Research article

Event-triggered impulsive control for second-order nonlinear multi-agent systems under DoS attacks

  • Received: 31 December 2023 Revised: 20 March 2024 Accepted: 29 March 2024 Published: 16 April 2024
  • MSC : 93C10, 93C27, 93D05, 93D50

  • We investigated impulsive consensus in second-order nonlinear multi-agent systems (MASs) under Denial-of-Service (DoS) attacks. We consided scenarios where the communication network is subjected to DoS attacks, disrupting communication links and causing changes in the communication topology. An event-triggered impulsive control(ETIC) approach is proposed to flexibly address these issues. Additionally, an upper bound on the DoS attack period is introduced. Finally, a numerical example is given to verify the validity of the major results.

    Citation: Qiushi Wang, Hongwei Ren, Zhiping Peng. Event-triggered impulsive control for second-order nonlinear multi-agent systems under DoS attacks[J]. AIMS Mathematics, 2024, 9(6): 13998-14011. doi: 10.3934/math.2024680

    Related Papers:

  • We investigated impulsive consensus in second-order nonlinear multi-agent systems (MASs) under Denial-of-Service (DoS) attacks. We consided scenarios where the communication network is subjected to DoS attacks, disrupting communication links and causing changes in the communication topology. An event-triggered impulsive control(ETIC) approach is proposed to flexibly address these issues. Additionally, an upper bound on the DoS attack period is introduced. Finally, a numerical example is given to verify the validity of the major results.



    加载中


    [1] X. L. Wang, Y. G. Hong, J. Huang, Z. P. Jiang, A distributed control approach to a robust output regulation problem for multi-Agent linear systems, IEEE T. Automat. Contr., 55 (2010), 2891–2895. https://doi.org/10.1109/TAC.2010.2076250 doi: 10.1109/TAC.2010.2076250
    [2] A. Maidi, J. P. Corriou, Distributed control of nonlinear diffusion systems by input-output linearization, Int. J. Robust Nonlin. Contr., 24 (2014), 389–405. https://doi.org/10.1002/rnc.2892 doi: 10.1002/rnc.2892
    [3] Z. N. Zhang, Y. G. Niu, H. J. Zhao, Secure sliding mode control of interval type-2 fuzzy systems against intermittent denial-of-service attacks, Int. J. Robust Nonlin. Contr., 31 (2021), 1866–1884. https://doi.org/10.1002/rnc.5219 doi: 10.1002/rnc.5219
    [4] W. C. Cai, X. H. Liao, Y. D. Song, Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft, J. Guid. Control Dynam., 31 (2008), 1456–1463. https://doi.org/10.2514/1.31158 doi: 10.2514/1.31158
    [5] Y. J. Liu, X. Y. Zhao, J. H. Park, F. Fang, Fault-tolerant control for T-S fuzzy systems with an aperiodic adaptive event-triggered sampling, Fuzzy Set. Syst., 452 (2023), 23–41. https://doi.org/10.1016/j.fss.2022.04.019 doi: 10.1016/j.fss.2022.04.019
    [6] T. Yang, L. O. Chua, Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication, Int. J. Bifurcat. Chaos, 7 (1997), 645–664. https://doi.org/10.1142/S0218127497000443 doi: 10.1142/S0218127497000443
    [7] H. G. Zhang, J. Fu, T. D. Ma, S. C. Tong, An improved impulsive control approach to nonlinear systems with time-varying delays, Chinese Phys. B, 18 (2009), 969–974. https://doi.org/10.1088/1674-1056/18/3/021 doi: 10.1088/1674-1056/18/3/021
    [8] Y. Chen, W. W. Yu, F. F. Li, S. S. Feng, Synchronization of complex networks with impulsive control and disconnected topology, IEEE T. Circuits-II, 60 (2013), 292–296. https://doi.org/10.1109/TCSII.2013.2251961 doi: 10.1109/TCSII.2013.2251961
    [9] X. Y. Zhang, C. D. Li, H. F. Li, Finite-time stabilization of nonlinear systems via impulsive control with state-dependent delay, J. Franklin I., 359 (2022), 1196–1214. https://doi.org/10.1016/j.jfranklin.2021.11.013 doi: 10.1016/j.jfranklin.2021.11.013
    [10] W. L. He, F. Qian, J. Lam, G. R. Chen, Q. L. Han, J. Kurths, Quasi synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design, Automatica, 62 (2015), 249–262. https://doi.org/10.1016/j.automatica.2015.09.028 doi: 10.1016/j.automatica.2015.09.028
    [11] S. M. Chu, W. L. He, Q. L. Han, F. Qian, Pinning synchronization of delayed dynamical networks via impulsive control, IEEE, 2014,544–549. https://doi.org/10.1109/ICMC.2014.7231615 doi: 10.1109/ICMC.2014.7231615
    [12] W. L. He, G. R. Chen, Q. L. Han, F. Qian, Network-based leaderfollowing consensus of nonlinear multi-agent systems via distributed impulsive control, Inform. Sci., 380 (2017), 145–158. https://doi.org/10.1016/j.ins.2015.06.005 doi: 10.1016/j.ins.2015.06.005
    [13] C. Ke, C. D. Li, L. You, Consensus of nonlinear multi-agent systems with grouping via state-constraint impulsive protocols, IEEE T. Cybernetics, 51 (2021), 4162–4172. https://doi.org/10.1109/TCYB.2019.2953566 doi: 10.1109/TCYB.2019.2953566
    [14] S. S. Yang, X. F. Liao, Y. B. Liu, Second-order consensus in directed networks of identical nonlinear dynamics via impulsive control, Neurocomputing, 179 (2016), 290–297. https://doi.org/10.1016/j.neucom.2015.11.088 doi: 10.1016/j.neucom.2015.11.088
    [15] T. D. Ma, Z. L. Zhang, B. Cui, Impulsive consensus of nonlinear fuzzy multi-agent systems under DoS attack, Nonlinear Anal. Hybri., 44 (2022), 101155. https://doi.org/10.1016/j.nahs.2022.101155 doi: 10.1016/j.nahs.2022.101155
    [16] X. G. Tan, J. D. Cao, X. D. Li, Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy, IEEE T. Cybernetics, 49 (2019), 792–801. https://doi.org/10.1109/TCYB.2017.2786474 doi: 10.1109/TCYB.2017.2786474
    [17] X. D. Li, D. X. Peng, J. D, Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE T. Automat. Contr., 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [18] W. Y. Tang, K. Li, J. Wu, Y. F. Xie, Consensus of nonlinear multi-agent systems with distributed event-triggered impulsive control, J. Vib. Control, 28 (2022), 882–891. https://doi.org/10.1177/1077546320985978 doi: 10.1177/1077546320985978
    [19] H. H. Guo, J. Liu, C. K. Ahn, Y. B. Wu, W. X. Li, Dynamic event-triggered impulsive control for stochastic nonlinear systems with extension in complex networks, IEEE T. Circuits-II, 69 (2022), 2167–2178. https://doi.org/10.1109/TCSI.2022.3141583 doi: 10.1109/TCSI.2022.3141583
    [20] L. Chen, H. G. Liang, Y. N. Pan, T. S. Li, Human-in-the-loop consensus tracking control for UAV systems via an improved prescribed performance approach, IEEE T. Aero. Elec. Sys., 59 (2023), 8380–8391. https://doi.org/10.1109/TAES.2023.3304283 doi: 10.1109/TAES.2023.3304283
    [21] M. Wang, H. G. Liang, Y. N. Pan, X. P. Xie, A new privacy preservation mechanism and a gain iterative disturbance observer for multiagent systems, IEEE T. Netw. Sci. Eng., 11 (2024), 392–403. https://doi.org/10.1109/TNSE.2023.3299614 doi: 10.1109/TNSE.2023.3299614
    [22] Y. N. Pan, W. Y. Ji, H. K. Lam, L. Cao, An improved predefined-time adaptive neural control approach for nonlinear multiagent systems, IEEE T. Autom. Sci. Eng., 2023. https://doi.org/10.1109/TASE.2023.3324397 doi: 10.1109/TASE.2023.3324397
    [23] A. Parivallal, R. Sakthivel, F. Alzahrani, A. Leelamani, Quantized guaranteed cost memory consensus for nonlinear multi-agent systems with switching topology and actuator faults, Physica A, 539 (2020), 122946. https://doi.org/10.1016/j.physa.2019.122946 doi: 10.1016/j.physa.2019.122946
    [24] S. Han, S. K. Kommuri, S. Lee, Affine transformed it2 fuzzy event-triggered control under deception attacks, IEEE T. Fuzzy Syst., 29 (2021), 322–335. https://doi.org/10.1109/TFUZZ.2020.2999779 doi: 10.1109/TFUZZ.2020.2999779
    [25] D. R. Ding, Z. D. Wang, D. N. C. Ho, G. L. Wei, Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks, Automatica, 78 (2017), 231–240. https://doi.org/10.1016/j.automatica.2016.12.026 doi: 10.1016/j.automatica.2016.12.026
    [26] J. Cao, D. Ding, J. L. Liu, E. G. Tian, S. L. Hu, X. P. Xie, Hybridtriggered-based security controller design for networked control system under multiple cyber attacks, Inform. Sci., 548 (2021), 69–84. https://doi.org/10.1016/j.ins.2020.09.046 doi: 10.1016/j.ins.2020.09.046
    [27] X. L. Chen, Y. G. Wang, S. L. Hu, Event-based robust stabilization of uncertain networked control systems under quantization and denial-of-service attacks, Inform. Sci., 459 (2018), 369–386. https://doi.org/10.1016/j.ins.2018.05.019 doi: 10.1016/j.ins.2018.05.019
    [28] Y. T. Wang, W. L. He, Impulsive consensus of leader-following nonlinear multi-agent systems under DoS attacks, IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, 2019, 6274–6279. https://doi.org/10.1109/IECON.2019.8927636 doi: 10.1109/IECON.2019.8927636
    [29] J. H. Qin, M. L. Li, L. Shi, X. H. Yu, Optimal denial-ofservice attack scheduling with energy constraint over packet-dropping networks, IEEE T. Automat. Contr., 63 (2018), 1648–1663. https://doi.org/10.1109/TAC.2017.2756259 doi: 10.1109/TAC.2017.2756259
    [30] Z. Feng, G. Q. Hu, Secure cooperative event-triggered control of linear multi-agent systems under DoS attacks, IEEE T. Contr. Syst. T., 28 (2020), 741–752. https://doi.org/10.1109/TCST.2019.2892032 doi: 10.1109/TCST.2019.2892032
    [31] H. Liu, Event-triggering-based leader-following bounded consensus of multi-agent systems under DoS attacks, Commun. Nonlinear Sci., 89 (2020), 105342. https://doi.org/10.1016/j.cnsns.2020.105342 doi: 10.1016/j.cnsns.2020.105342
    [32] L. Zhao, G. H. Yang, Adaptive fault-tolerant control for nonlinear multi-agent systems with DoS attacks, Inform. Sci., 526 (2020), 39–53. https://doi.org/10.1016/j.ins.2020.03.083 doi: 10.1016/j.ins.2020.03.083
    [33] D. Ye, Y. Y. Shao, Quasi-synchronization of heterogeneous nonlinear multi-agent systems subject to DoS attacks with impulsive effects, Neurocomputing, 366 (2019), 131–139. https://doi.org/10.1016/j.neucom.2019.07.095 doi: 10.1016/j.neucom.2019.07.095
    [34] Y. C. Sun, G. H. Yang, Event-triggered distributed state estimation for multiagent systems under DoS attacks, IEEE T. Cybernetics, 52 (2020), 6901–6910. https://doi.org/10.1109/TCYB.2020.3034456 doi: 10.1109/TCYB.2020.3034456
    [35] M. A. Shayman, Geometry of the algebraic Riccati equation, Part Ⅰ, SIAM J. Control Optim., 21 (1983), 375–394. https://doi.org/10.1137/0321021 doi: 10.1137/0321021
    [36] Z. D. Ai, L. H. Peng, G. D. Zong, K. B. Shi, Impulsive control for nonlinear systems under DoS attacks: A dynamic event-triggered method, IEEE T. Circuits-II, 69 (2022), 3839–3843. https://doi.org/10.1109/TCSII.2022.3170592 doi: 10.1109/TCSII.2022.3170592
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(798) PDF downloads(69) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog