among others, we derive the inverse formula for CUML Toeplitz matrices in the form of sums of products of factor circulants by constructing the corresponding displacement of the matrices. In addition, by the relationship between CUML Toeplitz matrices and CUML Hankel matrices, the inverse formula for CUML Hankel matrices is also obtained.
Since its initiation in 1979, the Canadian Applied and Industrial Mathematics Society — Société Canadienne de Mathématiques Appliquées et Industrielles (CAIMS–SCMAI) has gained a growing presence in industrial, mathematical, scientific, and technological circles within and outside of Canada. Its members contribute to state-of-the-art research in industry, natural sciences, medicine and health, finance, physics, engineering, and more. The annual meetings are a highlight of the year. CAIMS–SCMAI is an active member society of the International Council for Industrial and Applied Mathematics, which hosts the prestigious ICIAM Congresses every four years.
Canadian Applied and Industrial Mathematics is at the forefront of scientific and technological development. We use advanced mathematics to tackle real-world problems in science and industry and develop new theories to analyse structures that arise from the modelling of real-world problems.
Applied Mathematics has evolved from traditional applications in areas such as fluids, mechanics, and physics, to modern topics such as medicine, health, biology, data science, finance, nano-tech, etc. Its growing importance in all aspects of life, health, and management increases the need for publication venues for high-level applied and industrial mathematics. Hence CAIMS–SCMAI decided to start a scientific journal called Mathematics in Science and Industry (MSI) to add value to the discussion of applied and industrial mathematics worldwide.
Submissions to MSI in all areas of applied and industrial mathematics are welcome (https://caims.ca/mathematics_in_science_and_industry/). We offer a timely and high-quality review process, and papers are published online as open access, with the publication fee being covered by CAIMS for the first five years.
MSI is honored that leading experts in industrial and applied mathematics have offered their support as editors:
Editors in Chief:
● Thomas Hillen (University of Alberta, thillen@ualberta.ca)
● Ray Spiteri (University of Saskatchewan, spiteri@cs.usask.ca)
Associate Editors:
● Lia Bronsard (McMaster University)
● Richard Craster (Imperial College of London, UK)
● David Earn (McMaster University)
● Ronald Haynes (Memorial University)
● Jane Heffernan (York University)
● Nicholas Kevlahan (McMaster University)
● Yong-Jung Kim (KAIST, Korea)
● Mark Lewis (University of Alberta)
● Kevin J. Painter (Heriot-Watt University, UK)
● Vakhtang Putkaradze (ATCO)
● Katrin Rohlf (Ryerson University)
● John Stockie (Simon Fraser University)
● Jie Sun (Huawei, Hong Kong)
● Justin Wan (University of Waterloo)
● Michael Ward (University of British Columbia)
● Tony Ware (University of Calgary)
● Brian Wetton (University of British Columbia)
The first eight papers of MSI, presented here, are published as special issue in AIMS Mathematics. They showcase a broad representation of applied mathematics that touches the interests of Canadian researchers and our many collaborators around the world. The science that we present here is not exclusively "Canadian", but we hope that through the new journal MSI, we can contribute to scientific dissemination of knowledge and add Canadian values to the scientific discussion.
The next issue of MSI is planned for the fall of 2020 and is expected to appear again as a special issue of AIMS Mathematics.
[1] | L. Lakatos, L. Szeidl, M. Telek, Introduction to Queueing Systems with Telecommunication Applications, 2 Eds., Springer Publishing Company, Incorporated, 2019. |
[2] | X. Y. Jiang, K. Hong, Z. W. Fu, Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix, J. Nonlinear Sci. Appl., 10 (2017), 4058–4070. http://dx.doi.org/10.22436/jnsa.010.08.02 |
[3] | A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, 2 Eds., Springer-Verlag Berlin Heidelberg, 2019. |
[4] |
Y. Q. Bai, T. Z. Huang, X. M. Gu, Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings, Appl. Math. Lett., 48 (2015), 14–22. http://dx.doi.org/10.1016/j.aml.2015.03.010 doi: 10.1016/j.aml.2015.03.010
![]() |
[5] |
M. K. Ng, J. Pan, Weighted Toeplitz regularized least squares computation for image restoration, SIAM J. Sci. Comput., 36 (2014), B94–B121. http://dx.doi.org/10.1137/120888776 doi: 10.1137/120888776
![]() |
[6] |
Z. Z. Bai, G. Q. Li, L. Z. Lu, Combinative preconditioners of modified incomplete Cholesky factorization and Sherman-Morrison-Woodbury update for self-adjoint elliptic Dirichlet-periodic boundary value problems, J. Comput. Math., 22 (2004), 833–856. http://dx.doi.org/doi:10.1016/j.cam.2004.02.011 doi: 10.1016/j.cam.2004.02.011
![]() |
[7] |
Z. Z. Bai, Z. R. Ren, Block-triangular preconditioning methods for linear third-order ordinary differential equations based on reduced-order sinc discretizations, J. Industr. Appl. Math., 30 (2013), 511–527. http://dx.doi.org/10.1007/s13160-013-0112-6 doi: 10.1007/s13160-013-0112-6
![]() |
[8] |
Z. Z. Bai, R. H. Chan, Z. R. Ren, On sinc discretization and banded preconditioning for linear third-order ordinary differential equations, Numer. Linear Algebra Appl., 18 (2011), 471–497. https://doi.org/10.1002/nla.738 doi: 10.1002/nla.738
![]() |
[9] |
Z. Z. Bai, R. H. Chan, Z. R. Ren, On order-reducible sinc discretizations and block-diagonal preconditioning methods for linear third-order ordinary differential equations, Numer. Linear Algebra Appl., 21 (2014), 108–135. http://dx.doi.org/10.1002/nla.1868 doi: 10.1002/nla.1868
![]() |
[10] | M. Shi, F. özbudak, L. Xu, P. Solé, LCD codes from tridiagonal Toeplitz matrices, Finite Fields Appl., 75 (2021), 101892. https://linkinghub.elsevier.com/retrieve/pii/S1071579721000861 |
[11] | M. Shi, L. Xu, P. Solé, On isodual double Toeplitz codes, 2021. https://arXiv.org/pdf/2102.09233v1 |
[12] |
C. F. Cao, S. Huang, The commutants of analytic Toeplitz operators for several complex variables, Sci. China Math., 53 (2010), 1877–1884. http://dx.doi.org/10.1007/s11425-010-4023-6 doi: 10.1007/s11425-010-4023-6
![]() |
[13] |
X. F. Wang, G. F. Cao, J. Xia, Toeplitz operators on Fock-Sobolev spaces with positive measure symbols, Sci. China Math., 57 (2014), 1443–1462. http://dx.doi.org/10.1007/s11425-014-4813-3 doi: 10.1007/s11425-014-4813-3
![]() |
[14] |
J. Y. Yang, Y. F. Lu, Commuting dual Toeplitz operators on the harmonic Bergman space, Sci. China Math., 58 (2015), 1461–1472. http://dx.doi.org/10.1007/s11425-014-4940-x doi: 10.1007/s11425-014-4940-x
![]() |
[15] |
X. F. Zhao, D. C. Zheng, The spectrum of Bergman Toeplitz operators with some harmonic symbols, Sci. China Math., 59 (2016), 731–740. https://doi.org/10.1007/s11425-015-5083-4 doi: 10.1007/s11425-015-5083-4
![]() |
[16] |
G. X. Ji, Analytic Toeplitz algebras and the Hilbert transform associated with a subdiagonal algebra, Sci. China Math., 57 (2014), 579–588. https://doi.org/10.1007/s11425-013-4684-z doi: 10.1007/s11425-013-4684-z
![]() |
[17] |
M. K. Ng, K. Rost, Y. W. Wen, On inversion of Toeplitz matrices, Linear Algebra Appl., 348 (2002), 145–151. https://doi.org/10.1016/S0024-3795(01)00592-4 doi: 10.1016/S0024-3795(01)00592-4
![]() |
[18] |
G. Labahn, T. Shalom, Inversion of Toeplitz structured matrices using only standard equations, Linear Algebra Appl., 207 (1994), 49–70. https://doi.org/10.1016/0024-3795(94)90004-3 doi: 10.1016/0024-3795(94)90004-3
![]() |
[19] |
G. Heinig, On the reconstruction of Toeplitz matrix inverses from columns, Linear Algebra Appl., 350 (2002), 199–212. https://doi.org/10.1016/S0024-3795(02)00289-6 doi: 10.1016/S0024-3795(02)00289-6
![]() |
[20] |
L. Lerer, M. Tismenetsky, Generalized Bezoutian and the inversion problem for block matrices, Integr. Equat. Oper. Th., 9 (1986), 790–819. https://doi.org/10.1007/BF01202517 doi: 10.1007/BF01202517
![]() |
[21] |
G. Ammar, P. Gader, A variant of the Gohberg-Semencul formula involving circulant matrices, SIAM J. Matrix Anal. Appl., 12 (1991), 534–540. https://doi.org/10.1137/0612038 doi: 10.1137/0612038
![]() |
[22] |
X. G. Lv, T. Z. Huang, A note on inversion of Toeplitz matrices, Appl. Math. Lett., 20 (2007), 1189–1193. https://doi.org/10.1016/j.aml.2006.10.008 doi: 10.1016/j.aml.2006.10.008
![]() |
[23] |
Z. L. Jiang, D. D.Wang, Explicit group inverse of an innovative patterned matrix, Appl. Math. Comput., 274 (2016), 220–228. http://dx.doi.org/10.1016/j.amc.2015.11.021 doi: 10.1016/j.amc.2015.11.021
![]() |
[24] |
Z. L. Jiang, J. X. Chen, The explicit inverse of nonsingular conjugate-Toeplitz and conjugate-Hankel matrices, J. Appl. Math. Comput., 53 (2017), 1–16. http://dx.doi.org/10.1007/s12190-015-0954-y doi: 10.1007/s12190-015-0954-y
![]() |
[25] |
Z. L. Jiang, T. Y. Tam, Y. F. Wang, Inversion of conjugate-Toeplitz matrices and conjugate-Hankel matrices. Linear and Multilinear Algebra, Linear Multilinear Algebra, 65 (2017), 256–268. http://dx.doi.org/10.1080/03081087.2016.1182465 doi: 10.1080/03081087.2016.1182465
![]() |
[26] |
T. Kailath, S. Kung, M. Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl., 68 (1979), 395–407. http://dx.doi.org/10.1016/0022-247X(79)90124-0 doi: 10.1016/0022-247X(79)90124-0
![]() |
[27] |
I. Gohberg, V. Olshevsky, Circulants, displacements and decompositions of matrices, J. Math. Anal. Appl., 68 (1992), 730–743. http://dx.doi.org/10.1007/bf01200697 doi: 10.1007/bf01200697
![]() |
[28] |
Z. L. Jiang, T. T. Xu, Norm estimates of -circulant operator matrices and isomorphic operators for -circulant algebra, Sci. China Math., 59 (2016), 351–366. http://dx.doi.org/10.1007/s11425-015-5051-z doi: 10.1007/s11425-015-5051-z
![]() |
[29] |
Z. L. Jiang, Y. C. Qiao, S. D. Wang, Norm equalities and inequalities for three circulant operator matrices, Acta Math. Appl. Sin. Engl. Ser., 33 (2017), 571–590. https://doi.org/10.1007/s10114-016-5607-z doi: 10.1007/s10114-016-5607-z
![]() |
[30] |
G. Ammar, P. Gader, New decompositions of the inverse of a Toeplitz matrices, signal processing, scattering and operator theory and numerial methods, Int. Symp. MTNS-89, Birkhauser, Boston, 3 (1990), 421–428. http://dx.doi.org/10.5430/cns.v1n2p80 doi: 10.5430/cns.v1n2p80
![]() |
[31] |
P. Gader, Displacement operator based decompositions of matrices using circulants or other group matrices, Linear Algebra Appl., 139 (1990), 111–131. https://doi.org/10.1016/0024-3795(90)90392-P doi: 10.1016/0024-3795(90)90392-P
![]() |
[32] |
N. Shen, Z. L. Jiang, J. Li, On explicit determinants of the RFMLR and RLMFL circulant matrices involving certain famous numbers, WSEAS Trans. Math., 12 (2013), 42–53. http://dx.doi.org/10.1016/0044-370392-Z doi: 10.1016/0044-370392-Z
![]() |
[33] | R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge university press, 1990. |
[34] | X. Y. Jiang, K. Hong, Explicit determinants of the -Fibonacci and -Lucas RSFPLR circulant matrix in codes, Comm. Comput. Inf. Sci., 391 (2013), 625–637. http://dx.doi.org/10.1007/978-3-642-53932-9-61 |
[35] | X. Y. Jiang, K. Hong, Exact determinants of some special circulant matrices involving four kinds of famous numbers, 2014 (2014), 1–12. http://dx.doi.org/10.1155/2014/273680 |
[36] |
X. Y. Jiang, K. Hong, Algorithms for finding inverse of two patterned matrices over , Abstr. Appl. Anal., 2014 (2014), 1–6. http://dx.doi.org/10.1155/2014/840435 doi: 10.1155/2014/840435
![]() |