Research article Special Issues

Assessing the accuracy and efficiency of kinematic analysis tools for six-DOF industrial manipulators: The KUKA robot case study

  • Received: 13 March 2024 Revised: 06 April 2024 Accepted: 09 April 2024 Published: 16 April 2024
  • MSC : 68T40, 70B15, 93C85

  • Accuracy is an important factor to consider when evaluating the performance of a manipulator. The accuracy of a manipulator is determined by its ability to accurately move and position objects in a precise manner. This research paper aims to evaluate the performance of different methods for the kinematic analysis of manipulators. The study employs four distinct techniques, namely mathematical modeling using the closed form solutions method, roboanalyzer, Peter Corke toolbox, and particle swarm optimization, to perform kinematic analysis for manipulators. The KUKA industrial manipulator is used as an illustrative case study in this research due to its widespread use in various industrial applications in addition to its high precision and stability. Its wide usage in the industry makes the results of this research highly relevant and allows for a thorough evaluation of the performance of the different methods being studied. Furthermore, understanding the kinematic analysis of the manipulator can also help in improving the performance and increasing the efficiency of the robot in different tasks. This paper conducts a comparison of the accuracy of the four methods, and the results indicate that particle swarm optimization is the most accurate method. The RoboAnalyzer approach achieved the fastest execution time.

    Citation: Mohamed S. Elhadidy, Waleed S. Abdalla, Alaa A. Abdelrahman, S. Elnaggar, Mostafa Elhosseini. Assessing the accuracy and efficiency of kinematic analysis tools for six-DOF industrial manipulators: The KUKA robot case study[J]. AIMS Mathematics, 2024, 9(6): 13944-13979. doi: 10.3934/math.2024678

    Related Papers:

  • Accuracy is an important factor to consider when evaluating the performance of a manipulator. The accuracy of a manipulator is determined by its ability to accurately move and position objects in a precise manner. This research paper aims to evaluate the performance of different methods for the kinematic analysis of manipulators. The study employs four distinct techniques, namely mathematical modeling using the closed form solutions method, roboanalyzer, Peter Corke toolbox, and particle swarm optimization, to perform kinematic analysis for manipulators. The KUKA industrial manipulator is used as an illustrative case study in this research due to its widespread use in various industrial applications in addition to its high precision and stability. Its wide usage in the industry makes the results of this research highly relevant and allows for a thorough evaluation of the performance of the different methods being studied. Furthermore, understanding the kinematic analysis of the manipulator can also help in improving the performance and increasing the efficiency of the robot in different tasks. This paper conducts a comparison of the accuracy of the four methods, and the results indicate that particle swarm optimization is the most accurate method. The RoboAnalyzer approach achieved the fastest execution time.



    加载中


    [1] M. A. A. Mousa, A. T. Elgohr, H. A. Khater, Trajectory optimization for a 6 DOF robotic arm based on reachability time, Annals of Emerging Technologies in Computing, 8 (2024), 22–35. https://doi.org/10.33166/AETiC.2024.01.003 doi: 10.33166/AETiC.2024.01.003
    [2] A. Krisbudiman, T. H. Nugroho, A. Musthofa, Analysis industrial robot arm with Matlab and RoboAnalyzer, International Journal of Advanced Engineering, Management and Science, 7 (2021), 75–80. https://doi.org/10.22161/ijaems.73.10 doi: 10.22161/ijaems.73.10
    [3] J. W. Lee, G. T. Park, J. S. Shin, J. W. Woo,, Industrial robot calibration method using denavit-Hatenberg parameters, 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South), 2017, 1834–1837. https://doi.org/10.23919/ICCAS.2017.8204265
    [4] Z. Y. He, J. C. Li, Six-degree-of-freedom robot trajectory planning based on MATLAB, International Conference on Automation, Robotics and Computer Engineering (ICARCE), Wuhan, China, 2022, 1–3. https://doi.org/10.1109/ICARCE55724.2022.10046483
    [5] KR 22 R1610-2-KUKA AG. Available from: https://www.infinitysolutions.co.jp/wprenew/wp-content/uploads/2021/02/kr_cybertech_en.pdf.
    [6] D. Constantin, M. Lupoae, C. Baciu, B. D. Ilie, Forward kinematic analysis of an industrial robot, International Conference on Mechanical Engineering (ME 2015), Vienna, Austria 2015, 90–95.
    [7] W. Chen, X. Li, H. L. Ge, L. Wang, Y. H. Zhang, Trajectory planning for spray painting robot based on point cloud slicing technique, Electronics, 9 (2020), 908. https://doi.org/10.3390/electronics9060908 doi: 10.3390/electronics9060908
    [8] T. P. Singh, P. Suresh, S. Chandan, Forward and inverse kinematic analysis of robotic manipulators, International Research Journal of Engineering and Technology, 4 (2017), 1459–1469.
    [9] J. Villalobos, I. Y. Sanchez, F. Martell, Singularity analysis and complete methods to compute the inverse kinematics for a 6-DOF UR/TM-type robot, Robotics, 11 (2022), 137. https://doi.org/10.3390/robotics11060137 doi: 10.3390/robotics11060137
    [10] D. Sivasamy, M. D. Anand, K. A. Sheela, Robot forward and inverse kinematics research using MATLAB, International Journal of Recent Technology and Engineering, 8 (2019), 29–35 https://doi.org/10.35940/ijrte.b1006.0782s319 doi: 10.35940/ijrte.b1006.0782s319
    [11] A. Patwardhan, A. Prakash, R. G. Chittawadigi, Kinematic analysis and development of simulation software for nex dexter robotic manipulator, Procedia Computer Science, 133 (2018), 660–667. https://doi.org/10.1016/j.procs.2018.07.101 doi: 10.1016/j.procs.2018.07.101
    [12] M. Kaur, S. Sondhi, V. K. Yanumula, Kinematics analysis and jacobian calculation for six degrees of freedom robotic arm, 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 2020, 1–6. https://doi.org/10.1109/INDICON49873.2020.9342093
    [13] S. KuCuk, Z. Bingul, The inverse kinematics solutions of industrial robot manipulators, Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey, 2004,274–279. https://doi.org/10.1109/ICMECH.2004.1364451
    [14] M. G. Krishnan, S. Ashok, Kinematic analysis and validation of an industrial robot manipulator, 2019 IEEE Region 10 Conference (TENCON), Kochi, India, 2019, 1393–1399. https://doi.org/10.1109/TENCON.2019.8929712
    [15] D. P. Nayak, K. C Rath, Robot kinematics analysis with simulation of manipulator trajectory utilising the DH parameter, YMER, 21 (2022), 273–285. https://doi.org/10.37896/ymer21.08%2F24 doi: 10.37896/ymer21.08%2F24
    [16] A. El-Sherbiny, M. A. Elhosseini, A. Y Haikal, A comparative study of soft computing methods to solve inverse kinematics problem, Ain Shams Eng. J., 9 (2018), 2535–2548. https://doi.org/10.1016/j.asej.2017.08.001 doi: 10.1016/j.asej.2017.08.001
    [17] I. Chavdarov, B. Naydenov, Algorithm for determining the types of inverse kinematics solutions for sequential planar robots and their representation in the configuration space, Algorithms, 15 (2022), 469. https://doi.org/10.3390/a15120469 doi: 10.3390/a15120469
    [18] S. S. Chauhan, A. K. Khare, Kinematic analysis of the ABB IRB 1520 industrial robot using RoboAnalyzer software, Evergreen, 7 (2022), 510–518. https://doi.org/10.5109/4150470 doi: 10.5109/4150470
    [19] M. W. Spong, S. Hutchinson, M. Vidyasagar, Robot modeling and control, 2 Eds., Hoboken: Wiley, 2020. https://doi.org/10.1109/MCS.2006.252815
    [20] B. Siciliano, O. Khatib, Robotics and the handbook, In: Springer handbook of robotics, Cham: Springer, 2016, 1–6. https://doi.org/10.1007/978-3-319-32552-1
    [21] Z. Bingul, H. M. Ertunc, C. Oysu, Comparison of inverse kinematics solutions using neural network for 6R robot manipulator with offset, 2005 ICSC Congress on Computational Intelligence Methods and Applications, Istanbul, Turkey, 2005, 5. https://doi.org/10.1109/CIMA.2005.1662342
    [22] P. Corke, Robotics and control: Fundamental algorithms in MATLAB, Cham: Springer, 2022. https://doi.org/10.1007/978-3-030-79179-7
    [23] I. Mehta, K. Bimbraw, R. G. Chittawadigi, S. K. Saha, A teach pendant to control virtual robots in Roboanalyzer, 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), Amritapuri, India, 2016, 1–6. https://doi.org/10.1109/RAHA.2016.7931881
    [24] P. I. Corke, A robotics toolbox for MATLAB, IEEE Robot. Autom. Mag., 3 (1996), 24–32. https://doi.org/10.1109/100.486658 doi: 10.1109/100.486658
    [25] A. El-Sherbiny, M. A. Elhosseini, A. Y. Haikal, A new ABC variant for solving inverse kinematics problem in 5 DOF robot arm, Appl. Soft Comput., 73 (2018), 24–38. https://doi.org/10.1016/j.asoc.2018.08.028 doi: 10.1016/j.asoc.2018.08.028
    [26] M. A. A. Mousa, A. T. Elgohr, H. A.Khater, Path planning for a 6 DoF robotic arm based on whale optimization algorithm and genetic algorithm, J. Eng. Res., 7 (2023), 160–168. https://doi.org/10.21608/erjeng.2023.237586.1256 doi: 10.21608/erjeng.2023.237586.1256
    [27] H. Danaci, L. A. Nguyen, T. L. Harman, M. Pagan, Inverse kinematics for serial robot manipulators by particle swarm optimization and POSIX threads implementation, Appl. Sci., 13 (2023), 4515. https://doi.org/10.3390/app13074515 doi: 10.3390/app13074515
    [28] S. Djeffal, C. Mahfoudi, Inverse kinematic model of multi-section continuum robots using particle swarm optimization and comparison to four meta-heuristic approaches, SIMULATION, 99 (2023), 817–830. https://doi.org/10.1177/00375497231164645 doi: 10.1177/00375497231164645
    [29] R. Sadanand, R. G. Chittawadigi, R. P. Joshi, S. K Saha, Virtual robots module: An effective visualization tool for robotics toolbox, Proceedings of the 2015 Conference on Advances In Robotics, Goa, India, 2015, 1–6. https://doi.org/10.1145/2783449.2783475
    [30] A. N. Barakat, K. A. Gouda, K. A Bozed, Kinematics analysis and simulation of a robotic arm using MATLAB., 2016 4th International Conference on Control Engineering & Information Technology (CEIT), Hammamet, Tunisia, 2016, 1–5. https://doi.org/10.1109/CEIT.2016.7929032
    [31] Y. L. Bao, K. M. Hamza, K. D. Kallu, S. J. Abbasi, M. C. Lee, A study on 7-DOF manipulator control by using MATLAB robotics toolbox, 2019 16th International Conference on Ubiquitous Robots, Jeju, Korea, 2019, 24–27.
    [32] D. T. Long, T. V. Binh, R. V. Hoa, L. V. Anh, N. V. Toan, Robotic arm simulation by using matlab and robotics toolbox for industry application, International Journal of Electronics and Communication Engineering, 7 (2020), 1–4. https://doi.org/10.14445/23488549%2Fijece-v7i10p101 doi: 10.14445/23488549%2Fijece-v7i10p101
    [33] D. Q. Zhang, Z. Y. Peng, G. S. Ning, X. Han, Positioning accuracy reliability of industrial robots through probability and evidence theories, J. Mech. Des., 143 (2021), 011704. https://doi.org/10.1115/1.4047436 doi: 10.1115/1.4047436
    [34] D. Q. Zhang, X. Han, Kinematic reliability analysis of robotic manipulator, J. Mech. Des., 142 (2020), 044502. https://doi.org/10.1115/1.4044436 doi: 10.1115/1.4044436
    [35] D. Q. Zhang, S. S. Shen, J. H. Wu, F. Wang, X. Han, Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors, Reliab. Eng. Syst. Safe., 229 (2023), 108808. https://doi.org/10.1016/j.ress.2022.108808 doi: 10.1016/j.ress.2022.108808
    [36] J. Bahuguna, R. G. Chittawadigi, S. K. Saha, Teaching and learning of robot kinematics using RoboAnalyzer software, In: Proceedings of conference on advances in robotics, New York: Association for Computing Machinery, 2013, 1–6. https://doi.org/10.1145/2506095.2506142
    [37] V. Gupta, R. G. Chittawadigi, S. K. Saha, RoboAnalyzer: Robot visualization software for robot technicians, In: Proceedings of the advances in robotics, Association for Computing Machinery, 2017, 1–5. https://doi.org/10.1145/3132446.3134890
    [38] R. S. Othayoth, R. G. Chittawadigi, R. P. Joshi, S. K. Saha, Robot kinematics made easy using RoboAnalyzer software, Comput. Appl. Eng. Educ., 25 (2017), 669–680. https://doi.org/10.1002/cae.21828 doi: 10.1002/cae.21828
    [39] P. Chang, A closed-form solution for the control of manipulators with kinematic redundancy, 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 1986, 9–14. https://doi.org/10.1109/ROBOT.1986.1087725
    [40] P. Chang, A closed-form solution for inverse kinematics of robot manipulators with redundancy, IEEE Journal on Robotics and Automation, 3 (1987), 393–403. https://doi.org/10.1109/jra.1987.1087114 doi: 10.1109/jra.1987.1087114
    [41] I. M. Chen, Y. Gao, Closed-form inverse kinematics solver for reconfigurable robots, IEEE International Conference on Robotics and Automation, Seoul, South Korea, 2001, 2395–2400. https://doi.org/10.1109/ROBOT.2001.932980
    [42] J. Gao, B. Zhou, B. Zi, S. Qian, P. Zhao, Kinematic uncertainty analysis of a Cable-Driven parallel robot based on an error transfer model, J. Mechanisms Robotics, 14 (2022), 051008. https://doi.org/10.1115/1.4053219 doi: 10.1115/1.4053219
    [43] D. Q. Zhang, Z. H. Han, F. Wang, X. Han, Proficiency of statistical moment-based methods for analysis of positional accuracy reliability of industrial robots, Int. J. Mech. Mater. Des., 17 (2021), 403–418. https://doi.org/10.1007/s10999-021-09532-2 doi: 10.1007/s10999-021-09532-2
    [44] Q. Q. Zhao, J. K. Guo, D. T. Zhao, D. W. Yu, J. Hong, Time-dependent system kinematic reliability analysis for robotic manipulators, J. Mech. Des., 143 (2021), 041704. https://doi.org/10.1115/1.4049082 doi: 10.1115/1.4049082
    [45] J. A. Abdor-Sierra, E. A. Merchán-Cruz, R. G. Rodríguez-Cañizo, A comparative analysis of metaheuristic algorithms for solving the inverse kinematics of robot manipulators, Results in Engineering, 16 (2022), 100597. https://doi.org/10.1016/j.rineng.2022.100597 doi: 10.1016/j.rineng.2022.100597
    [46] C. J. Liu, X. Y. Wang, H. S. Jiang, X. Y. Wang, H. Y. Guo, Inverse kinematics solution of manipulator based on IPSO-BPNN, 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Chengdu, China, 2022,175–179. https://doi.org/10.1109/PRAI55851.2022.9904288
    [47] A. X. Wu, Z. P. Shi, Y. D. Li, M. H. Wu, Y. Guan, J. Zhang, et al., Formal kinematic analysis of a general 6R manipulator using the screw theory, Math. Probl. Eng., 2015 (2015), 549797. https://doi.org/10.1155/2015/549797 doi: 10.1155/2015/549797
    [48] Q. D. Li, H. H. Ju, P. F. Xiao, Kinematics analysis and optimization of 6R manipulator, IOP Conf. Ser.: Mater. Sci. Eng., 816 (2020), 012016. https://doi.org/10.1088/1757-899X/816/1/012016 doi: 10.1088/1757-899X/816/1/012016
    [49] M. T. Nguyen, C. Yuan, J. H. Huang, Kinematic analysis of a 6-DOF robotic arm, In: Mechanisms and machine science, Cham: Springer, 2019, 2965–2974. https://doi.org/10.1007/978-3-030-20131-9_292
    [50] H. A. R. Akkar, A. N. A-Amir, Kinematics analysis and modeling of 6 degree of freedom robotic arm from DFROBOT on Labview, Research Journal of Applied Sciences, Engineering and Technology, 7 (2016), 569–575. https://doi.org/10.19026/rjaset.13.3016 doi: 10.19026/rjaset.13.3016
    [51] A. Talli, A. C. Giriyapur, Kinematic analysis and simulation of industrial robot based on RoboAnalyzer, In: Recent advances in mechanical infrastructure, Singapore: Springer, 2021,473–483. https://doi.org/10.1007/978-981-33-4176-0_40
    [52] J. Z. Vidaković, M. P. Lazarević, V. M. Kvrgić, Z. Z. Dančuo, G. Z. Ferenc, Advanced quaternion forward kinematics algorithm including overview of different methods for robot kinematics, FME Trans., 42 (2014), 189–199. https://doi.org/10.5937/fmet1403189v doi: 10.5937/fmet1403189v
    [53] T. Aravinthkumar, M. Suresh, B. Vinod, Kinematic analysis of 6 DOF articulated robotic arm, International Research Journal of Multidisciplinary Technovation, 3 (2021), 1–5. https://doi.org/10.34256/irjmt2111 doi: 10.34256/irjmt2111
    [54] K. S. Gaeid, A. F. Nashee, I. A. Ahmed, M. H. Dekheel, Robot control and kinematic analysis with 6DoF manipulator using direct kinematic method, Bulletin of Electrical Engineering and Informatics, 10 (2021), 70–78. https://doi.org/10.11591/eei.v10i1.2482 doi: 10.11591/eei.v10i1.2482
    [55] M. Dahari, J. D. Tan, Forward and inverse kinematics model for robotic welding process using KR-16KS KUKA robot, 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, Kuala Lumpur, Malaysia, 2011, 1–6. https://doi.org/10.1109/ICMSAO.2011.5775598
    [56] J. X. Yu, D. Z. You, J. S. Liu, Analysis of inverse kinematics method for six degrees of freedom manipulator based on MATLAB, 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), Beijing, China, 2017,211–215. https://doi.org/10.1109/CCSSE.2017.8087925
    [57] S. Asif, P. Webb, Kinematics analysis of 6-DoF articulated robot with spherical wrist, Math. Probl. Eng., 2021 (2021), 6647035. https://doi.org/10.1155/2021/6647035 doi: 10.1155/2021/6647035
    [58] P. Corke, MATLAB toolboxes: Robotics and vision for students and teachers, IEEE Robot. Autom. Mag., 14 (2007), 16–17. https://doi.org/10.1109/m-ra.2007.912004 doi: 10.1109/m-ra.2007.912004
    [59] E. Drumwright, J. Hsu, N. Koenig, D. Shell, Extending open dynamics engine for robotics simulation, In: Simulation, modeling, and programming for autonomous robots, Berlin: Springer, 2010, 38–50. https://doi.org/10.1007/978-3-642-17319-6_7
    [60] N. A. S. Laksana, R. Ariawan, U. S. Jati, J. Sodikin, Ulikaryani, Analisis kinematik singularty pada manipulator 7 DOF dengan software simulasi RoboAnalyzer, Infotekmesin, 13 (2022), 265–271. https://doi.org/10.35970/infotekmesin.v13i2.1538 doi: 10.35970/infotekmesin.v13i2.1538
    [61] J. F. Nethery, M. W.Spong, Robotica: A mathematica package for robot analysis, IEEE Robot. Autom. Mag., 1 (1994), 13–20. https://doi.org/10.1109/100.296449 doi: 10.1109/100.296449
    [62] M. F. Robinette, R. Manseur, Robot-draw, an internet-based visualization tool for robotics education, IEEE T. Educ., 44 (2001), 29–34. https://doi.org/10.1109/13.912707 doi: 10.1109/13.912707
    [63] M. Morozov, S. G. Pierce, C. N. MacLeod, C. Mineo, R. Summan, Off-line scan path planning for robotic NDT, Measurement, 122 (2018), 284–290. https://doi.org/10.1016/j.measurement.2018.02.020 doi: 10.1016/j.measurement.2018.02.020
    [64] A. Garbev, A. Atanassov, Comparative analysis of RoboDK and robot operating system for solving diagnostics tasks in off-line programming, 2020 International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 2020, 1–5. https://doi.org/10.1109/ICAI50593.2020.9311332
    [65] M. K. Elshaarawy, A. K. Hamed, Predicting discharge coefficient of triangular side orifice using ANN and GEP models, Water Science, 38 (2024), 1–20. https://doi.org/10.1080/23570008.2023.2290301 doi: 10.1080/23570008.2023.2290301
    [66] U. Khair, H. Fahmi, S. A. Hakim, R. Rahim, Forecasting error calculation with mean absolute deviation and mean absolute percentage error, J. Phys.: Conf. Ser., 930 (2017), 012002. https://doi.org/10.1088/1742-6596/930/1/012002 doi: 10.1088/1742-6596/930/1/012002
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1068) PDF downloads(82) Cited by(2)

Article outline

Figures and Tables

Figures(9)  /  Tables(20)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog