Research article

Local linear estimation for the censored functional regression

  • Received: 18 February 2024 Revised: 21 March 2024 Accepted: 29 March 2024 Published: 16 April 2024
  • MSC : 62R20, 62G05, 62G08

  • This work considers the Local Linear Estimation (LLE) of the conditional functional mean. This regression model is used when the independent variable is functional, and the dependent one is a censored scalar variable. Under standard postulates, we establish the asymptotic distribution of the LLE by proving its asymptotic normality. The obtained results show the superiority of the LLE approach over the functional local constant one. The feasibility of the studied model is demonstrated using artificial data. Finally, the usefulness of the obtained asymptotic distribution in incomplete functional data is highlighted through a real data application.

    Citation: Fatimah A Almulhim, Torkia Merouan, Mohammed B. Alamari, Boubaker Mechab. Local linear estimation for the censored functional regression[J]. AIMS Mathematics, 2024, 9(6): 13980-13997. doi: 10.3934/math.2024679

    Related Papers:

  • This work considers the Local Linear Estimation (LLE) of the conditional functional mean. This regression model is used when the independent variable is functional, and the dependent one is a censored scalar variable. Under standard postulates, we establish the asymptotic distribution of the LLE by proving its asymptotic normality. The obtained results show the superiority of the LLE approach over the functional local constant one. The feasibility of the studied model is demonstrated using artificial data. Finally, the usefulness of the obtained asymptotic distribution in incomplete functional data is highlighted through a real data application.



    加载中


    [1] S. Attaoui, B. Bentata, S. Bouzebda, A. Laksaci, The strong consistency and asymptotic normality of the kernel estimator type in functional single index model in presence of censored data, AIMS Math., 9 (2024), 7340–7371. http://dx.doi.org/10.3934/math.2024356 doi: 10.3934/math.2024356
    [2] J. Barrientos-Marin, F. Ferraty, P. Vieu, Locally modelled regression and functional data, J. Nonparamet. Stat., 22 (2010), 617–632. https://doi.org/10.1080/10485250903089930 doi: 10.1080/10485250903089930
    [3] A. Baillo, A. Grané, Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100 (2009), 102–111. https://doi.org/10.1016/j.jmva.2008.03.008 doi: 10.1016/j.jmva.2008.03.008
    [4] A. Berlinet, A. Elamine, A. Mas, Local linear regression for functional data, Ann. Inst. Stat. Math., 63 (2011), 1047–1075. https://doi.org/10.1007/s10463-010-0275-8 doi: 10.1007/s10463-010-0275-8
    [5] A. Benkhaled, F. Madani, S. Khardani, Asymptotic normality of the local linear estimation of the conditional density for functional dependent and censored data, South African Stat. J., 54 (2020), 131–151.
    [6] A. Benkhaled, F. Madani, Local linear approach: conditional density estimate for functional and censored data, Demonstr. Math., 55 (2022), 315–327. https://doi.org/10.1515/dema-2022-0018 doi: 10.1515/dema-2022-0018
    [7] R. Beran, Nonparametric regression with randomly censored survival data, Technical report, University of California, Berkeley, 1981.
    [8] D. BitouzÉ, B. Laurent, P. Massart, A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator, Ann. lÍnstitut Henri Poincare (B) Prob. Stat., 35 (1999), 735–763. https://doi.org/10.1016/S0246-0203(99)00112-0 doi: 10.1016/S0246-0203(99)00112-0
    [9] F. Bouhadjera, E. Ould-Said, Nonparametric local linear estimation of the relative error regression function for censorship model, preprint paper, 2020. https://doi.org/10.48550/arXiv.2004.02466
    [10] F. Bouhadjera, E. Ould-Said, Asymptotic normality of the relative error regression function estimator for censored and time series data, Depend. Model., 9 (2021), 156–178. https://doi.org/10.1515/demo-2021-0107 doi: 10.1515/demo-2021-0107
    [11] P. Deheuvels, J. H. Einmahl, Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications, Ann. Probab., 28 (2000), 1301–1335. https://doi.org/10.1214/aop/1019160336 doi: 10.1214/aop/1019160336
    [12] J. Demongeot, A. Laksaci, F. Madani, M. Rachdi, Functional data: local linear estimation of the conditional density and its application, Statistics, 47 (2013), 26–44. https://doi.org/10.1080/02331888.2011.568117 doi: 10.1080/02331888.2011.568117
    [13] J. Demongeot, A. Laksaci, M. Rachdi, S. Rahmani, On the local linear modelization of the conditional distribution for functional data, Sankhya A, 76 (2014), 328–355. https://doi.org/10.1007/s13171-013-0050-z doi: 10.1007/s13171-013-0050-z
    [14] E. O. Said, O. Sadki, Asymptotic normality for a smooth kernel estimator of the conditional quantile for censored time series, South African Stat. J., 45 (2011), 65–98.
    [15] L. Farid, L. Sara, K. Soumia, On the nonparametric estimation of the functional regression based on censored data under strong mixing condition, J. SibFU. Math. Phys., 15 (2022), 523–536. https://doi.org/10.17516/1997-1397-2022-15-4-523-536 doi: 10.17516/1997-1397-2022-15-4-523-536
    [16] F. Ferraty, P. Vieu, Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination, Nonparamet. Stat., 16 (2004), 111–125. https://doi.org/10.1080/10485250310001622686 doi: 10.1080/10485250310001622686
    [17] F. Ferraty, P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, New York: Springer, 2006.
    [18] F. Ferraty, A. Mas, P. Vieu, Nonparametric regression on functional data: inference and practical aspects, Aust. NZ. J. Stat., 49 (2007), 267–286. https://doi.org/10.1111/j.1467-842X.2007.00480.x doi: 10.1111/j.1467-842X.2007.00480.x
    [19] E. M. Kaplan, P. Meier, Nonparametric estimation from incomplete observations, J. Amer. Stat. Assoc., 53 (1958), 457–481.
    [20] M. Kohler, K. Máthé, M. Pintér, Prediction from randomly right censored data, J. Multivariate Anal., 80 (2002), 73–100. https://doi.org/10.1006/jmva.2000.1973 doi: 10.1006/jmva.2000.1973
    [21] S. Leulmi, Local linear estimation of the conditional quantile for censored data and functional regressors, Commun. Stat. Theory Meth., 50 (2021), 3286–3300. https://doi.org/10.1080/03610926.2019.1692033 doi: 10.1080/03610926.2019.1692033
    [22] S. Leulmi, Nonparametric local linear regression estimation for censored data and functional regressors, J. Korean Stat. Soc., 51 (2020), 25–46. https://doi.org/10.1007/s42952-020-00080-7 doi: 10.1007/s42952-020-00080-7
    [23] E. Masry, Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochast. Proc. Appl., 115 (2005), 155–177. https://doi.org/10.1016/j.spa.2004.07.006 doi: 10.1016/j.spa.2004.07.006
    [24] F. Messaci, N. Nemouchi, I. Ouassou, M. Rachdi, Local polynomial modelling of the conditional quantile for functional data, Stat. Methods Appl., 24 (2015), 597–622. https://doi.org/10.1007/s10260-015-0296-9 doi: 10.1007/s10260-015-0296-9
    [25] S. Rahmani, O. Bouanani, Local linear estimation of the conditional cumulative distribution function: Censored functional data case, Sankhya A, 85 (2023), 741–769. https://doi.org/10.1007/s13171-021-00276-x doi: 10.1007/s13171-021-00276-x
    [26] W. Stute, Distributional convergence under random censorship when covariables are present, Scand. J. Stat., 23 (1996), 461–471.
    [27] X. Xiong, M. Ou, Non parametric estimation of the conditional density function with right-censored and dependent data, Commun. Stat. Theory Meth., 50 (2021), 3159–3178. https://doi.org/10.1080/03610926.2019.1691230 doi: 10.1080/03610926.2019.1691230
    [28] Z. Zhou, Z. Lin, Asymptotic normality of locally modelled regression estimator for functional data, J. Nonparamet. Stat., 28 (2016), 116–131. https://doi.org/10.1080/10485252.2015.1114112 doi: 10.1080/10485252.2015.1114112
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(632) PDF downloads(54) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog