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Abstract: This work considers the Local Linear Estimation (LLE) of the conditional functional mean.
This regression model is used when the independent variable is functional , and the dependent one
is a censored scalar variable. Under standard postulates, we establish the asymptotic distribution of
the LLE by proving its asymptotic normality. The obtained results show the superiority of the LLE
approach over the functional local constant one. The feasibility of the studied model is demonstrated
using artificial data. Finally, the usefulness of the obtained asymptotic distribution in incomplete
functional data is highlighted through a real data application.
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1. Introduction

Evaluating the correlation between two random variables is a fundamental issue in mathematical
statistics. Often this issue is analyzed by the regression function. The main objective of this paper
is to use the LLE method to investigate the nonparametric conditional mean with regard to censored
response variables when the explanatory variable takes values in a semi-metric space. Furthermore,
the LLE approach has been used to interpolate many functional models (see [12, 13, 24] for some
examples). This approach achieves better results than the kernel estimator. For an overview on the
kernel method, the reader can refer to [16, 18, 23]. We return to [1] for more recent advances in the
kernel method.
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In reliability and survival analysis, the study of censored data is particularly useful because it
permits the coverage of cases when the variable is incompletely observed. This latter has received the
attention of many academics (see [7]). We refer also to [26] for the estimation of the conditional
survival function in the nonparametric framework. In the case of multivariate data, many studies have
explored the estimation of the conditional mean function (see [9] for some references). The authors of
this cited work have used the LLE approach for the relative error mean. They established the uniform
almost sure convergence of the constructed estimator. Meanwhile, the authors of [10] have examined
the asymptotic normality in the dependent case. In the context of data with a functional nature, this
topic has received much attention. The point-wise and the almost complete convergence (ACC) of the
estimator of the conditional mean was studied in [22]. It considers the case involving a functional
explanatory variable with a censored response. Rahmani and Bouanani [25] obtained the asymptotic
normality of the conditional cumulative distribution function in the i.i.d. case. Recently, [6] described
the convergence of the conditional density estimation. In the dependence case , [15] obtained the rate
of the point-wise ACC of the regression estimate. We return to [27] for the conditional density
function, where the authors have studied the asymptotic normality of the local linear constant.

This paper studies the LLE of the conditional expectation in the incomplete functional data case.
We suppose that the input variable belongs to an infinite-dimensional space and the output exhibits a
censoring feature. We state the limit distribution of the estimator by proving its asymptotic normality
of the constructed estimator. We point out that the challenging issue of this subject is the fact that
the LLE is defined with a sum of double index , unlike the classical kernel case , where the estimator
is defined with only one index. Additionally to this feature , the incomplete functional observation
make s the establishment of the normality asymptotic more difficult. Thus, the statement of the limit
distribution of our LLE in the incomplete functional data case requires a special decomposition of the
estimator , allowing us to characterize a specific leading term that satisfies Lindeberg’s central limit.
Finally, the impact of the censoring phenomena on the estimation quality is evaluated via simulated
data and real data examples to show that the LLE estimator has more advantages over the local constant
one in this incomplete functional data situation.

The remaining sections of this paper are structured as follows: In Section 2, we define the LLE
regression estimator for our model. In Section 3, we give the needed conditions and the main results.
In Section 4, we give an application to build a confidence interval. The demonstrations are detailed in
the last Section.

2. The model and the estimator

We define a random couple (X,Y) where Y is valued in R and X has values in a space of infinite
dimensional F with a semi-metric d. We point out that in practice the choice of the semi-metric is
closely linked to the basis functions used to generate the functional space F . Of course the choice of
the basis functions is also based on the degree of smoothing property of the functional data. In the
sense that if the functional data is very smooth we use the semi-metric associated with the Fourier
or the spline basis functions. However, if the functional is discontinuous the semi-metric based on
the principal component analysis is more adequate. Now, to construct the LLE estimator we consider
(Xi,Yi)i=1,...,n a sequence of independent and identically distributed as (X,Y).

For the complete data, the LLE method’s estimator for the regression [2] of Y given X = x is

AIMS Mathematics Volume 9, Issue 6, 13980–13997.



13982

constructed by assuming that the conditional mean m(·) is approximate by a linear function in the
neighborhood of x

m(.) = Ax + Bxδ(X, x) + o(ℓ(·, x)).

The functions δ(., .) and ℓ(., .) are known from F ×F into R, where d(., .) = |ℓ(., .)|. Next the estimation
of Ax and Bx are solutions of

Âx, B̂x = arg min
a,b

n∑
i=1

(Y − a − bδ(Xi, x))2 L(h−1ℓ(Xi, x)).

L(.) is the kernel function and h is the bandwidth. We suppose that δ(x, x) = 0 which permit s to deduce
that Ax = m(x) and the LLE of m(x) is

Âx = mLL(x) =

∑
1≤ j≤n

Ω jY jL(h−1ℓ(X j, x))∑
1≤ j≤n

Ω jL(h−1ℓ(X j, x))
, ∀y ∈ R,

with

Ω j =
∑

1≤i≤n

δ2(Xi, x)L(h−1ℓ(Xi, x)) −

∑
1≤i≤n

δ(Xi, x)L(h−1ℓ(Xi, x))

 δ(X j, x).

Censorship model:
We define a sequence of random variables Y1,Y2, . . .Yn of unidentified and continuously distributed

function F. Next, we generate C1,C2, ...,Cn n-observations of C called censoring time. We assume
that the sample C1,C2, . . . ,Cn have also an unknown cumulative G. The censoring phenomena means
that Y is observed only when Y ≤ C. In this situation, we proceed with a sample (Xi,Ti, ℓi)i∈N of
(X,T = Y∧C, ℓ), ∧ denotes the minimum. The censoring status is controlled by the quantity ℓ = 1{Y≤C}.
Moreover, by simple analytical argument, we prove that

E
[

ℓ

Ḡ(T )
T |X

]
= E[Y |X].

Thus it suffices to replace Y with ℓ
Ḡ

(Y)Y to construct the LLE nonparametric pseudo estimator of m(.)
in the censored case:

S̃ (x) =

∑
1≤ j≤n

Ω jT jL jℓ jḠ
−1(T j)∑

1≤ j≤n

Ω jL j

,

with
δi = δ(Xi, x) and Li = L(h−1ℓ(Xi, x)) quadi = 1, . . . n.

The latter can be rewritten as follows

S̃ (x) =

1
n(n − 1)E[Ω1L1]

∑
1≤ j≤n

Ω jT jL jℓ jḠ
−1(T j)

1
n(n − 1)E[Ω1L1]

∑
1≤ j≤n

Ω jL j

=:
m̃x

N

Ŝ x
D

.
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Recall that in practice, G is typically unidentified. So, we replace it by the Kaplan and Meier [19]
estimator Gn(.) defined by

Ḡn(t) = 1 − Gn(t) =


n∏

i=1

(
1 − 1−ℓi

n−i+1

)1{Ti≤t} if t < T(n)

0 if t ≥ T(n),

where T(1) ≤ T(2) ≤ ... ≤ T(n) are the statistics order of T .
Therefore,

Ŝ (x) =

1
n(n − 1)E[Ω1L1]

∑
1≤ j≤n

Ω jT jL jℓ jḠ
−1
n (T j)

Ŝ x
D

=:
Ŝ x

N

Ŝ x
D

.

We specify the extremities of F and G by

τG = sup{y, Ḡ(y) > 0}, and τF = sup{y, F̄(y) > 0},

and we assume that Ḡ (τF) > 0 (this implies τF < τG < +∞ ).

3. Assumptions

For any fixed x ∈ F and S is a compact subset of ] − ∞, τ]. Let h ≥ 0, ψx(h) = P (x′ ∈ B(x, h)) =
P (x′ ∈ F , 0 < d(x′, x) < h), we use the notation for C and C′ positive numeric values. We establish the
following conditions for our main result.

(A1) ∀h > 0, ψx(h) > 0.

∀t ∈ [−1, 1], lim
h→0

ψx(−h, th)
ψx(h)

= ψ(t).

(A2) The regression satisfies the Lipschitz condition with respect to x and y such that

∃C, a1 > 0, ∀(x1, x2) ∈ S 2
F
, ∀(y1, y2) ∈ S 2, |m(x1) − m(x2)| ≤ Cd(x1, x2)a1 .

(A3) The bi-function δ(., .) satisfies

(i) ∀x′ ∈ F , C′|ℓ(x, x′)| ≤ |δ(x, x′)| ≤ C|ℓ(x, x′)|.
(ii) sup

s∈B(x,v)
|δ(x, s) − ℓ(x, s)| = o(v).

(A4) L is a positive kernel and bounded with support [−1, 1].
(A5) The bandwidth h satisfies

(i) There is a positive integer n0 for which

1
ψx (h)

∫ 1

−1
ψx (zh, h)

d
dz

(
z2L(z)

)
dz > C3 > 0, for n > n0,

and

h
∫

B(x,h)
δ(u, x)dP(u) = o

(∫
B(x,h)

δ2(u, x)dP(u)
)
,

where P(u) is the cumulative distribution of X.
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(ii) lim
n→∞

h = 0, lim
n→∞

log n
nψ(h) = 0, lim

n→∞
nψ(h) = ∞.

(A6) (i) The moment V(X1) = E
(([
Ḡ (Y1)

]−1
)

Y2
1 | X1

)
< +∞ exists.

(ii) (Cn)n≥1 and (Xn,Yn)n≥1 are independent .
(iii) ∃τ < τF , Ti ⩽ τ, ∀i ∈ n.

4. The main result

We need to introduce specific notations to derive the asymptotic normality result.

M j = L j(1) −
∫ 1

−1

(
L j(u)

)′
ψ(u)du, where j = 1, 2.

N(a, b) = La(1) −
∫ 1

−1

(
ubLa(u)

)′
ψ(u)du, for all a > 0 and b = 2, 4.

Asymptotic normality:
Here is our main result, where the theorem below deals with the asymptotic normal distribution of

the LLE regression.

Theorem 1. Assuming that (A1)–(A6) hold, we have for n large enough:(
nψx(h)
σ2(x)

)1/2 (
Ŝ (x) − m(x) − B(x)

) D
−→ N(0, 1),

where
D
→ indicates the convergence in terms of distribution, and

σ(x) =
M2

M2
1

(
ν(x) − m(x)2

)
and B(x) =

E
(
m̃x

N

)
E

(
Ŝ x

D

) − m(x).

Proof of Theorem 1. The proof utilizes the following decomposition and subsequent results:

Ŝ (x) − m(x) − B(x) =
m̃x

N − m(x)Ŝ x
D − E

(
m̃x

N − m(x)Ŝ x
D

)
Ŝ x

D

+
Ŝ x

N − m̃x
N + E

(
m̃x

N

)
− m(x)

Ŝ x
D

− B(x)

=
Mn,1 + Mn,2

Ŝ x
D

,

(4.1)

where
Mn,1 = m̃x

N − mxŜ x
D − E

(
m̃x

N − m(x)Ŝ x
D

)
and

Mn,2 = Ŝ x
N − m̃x

N + B(x)(1 − Ŝ x
D).

Following this, the proof is a direct result of Lemmas 1 and 2. □

Lemma 1. In accordance with the postulates of Theorem 1, we find√
nψx (h)(Mn,1)

D
−→ N (0, σ(x)) , as n −→ +∞.
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Lemma 2. In accordance with the postulates of Theorem 1, we find

Mn,2
P
−→ 0, as n −→ +∞, (4.2)

where
P
−→ 0 indicates convergence in probability.

5. The model’s application to confidence intervals

If we use the method of plug-in and replace ψx,M j and σ by their estimates ψ̂x, Ŝ j and σ̂, where
j = 1, 2,

ψ̂x(h) =
♯ (i : |ℓ (Xi, x)| ≤ h)

n
, Ŝ j =

1

nψ̂x (h)

n∑
i=1

L j

(
|ℓ (Xi, x)|

h

)
, σ̂ =

Ŝ 2

Ŝ 2
1

(̂ν − m(x)2),

where ♯{.} is the cardinal number and ν̂ =
(
E

(([
Ḡn (Y1)

]−1
)

Y2
1 | X1

))
. When we put lim

n→∞

√
nψx(h)B(x) =

0, then, the bias term can be removed. Therefore, we obtain the following Corollary:

Corollary 1. Under postulates (A1)–(A6), we obtain√
nψ̂x(h) (m̂(x) − m(x))

Ŝ 1

σ̂(x)
√

Ŝ 2

D
−→ N(0, 1).

From the corollary, it follows that the following confidence interval

Ŝ (x) ± t1−η/2 ×
σ̂(x)√
nψ̂x(h)

,

where t1−η/2 signified the 1 − η/2 standard normal quantile (for each fixed η ∈ (0, 1)).

6. Artificial data analysis

The goal of this section is to examine the feasibility and the efficiency of the constructed estimator
through a simulation study. More precisely, we aim to:

(1) Examine the easy computation-ability of the constructed estimator.
(2) Control the effect of the censorship feature on the performance of the estimator.

For these issues we generate a functional variable

Xi(t) = log
(
(1 + asin2(t))
1 + bcos2(t)

)
, t ∈ (0, 2Π)

where a (resp. b) is a normal random variable N(0, 1) (resp. N(0, 1)). The shape of the curves regressor
is shown in the following figure:
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Figure 1. The functional explanatory variable.

For the response variables, we drown through the nonparametric regression model equation that is

Yi = m(Xi) + ϵi, i = 1, . . . n,

where r is the operator defined by m(X) = 1
10

∫ 2π

0
exp(X(t))dt. and (ϵ) is a normal distribution

N(0, 0.5). After generating the response and the explanatory variable, we proceed to examine the easy
implementation of the estimator and to quantify the impact of the censoring phenomena in the
estimation. To do that, we generate a censoring variable C distributed as an exponential distribution
Exp(λ). Thus the censoring rate of this artificial study is checked by the parameter λ. Thus, we
simulate with three values of λ that are λ = 0.01, 0.05, 0.1. Such values generate data with three
censoring percentage s 6%, 40%, and 70%.

Furthermore, the implementation of the LLE Ŝ is strongly related to the suppleness of the
determination of the parameters of the estimator. Typically, the practical use of Ŝ is linked to the
determination of the metric the locating functions ℓ and δ the bandwidth and the kernel L. As
discussed in the second section , the choice of the semi-metric in practice is closely linked to the
smoothing degree of the curves. It is clear that in this situation, our curves are sufficiently smooth to
use the spline basis function. For this simulation study, we have tested many metrics including the L2

over the first, second and the tired derivative. It seems that the L2 over the second derivative gives
better results than other metrics. Thus, we choose locating functions ℓ and δ by

ℓ(X, X′) =
(∫ 2π

0
(X(2)(t) − X′(2)(t))2dt

)1/2

and δ(X, X′) =
∫ 1

0
θ(t)(X(2)(t) − X′(2)(t))dt

where X(i) denotes the ith derivative of X and θ denotes the eigenfunction associated to the greatest
eigenvalue of the covariance matrix

1
n

n∑
j=1

(X(i)
j − X(i))t (X(i)

j − X(i)).

Next, we choose L as the quadratic kernel on (0, 1) , which is adequate to the technical assumptions.
Now, for the bandwidth we use the cross-validation rule as follows

hCV = arg min
hn∈Hn

n∑
i=1

(Yi − Ŝ )2
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where Hn is the subset of positive numbers, hn, such that the ball centered B(x, hn) contains exactly L
neighbors of x. Typically, L is selected from {5, 10, 20, . . . , 0.5 ∗ n}.

For this empirical analysis, we generate n = 150 observations of (Xi,Yi,Ci) and compare the LLE
Ŝ (x) with the local constant estimator defined by

m̃(x) =

n∑
i=1

TiLiℓiḠ
−1(Ti)

n∑
i=1

Li

.

Recall that the local constant can be viewed as aparticular case of the LLE ( refer to Barrientos-Marin
et al. [2]). We compare the behavior of both estimators over different censoring levels. The comparison
results are presented in Figures 2–4 where we plot r(Xi) versus its estimation Ŝ (Xi) and m̃(Xi)
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Figure 2. Case 1: The censoring rate is 6%. LLE in the left and the local constant in the
right.
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Figure 3. Case 2: The censoring rate is 40%. LLE in the left and the local constant in the
right.
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Figure 4. Case 3: The censoring rate is 70%. LLE in the left and the local constant in the
right.

It appears, clearly, that the behaviors of both estimators are strongly affected by the percentage of
censoring threshold. In a sense that the efficiency of estimation decreases with the level of censoring.
Secondly, it is clear that the LLE approach improves upon the local constant approach which confirms
the well -known theoretical results concerning the superiority of the local linear over the local constant.
To highlight this statement, we report in the following table the MSE error defined by

MS E =
1
n

n∑
i=1

(m(Xi) − m̄(Xi))2

where m̄ means either Ŝ (Xi) and m̃(Xi). The latter is calculated for varied values of the sample size n.

Table 1. MS E-results.
Estimator n λ = 0.01 λ = 0.05 λ = 0.1
Local linear estimator 100 1.04 1.97 2.31

150 0.89 1.15 2.02
200 0.83 1.15 1.92
250 0.73 0.94 1.41

Local constant estimator 100 1.67 2.16 2.76
150 1.16 1.79 2.33
200 1.07 1.21 2.09
250 0.97 1.02 1.81

7. Real data example

Having shown the easy implantation of the LLE Ŝ (Xi), we return to this section to apply our model
to real life example. Specifically, we aim to incorporate the obtained asymptotic normality through
the prediction of a future characteristic of the financial data using the confidence interval approach.
For this goal, we consider a sample of financial data that records the intraday return of the stock index
Nikkei during the period from October 11, 1983 to October 11, 2022. Of course this kind of
time-varying financial data can be analyzed as censored data because often the stock markets are
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closed whenever they fall below certain index, particularly in the crisis period. In addition we recall
that the stock markets were stopped many times during the COVID-19 pandemic period. On the other
hand, in order to ensure the independence property of the observations we define the functional
variables using the curves of the intraday in some spaced months between October 1983 and
October 2022. We point out that the considered data are available from the website
“https://fred.stlouisfed.org/series/NIKKEI225”. Formally, the functional variable
Xi(d) = −100 log

(
r(d)

r(d−1)

)
for a day d in the selected month i. Now, to predict the maximum gain one

month ahead, we proceed with a response variable Yi = maxd Xi+1(d). So, in order to carry out this
forecasting issue, we compare our estimator to the standard kernel estimator defined by

m̃(x) =

n∑
i=1

TiLiℓiḠ
−1(Ti)

n∑
i=1

Li

.

Recall that the asymptotic normality of this estimator can be deduced by the same procedure as a
particular case of the present study. It follows that the confidence interval of the kernel regression is

m̃(x) ± t1−η/2 ×
σ̂(x)√
nψ̂x(h)

.

Now, we fix α = 0.95, and we compare both estimators by computing the probability coverage of the
two confidence interval s. The latter gives the percentage of the response variables that belongs to the
confidence intervals. Furthermore, we point out that we have used the same bandwidth selector and
the same kernel to calculate the estimators Ŝ (x) and m̃(x). The shape of the curves implies that the
appropriate metric for the distance calculator is the PCA metric. Formally, we assume that ℓ = δ = d
and are equal to the distance obtained by the standard Euclidean norm with respect to the basis of the
q-eigenfunctions associated with the q largest eigenvalues of the covariance matrix. We simulate with
q = 3. Finally, for this comparative study, we split the data many times ( exactly 70 times), in a random
way, into subsets (90% learning sample and 100% testing sample). Then, we compute the coverage
probability for each case. In the following figure, we compare the different values of the coverage
probability with the horizontal line for α = 0.95.
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Figure 5. LLE estimator in the left and the kernel estimator in the right.
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Without surprise, we can see that the LLE approach is more important than the classical kernel
estimator. In the sense that the prediction by Ŝ (x) is more accurate than the estimator m̃(x). It is clear
that the points are closer to the horizontal line in the left graph than the right one.

8. Conclusions

The superiority of the LLE approach over the standard kernel estimation is a principal motivation to
investigate the regression model in the incomplete functional data case. The main achievement of the
present contribution is to investigate the LLE of the classical regression with a functional regressor and
when the response variable is observed with censoring. In the theoretical part, we have demonstrated
the asymptotic normality under some mild conditions, which are standard in functional data analysis.
Furthermore, the assumed conditions explore the different structures of this topic. In particular, the first
condition (A1) combines the functional nature of the data with the measurability space of the random
variable. The condition (A2) explores the nonparametric path of the model, and the censoring character
is controlled through condition (A6). In the practical study, we show that the LLE approach keeps its
superiority over the local constant method in this context of incomplete functional data. Moreover,
from the computational part, we deduce that the proposed plugin estimation of the asymptotic variance
is very easy to compute, and the different parameter involved in this estimation can be selected using
some practical strategy. In addition to this practical and theoretical development, the present project
opens some interesting tracks for the future. For example, it will be important to study the LLE of the
relative regression in the case of censored functional data. Such a prospect is motivated by the fact that
the relative regression is a good alternative predictive model to the classical regression. Secondly, the
local linear of the robust regression is a crucial issue in statistical forecasting . Furthermore, extending
our results to the dependent case and/or functional time series cases including long memory, ergodic
, and associated processes, is a very interesting open question. However, it would require nontrivial
mathematical inequalities that are well beyond the scope of this paper.
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Appendix

Proof of Lemma 1. Following the proofs of Lemma 1 of Rahmani and Bounani ( [25]), we get

√
nψx (h)Mn,1 =

√
nψx (h)

nE (Ω1L1)

n∑
j=1

Ω jL j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
−E

 n∑
j=1

Ω jL j

(
Ω j

[
Ḡ

(
T j

)]−1
T j − m(x)

) .
(8.1)

It is obvious that

√
nψx (h)Mn,1 =

 1

nE
(
δ2

1L1

) n∑
i=1

δ2
i Li − 1


√

nψx (h)E
(
δ2

1L1

)
E (Ω1L1)

n∑
j=1

L j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
︸                                                                                              ︷︷                                                                                              ︸

γ1

−

√
nψx (h)E

(
δ2

1L1

)
E (Ω1L1)

n∑
j=1

L j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
︸                                                            ︷︷                                                            ︸

γ2

−


1

nE (δ1L1)

n∑
i=1

δiLi

√
nψx (h)E (δ1L1)
E (Ω1L1)

n∑
j=1

δ jL j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
︸                                                                                       ︷︷                                                                                       ︸

γ3


−E


 1

nE
(
δ2

1L1

) n∑
i=1

δ2
i Li − 1


√

nψx (h)E
(
δ2

1L1

)
E (Ω1L1)

n∑
j=1

L j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
+ E


√

nψx (h)E
(
δ2

1L1

)
E (Ω1L1)

n∑
j=1

L j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
+ E

 1
nE (δ1L1)

n∑
i=1

δiLi

√
nψx (h)E (δ1L1)
E (Ω1L1)

n∑
j=1

δ jL j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

) .

(8.2)

Let
Γk = γk − E[γk], for k ∈ {1, 2, 3},

and we put √
nψx (h)Mn,1 = Γ1 + Γ2 − Γ3.

Now, we need to show the following claim

Γ2
D
−→ N(0, σ2(x)). (8.3)

Γ1
P
−→ 0. (8.4)

Γ3
P
−→ 0. (8.5)
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• First, let us calculate the variance of Γ2

Var(Γ2) =
n2ψx (h)E2

(
δ2

1L1

)
E2 (Ω1L1)

(
E

(
L2

1

(
ℓ1

[
Ḡ (T1)

]−1
T1 − m(x)

)2
))

−
n2ψx (h)E2

(
δ2

1L1

)
E2 (Ω1L1)

E2
(
L1

(
ℓ1

[
Ḡ (T1)

]−1
T1 − m(x)

))
=:κn,1 + κn,2.

(8.6)

− Discussing the term κn,2

κn,2 =E
2
(
L1

(
E

(
ℓ1

[
Ḡ (T1)

]−1
T1|X1

)
− m(x)

))
. (8.7)

By making use of the properties of conditional expectation and considering that
1Y1≤C1ψ(T1) = 1Y1≤C1ψ(Y1), where ψ(.) is a measurable function and assumption (A6(ii)), we
get

E
(
ℓ1

[
Ḡ (T1)

]−1
T1 | X1

)
= E

(
1Y1≤C1

[
Ḡ (Y1)

]−1
Y1 | X1

)
= E

([
Ḡ (Y1)

]−1
Y1E(1Y1≤C1 | (Y1, X1)) | X1

)
= E (Y1 | X1) = m(X1)

(8.8)

and by assumption (A2),

E
(
ℓ1

[
Ḡ (Y1)

]−1
Y1|X1

)
− m(x) −→ 0, as n→ +∞.

Then, by assumption (A3) and (A4) we deduce that

n2ψx (h)E2
(
δ2

1L1

)
E2 (Ω1L1)

(
E2

(
L1

(
ℓ1

[
Ḡ (T1)

]−1
T1 − m(x)

)))
−→ 0, as n→ +∞.

− Discussing the term κn,1. After a simple calculation, we get

κn,1 =
n2ψx (h)E2

(
δ2

1L1

)
E2 (Ω1L1)

(
E

(
L2

1

(
ℓ1

[
Ḡ (T1)

]−1
T1 − m(x)

)2
))

=
n2ψx (h)E2

(
δ2

1L1

)
E2 (Ω1L1)

E
(
L2

1Var
(
ℓ1 [G (T1)]−1 T1|X1

))
+

n2ψx (h)E2
(
δ2

1L1

)
E2 (Ω1L1)

E

(
L2

1

(
E

(
ℓ1

[
Ḡ (T1)

]−1
T1|X1

)
− m(x)

)2
)
.

(8.9)

* About the first term of equation (8.9), we observe that

Var
(
ℓ1

[
Ḡ (T1)

]−1
T1 | X1

)
= E

((
ℓ1

([
Ḡ (T1)

]−1
)

Y1

)2
| X1

)
− E

[(
ℓ1

[
Ḡ (T1)

]−1
T1 | X1

)]2
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we have

E
[(
ℓ1

[
Ḡ (T1)

]−1
T1 | X1

)]2
= E [Y1|X1]2 = (m(x))2, (8.10)

however,

E

((
ℓ1

([
Ḡ (T1)

]−1
)

T1

)2
| X1

)
= E

(
ℓ1

([
Ḡ (Y1)

]−1
)2

Y2
1 | X1

)
= E

(
E

(
1Y1≤C1 |(X1|Y1)

) (
[G (Y1)]−1

)2
Y2

1

∣∣∣∣X1

)
= E

(([
Ḡ (Y1)

]−1
)

Y2
1 | X1

)
= ν(x)

and from Lemma A.1 in Zhou and Lin ( [28]), we have

E
(
L j

1

)
= M jψx(h) + o (ψx(h)) , f or j = 1, 2;

E
(
La

1δ
b
1

)
= N(a, b)hbψx(h) + o

(
hbψx(h)

)
, f or all a > 0 and b = 2, 4;

E (Ω1L1) = (n − 1)E (Ω12) = (n − 1)N(1, 2)M1h2ψ2
x(h)(1 + o(1)),

(8.11)

so, for n large enough and assumption (A6(i)), we obtain

n2ψx (h)E2
(
δ2

1L1

)
E2 (Ω1L1)

E
(
L2

1Var
(
ℓ1

[
Ḡ (T1)

]−1
T1|X1

))
−→

M2

M2
1

(
ν(x) − m(x)2

)
.

* About the second term of Eq (8.9), and by the Lemma A.1 in Zhou and Lin ( [28]) and
from Eq (8.10), we get

n2ψx (h)E2
(
δ2

1L1

)
E2 (Ω1L1)

E

(
L2

1

(
E

(
ℓ1

[
Ḡ (T1)

]−1
T1|X1

)
− m(x)

)2
)
−→ 0, as n −→ +∞.

To complete the proof of (8.3), we emphasize the importance of the theorem on the central
limit and we use the Lindeberg’s central limit condition on Σn, where

Σn =

√
nψx (h)E

(
δ2

1L1

)
E (Ω1L1)

(
L1

(
ℓ1

[
Ḡ (T1)

]−1
T1

)
− E

(
L1ℓ1

[
Ḡ(T1)

]−1
T1

))
are i.i.d random variables with 0 average. For all ε > 0 and assumptions (A4) and (A5), we
have

1
σ(x)
E

((√
nΣ1n

)2
I|
√

nΣ1n|>ε
√

nσ(x)

)
−→ 0,

where E
((√

nΣn1

)2
)
−→ σ(x), and {

∣∣∣√nΣ1n

∣∣∣ > ε
√

nσ(x)} is empty set, because that
∣∣∣∣Σ1n
√

n

∣∣∣∣ ≤
C
√

n
(n − 1)2ψx (h)Σ1n

−→ 0, as n −→ ∞ .
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• Secondly, to compute the asymptotic term Γ1 we must to show that by Cauchy-Schwarz’s
inequality,

E | (Γ1 − E(Γ1)) | ≤ 2

√√√√
E

 1

nE
(
δ2

1L1

) n∑
i=1

δ2
i Li − 1


2

×

√√√√
E


√

nψx (h)E
(
δ2

1L1

)
E (Ω1L1)

n∑
j=1

L j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
2

.

(8.12)

− For the initial component of the portion on the right side of (8.12), we delete the details
because they are well-know and by Lemma A.1 of Zhou and Lin [28] (8.11) and hypothesis
(A3) and (A4), we get

E

 1

nE
(
δ2

1L1

) n∑
i=1

δ2
i Li − 1


2

= O
(

1
nψx (h)

)
. (8.13)

− Now, we turn to the second term of (8.12), we have

E


√

nψx (h)E
(
δ2

1L1

)
E (Ω1L1)

n∑
j=1

L j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
2

=
nψx (h)E2

(
δ2

1L1

)
E2 (Ω1L1)

(
nE

(
L1

(
ℓ1

[
Ḡ (T1)

]−1
T1 − m(x)

))2
)

+
nψx (h)E2

(
δ2

1L1

)
E2 (Ω1L1)

(
n(n − 1)E2

(
L1

(
ℓ1 [G (T1)]−1 T1 − m(x)

)))
(8.14)

we using that | Tiℓ j [G (Ti)]−1
−m(x) |≤ [τ (τF)]−1 and Lemma A.1 of Zhou and Lin [28](8.11)

and by postulates (A3) and (A4), we have

E


√

nψx (h)E
(
δ2

1L1

)
E (Ω1L1)

n∑
j=1

L j

(
ℓ j

[
Ḡ

(
T j

)]−1
T j − m(x)

)
2

= O(1) + o (nψx (h)) , (8.15)

and by Eqs (8.13) and (8.15), we get E | (Γ1 − E(Γ1)) |= o(1), then, the Bienayme Tchebychev’s
inequality ∀ϵ > 0

P (| (Γ1 − E(Γ1)) |> ϵ) ≤
E | (Γ1 − E(Γ1)) |

ϵ
−→ 0. (8.16)

• Thirdly, as in the same steps in Eq (8.5), we obtain the asymptotic term of Γ3.

Finally, from (8.3)–(8.5) and by Slutsky’s theorem, we get the result for Eq (8.1). □

Proof of Lemma 2. We must prove

P
(∣∣∣∣Ŝ N(x) − m̃N(x)

∣∣∣∣ > ε) ≤ E
(∣∣∣∣Ŝ N(x) − m̃N(x)

∣∣∣∣)
ε

, (8.17)

E (m̃N(x)) − m(x) −→ 0, as n −→ ∞. (8.18)
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• For inequality (8.17), we have∣∣∣∣Ŝ N(x) − m̃N(x)
∣∣∣∣ ≤ 1

n(n − 1)E (Ω12)

∑
i, j

∣∣∣∣∣Tiℓ jΩi j

([
Ḡn (Ti)

]−1
−

[
Ḡ (Ti)

]−1
)∣∣∣∣∣

≤

C|τ| sup
t≤τ

∣∣∣Ḡn(t) −G(t)
∣∣∣

Ḡn (τ) Ḡ (τ)

∣∣∣∣∣∣∣ 1
n(n − 1)E (Ω12)

∑
i, j

Ωi j

∣∣∣∣∣∣∣ ,
using the application of Glivenko-Cantelli Theorem for the censored data and by an analogous
proof to that of Lemma 3 in Leulmi ( [21]) and assumption (A6(ii)) and (A6(iii)), we get

Ŝ N(x) − m̃N(x) −→ 0, as n −→ ∞.

• Clearly, for Eq (8.18), we have

E (m̃N(y)) − m(x) =
1

E (Ω1L1)
E

(
Ω1L1ℓ1T1

[
Ḡ (T1)

]−1
)
− m(x)

=
1

E (Ω1L1)
E

(
Ω1L1E

(
ℓ1

[
Ḡ (T1)

]−1
T1 | X1

))
− m(x),

Using that E
(
ℓ1

[
Ḡ (T1)

]−1
T1 | X1

)
= m(X1) and assumption (A2) for Eq (8.18), we conclude the proof.

□
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