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Abstract: We investigated impulsive consensus in second-order nonlinear multi-agent systems
(MASs) under Denial-of-Service (DoS) attacks. We consided scenarios where the communication
network is subjected to DoS attacks, disrupting communication links and causing changes in the
communication topology. An event-triggered impulsive control(ETIC) approach is proposed to flexibly
address these issues. Additionally, an upper bound on the DoS attack period is introduced. Finally, a
numerical example is given to verify the validity of the major results.
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1. Introduction

In recent years, the issue of multi-agent consensus has garnered considerable attention and
research across various disciplines, including computer science, control theory, communication, and
related fields. Multi-agent systems comprise numerous interacting intelligent agents collaborating to
accomplish predefined objectives. Many researchers have studied the issue of achieving consensus
in multi-agent systems under different conditions. There are several effective methods for achieving
consensus, such as distributed control [1,2], sliding mode control [3], fault-tolerant control [4,5], and
impulsive control [6–9].

Compared to the continuous control methods mentioned above, the use of impulsive control
protocols significantly reduces information transmission. Impulsive control involves only information
transfer at discrete impulsive moments. This helps to reduce the risk of communication losses. In
recent decades, impulsive control has widespread applications in fields such as signal processing,
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communication, and medical devices. In [10], researchers investigated bounded consensus in
heterogeneous multi-agent systems using impulsive control. Additionally, some multi-agent systems
with heterogeneous delays were discussed and studied in [11,12]. In [13], two different impulsive
control were proposed: Partial state constraint and full state constraint. They delved into the consensus
problem of nonlinear MASs featuring grouping through state constraint impulsive protocols. They
examined two scenarios: One involving a leader agent and another without, each analyzed using
distinct two kinds of protocol. Considering that the network communication topology is not always
constant, in [14], scholars employed algebraic graph theory and impulsive stability theory to explore
the consensus problem in fixed-topology systems using impulsive control. In [15], the flexible handling
of communication interruptions and topology switches was achieved using the T-S fuzzy model and
impulsive control. It is important to note that the above-mentioned impulsive control methods are all
time-triggered, which may result in additional communication and control overhead during information
transmission. Therefore, it is necessary to study a new impulsive control method to address this
issue. In [16], a distributed ETIC strategy was proposed to achieve consensus of MASs. Considering
the evident benefits of ETIC, in recent years, numerous scholars have conducted research on ETIC
and reported their corresponding results [17]. In [18], a distributed ETIC protocol was proposed to
achieve consensus in MASs. Furthermore, in [19], an innovative dynamic event-triggered impulsive
control protocol has been introduced, offering a more efficient means to reduce controller updates and
minimize the waste of communication resources.

In practice, complex network systems or MAS tend to be more complex and vulnerable to
cyber attacks by malicious actors. In recent years, scholars have gradually turned their attention
to nonlinear multi-agent systems. In [20] scholars proposed an improved prescribed performance
approach for human-in-the-loop consensus tracking control in unmanned aerial vehicle (UAV) systems.
Their research underscores the importance of establishing effective interactions between humans and
machines to achieve efficient control of UAV systems. In [21], scholars explored a privacy preservation
mechanism for multi-agent systems and introduced a gain iterative disturbance observer. Their research
focuses on safeguarding information privacy within systems while maintaining stability and reliability
of system performance. In [22], scholars proposed an improved predefined-time adaptive neural
control approach for addressing control issues in nonlinear multi-agent systems. Their research aims to
overcome limitations of traditional control methods in complex systems, presenting a control solution
with enhanced adaptability and robustness. In [23], scholars investigated quantized guaranteed cost
memory consensus for nonlinear multi-agent systems with switching topology and actuator faults.
Their study addresses uncertainties and faults within the system, introducing a novel guaranteed cost
memory consensus method. Furthermore, cyber attacks have also been a hot research direction in
recent years. Cyber attacks are typically categorized into two types: deception attacks [24,25] and DoS
attacks [26–33]. Deception attacks focus on tampering with the data in the communication network,
while DoS attacks typically overload the resources of the target system, rendering it unable to provide
services and thus disrupting the information transmission channel. In [24], the impulsive consensus of
nonlinear leader-follower MASs under DoS attacks was studied. The authors in [25] considered cases
where sensor data transmission involves packet loss, with the objective of maximizing the terminal
state covariance as the attack target, and presents optimal energy-constrained DoS attack scheduling
schemes. In [26], the scholars developed a resilient cooperative ETIC scheme of linear MASs with
DoS attacks. In [27], the guided bounded consensus of MASs with ETIC was studied in the presence
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of DoS attacks. In [28], the adaptive fault-tolerant control was investigated by designing an adaptive
scheme and state feedback control gain. In [29], the scholars investigated positive impulsive effects
and negative impulsive effects, and by employing the concept of “average impulsive interval,” they
have unified the quasi-synchronization criteria for systems with two types of impulsive effects.

Inspired by the aforementioned research, this paper studies event-triggered impulsive consensus in
second-order nonlinear MASs under DoS attacks. The system suffered DoS attacks, communication
links are disrupted, and the communication topology of the system undergoes changes. The proposed
ETIC can achieve consensus of second-order MASs under DoS attacks. The key contributions of this
study are summarized as follows:

(1) We investigate a second-order nonlinear multi-agent system that experiences DoS attacks,
resulting in communication interruption. The considered attack model is more general, and the paper
provides sufficient conditions for the asymptotic convergence of the system.

(2) Compared with [34], we introduce an event-triggered mechanism within the impulsive control
framework to investigate the security consensus of multi-agent systems with switching topology. The
proposed mechanism efficiently reduces communication resource wastage and avoiding Zeno behavior.
Notation. R and RN×N denote the set of real numbers and the set of N × N real matrix, ‖·‖ denotes the
Euclidean norm of a vector or the spectral norm of a matrix. The superscripts T represent transpose
of a matrix, and λmax(·) and λmin(·) represent the maximum and minimum eigenvalues of a matrix,

⊗
denote the Kronecker product.

2. Problem statement

2.1. Communication graphs

Consider a MAS, the digraphG is (V,E), whereV = {1, 2, · · · ,N} is the set of nodes and E ⊆ V×V
represents the edge set of followers. The information exchange between each node can be described
by adjacency matrix A and Laplacian matrix L. A =

[
ai j

]
∈ RN×N if agents i and j communicate with

one another, ai j = 1, otherwise ai j = 0 and L =
[
li j

]
∈ Rn×n where L = D − A. The degree matrix

D = diag(di) with di =
∑N

i=1 ai j.

2.2. The system model

We consider a second-order MASs with a leader, where the dynamics equation of the leader is
described as {

ẋ0(t) = v0(t)
v̇0(t) = Ax0(t) + f (x0(t), v0(t)),

(1)

and the ith follower’s dynamics equation can be defined as{
ẋi(t) = vi(t)

v̇i(t) = Axi(t) + f (xi(t), vi(t)) + ui(t),
(2)

where x0 ∈ R
n, v0 ∈ R

n are the positions and velocities of the leader, xi ∈ R
n, vi ∈ R

n are the positions
and velocities of the ith follower agent, f (x, v) is a nonlinear function, ui(t) ∈ Rn is the control input.
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Then, the state error is defined as {
epi(t) = xi(t) − x0(t)
evi(t) = vi(t) − v0(t).

(3)

In this paper, we consider a second-order leader system under DoS attacks, so the impulsive control
input can be designed as

ui(t) = c
∞∑

k=1

[
∑
j∈Ni

ai j(m)(x j(t) − xi(t)) + bi(m)(x0 − xi)+∑
j∈Ni

ai j(m)(v j(t) − vi(t)) + bi(m)(v0 − vi)]δ(t − tk),
(4)

where c denotes the coupling strength, m defines the topology under DoS attacks, the local
neighborhood consensus error is pi(t) =

∑
j∈Ni

ai j(x j(t) − xi(t)) + bi(x0 − xi) +
∑

j∈Ni
ai j(v j(t) − vi(t)) +

bi(v0 − vi), δ(·) is the Dirac function, {tk} is the impulse sequence, it satisfies limk→∞ tk = ∞, k ∈ N+.
From (1) and (2), the state error system are as follows{

ėpi(t) = evi(t)
ėvi(t) = Aepi + f (epi, evi) + ui(t),

(5)

where f (ep, ev) = f (xi(t), vi(t)) − f (x0(t), v0(t)).
From the (3)–(5), we can get 

ėpi(t) = evi(t)
ėvi(t) = Aepi + f (epi, evi), t , tk

∆evi(tk) =
∑N

j=1 c[−pi(tk)(m)], t = tk,

(6)

where pi(tk)(m) =
∑

j∈Ni
ai j(m)(x j(t)− xi(t)) + bi(m)(x0 − xi) +

∑
j∈Ni

ai j(m)(v j(t)− vi(t)) + bi(m)(v0 − vi),
∆evi(tk) = evi(tk) − evi(t−k ), evi(tk) = evi(t+

k ) = limh→0+ evi(tk + h), evi(t−k ) = limh→0− evi(tk + h), and e(t) is
right-hand continuous at t = tk.

The system (6) can be rewritten as:
ėp(t) = ev(t)

ėv(t) = (IN ⊗ A)ep + F(ep, ev), t , tk

∆ev(tk) = −c[(L(m) + B(m)) ⊗ IN](ep(t−k ) + ev(t−k )), t = tk,

(7)

where ep = [ep1, ep2, · · · , epN]T , ev = [ev1, ev2, · · · , evN]T , F(ep, ev) = [ f (ep1, ev1), f (ep2, ev2),
· · · , f (epN , evN)]T , B = diag {bi} ∈ R

N×N .
Lemma 1. ([35] Differential Mean Value Theorem) Let f (·) is a continuously differentiable nonlinear
function, for any x1, x2 ∈ R, the following formula is satisfied:

f (xi(t), vi(t)) − f (xi(t0), vi(t0)) =
∂ f (zi)
∂xi

(xi(t) − xi(t0)) +
∂ f (zi)
∂vi

(vi(t) − vi(t0)),

where f (zi) = f (xi(t0) + ∆(xi(t) − xi(t0)), vi(t0 + ∆(vi(t) − vi(t0))), 0 < ∆ < 1.
Definition 1. [28] The second-order MASs (1) and (2) with an impulsive controller ui(t) is said
to be global exponential consensus, if there exist a scalar θ and a decay rate ε such that for
any x1(t0), x0(t0) ∈ R.

‖xi(t) − x0(t)‖ ≤ θ ‖xi(t0) − x0(t0))‖ e−ε(t−t0).
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2.3. DoS attack model

When MASs are targeted by DoS attacks, the attacks focus on disrupting the communication
network, causing varying degrees of damage to the communication connections among system nodes.
Consequently, leading to a disconnection of the communication channel, the network communication
topology undergoes changes. It is noted that the MASs incorporates a recovery mechanism that allows
the communication topology to be restored once the attack concludes. We assume that DoS attacks
are not continuous and that the attacks needs time to recover energy after one attack. Thus, there is a
minimum interval between attacks.

We assume that the time interval of an attack cycle is divided into three periods.
(1) Normal control period(Nn): The multi-agent system is normal working. The DoS attack has not

arrived yet.
(2) Attack period(Na): DoS attacks and switching topologies occur in this interval.
(3) Recovery period(Nr): The period during which the system recovers from a DoS attack.

(minimum interval between attacks)
Definition 2. [28] Define the average impulsive interval as φ > 0 in the time interval [t0, t]. If there
exist positive integer N0,such that

t − t0

φ
− N0 ≤ N(t0, t) ≤

t − t0

φ
+ N0, (8)

where N(t0, t) is the number of impulsive times in [t0, t].
Definition 3. [28] According to the DoS attack model, suppose that Nn(t0, t), Na(t0, t) and Nr(t0, t)
denote the number of impulse instants in the normal control period, attack period and recovery period.
The total time of an attack cycle is N(T0,T ) = Nn(t0, t) + Na(t0, t) + Nr(t0, t). Then the impulsive attack
ratio ηa can be defined as

ηa =
Na(t0, t)
N(t0, t)

. (9)

Assumption 1. The graph G contains a spanning tree which the root node is the leader.

3. Main results

In this section, by designing an appropriate Lyapunov function and utilizing linear matrix
inequalities, the system errors can be driven towards a bounded set, resulting in successful
synchronization. Next, we designed the event trigger condition to be

tk+1 = inf
{
t ≥ tk : V(t) ≥ ea+ξ(tk−t)V(tk)

}
,

where a, ξ > 0 are event trigger parameters.
Theorem 1. Under that Assumption 1, the MASs (1) and (2) are said to be globally exponentially
synchronized, if there exist a symmetric matrix P > 0, system parameters α, φ, ξ > 0, 0 < µ1, µm < 1,
such that

PĀ + ĀT P − αP ≤ 0, (10)

−
ξ + α

φ
< ln µ1 < −

ka
N0 + k

, (11)
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ηa < −
ln µ1 + αφ

ln µm − ln µ1
, (12)

φ < −
ln µ1

α
, (13)

where we denote
µ(tk) = λmax((I2N×2N − R(m))T P(I2N×2N − R(m)),

µ1 = λmax((I2N×2N − R)T P(I2N×2N − R),

µm = max
µ(tk)∈{2,...,m}

λmax((I2N×2N − R(m))T P(I2N×2N − R(m)).

The definition of R and R(m) are given later.
Proof. Let e(t) = [ep(t), ev(t)]T , according to Lemma 1 and Assumption 1,we can get

ė(t) = Āe(t), (14)

where Ā =

[
0 IN

IN +
∂ f (zi)
∂x

∂ f (zi)
∂v

]
, ∂ f (zi)

∂x = diagN
i=1[∂ f (zi)

∂xi
],∂ f (zi)

∂v = diagN
i=1[∂ f (zi)

∂vi
].

Then, choose a Lyapunov function as

V(t) = e(t)T Pe(t). (15)

For t ∈ [tk−1, tk), differentiating V(t) with respect to time t,

V̇(t) = 2e(t)T Pė(t)
= 2e(t)T PĀe(t) = e(t)T (PĀ + ĀT P)e(t).

(16)

Based on (10), one has
V̇(t) ≤ αV(t), (17)

which leads to
V(t) ≤ eα(t−tk−1)V(tk−1), t ∈ [tk−1, tk). (18)

On the another hand, when t = tk, k = 1, 2, · · · , n,

V(tk) = e(tk)T Pe(tk)
= (e(t−k ) − c[(L(m) + B(m)) ⊗ IN](ep(t−k ) + ev(t−k )))T P

(e(t−k ) − c[(L(m) + B(m)) ⊗ IN](ep(t−k ) + ev(t−k )))
= e(t−k )T (I2N×2N − R(m))T Pe(t−k )(I2N×2N − R(m))
≤ λmax((I2N×2N − R(m))T P(I2N×2N − R(m))V(tk) = µ(tk)V(t−k ),

(19)

where
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R =

[
−c[(L + B) ⊗ IN] 0

0 −c[(L + B) ⊗ IN]

]
,

R(m) =

[
−c[(L(m) + B(m)) ⊗ IN] 0

0 −c[(L(m) + B(m)) ⊗ IN]

]
.

Let t ∈ [t0, t1), from (17),
V(t1) ≤ µ(t1)V(t−1 ) ≤ µ(t1)eα(t1−t0)V(t0). (20)

For t ∈ [t1, t2), from (17), (19) and (20)

V(t2) ≤ µ(t2)V(t−2 )
≤ µ(t2)eα(t2−t1)V(t1)
≤ µ(t2)µ(t1)eα(t2−t1)eα(t1−t0)V(t0)
= µ(t2)µ(t1)eα(t2−t0)V(t0).

(21)

By induction, for t ∈ [tk, tk+1),

V(t) ≤ eα(t−tk)V(tk)

≤

k∏
m=1

µ(t−m)eα(t−t0)V(t0).
(22)

According to the Definitions 2 and 3, it is easy to get

Na(t0, t)
N(t0, t)

(
t − t0

φ
− N0) ≤ Na(t0, t) ≤

Na(t0, t)
N(t0, t)

(
t − t0

φ
+ N0).

In a similar way, Nn and Nr is similar to Na.
According to Assumption 2, the multi-agent system is not attacked (N(t0, t) = Nn(t0, t) + Nr(t0, t)),

one has

V(t) < µN(t0.t)
1 eα(t−t0)V(t0)

< µ−N0
1 e( ln µ1

φ +α)(t−t0)V(t0).
(23)

Based on trigger condition, for any t ∈ [tk, tk+1), we have

V(t) ≤ µk
1eka+ξ(t0−tk+1)V(t0). (24)

During the second pulse control time, there are three possible event triggering conditions: Event
triggering zero times, event triggering one time, and event triggering multiple times.
(1) Event triggering zero times: V(t) ≤ ea+ξ(t0−t1)V(t0).
(2) Event triggering one times: V(t) ≤ µ1e2a+ξ(t0−t2)V(t0).
(3) Event triggering k times: V(t) ≤ µk

1eka+ξ(t0−tk+1)V(t0).
In general, we have V(t) ≤ ek(ln µ1+a)e−ξ(t−t0)V(t0), when t ∈ [t0, t], k = 0, 1, 2, · · ·, n

According to the condition,

V(t) ≤ ek(ln µ1+a)e−ξ(t−t0)V(t0) ≤ µ−N0
1 e( ln µ1

φ +α)(t−t0)V(t0). (25)
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On the another hand, when there are attacks(N(t0, t) = Nn(t0, t) + Na(t0, t) + Nr(t0, t)).

V(t) ≤ µ
Nn(t0 ,t)
N(t0 ,t)

( t−t0
φ −N0)

1 µ
Na(t0 ,t)
N(t0 ,t)

( t−t0
φ −N0)

m µ
Nr (t0 ,t)
N(t0 ,t)

( t−t0
φ −N0)

1 eα(t−t0)V(t0)

≤ µ
−N0

Nn(t0 ,t)+Nr (t0 ,t)
N(t0 ,t)

1 µ
−N0

Na(t0 ,t)
N(t0 ,t)

m e( ln µ1
φ

Nn(t0 ,t)+Nr (t0 ,t)
N(t0 ,t)

+
ln µm
φ

Na(t0 ,t)
N(t0 ,t)

+α)(t−t0)V(t0)
= θe−ε(t−t0)V(t0),

(26)

where θ = µ
−N0

Nn(t0 ,t)+Nr (t0 ,t)
N(t0 ,t)

1 µ
−N0

Na(t0 ,t)
N(t0 ,t)

m , ε = −( ln µ1
φ

Nn(t0,t)+Nr(t0,t)
N(t0,t)

+
ln µm
φ

Na(t0,t)
N(t0,t)

+α) = −( ln µ1
φ

(1−ηa)+
ln µm
φ
ηa +α).

According to the condition and Definition 1, the proof is completed.
Next, it is proved that there is no Zeno behavior. Assume that t1 < t2 < ... < tk are the trigger

instants, and based on (26), it holds that

V(t1) = ea+ε(t0−t1)V(t0) ≤ µ−N0e( ln µ1
φ +α)(t1−t0)V(t0),

which implies that t1 − t0 ≥
φ(a+N0 ln µ1)
φα+φε+ln µ1

. It means that event-triggered time interval
{
tk+1 − tk

}
k∈N

are

lower bounded by τ (τ =
φ(a+N0 ln µ1)
φα+φε+ln µ1

). The conditions in Theorem 1 prove that τ > 0. Therefore, the
system does not exhibit Zeno behavior.
Remark 1. We analyze the time upper bound and attack intensity that can sustain the DoS attack cycle
of the system in Theorem 1. In this paper, an attack cycle is divided into three periods to be analyzed,
and it is worth noting that the system will not be attacked during the adjustment period. In addition,
different from the general event-triggered control strategy, in the control protocol proposed in this
paper, the controller works only when the system state meets the trigger condition, and the controller
does not perform pulse control in the rest time. This effectively reduces the number of information
transmission and avoids the congestion of information transmission channels.
Remark 2. Compared with literature [36], literature [36] introduced an event trigger interval parameter
and a mandatory immediate sequence. The event trigger mechanism in this paper only needs the system
information of the previous event trigger time to determine the departure time of the next event, which
makes the proposed algorithm easy to implement.

4. Simulation examples

Consider MASs with nonlinear dynamics (1), where the network topology is shown in Figure 1.
0 is the leader, and the rest are the followers. Control input matrix A, and the Laplace matrix of the
switching topology are described as

AIMS Mathematics Volume 9, Issue 6, 13998–14011.
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Figure 1. Graph G in the example.

A =


−1 0 0
0 −1 0
0 0 −1

 , L1 =


2 −1 0 −1
−1 1 0 0
0 0 1 0
0 0 −1 1

 , L2 =


2 −1 0 −1
−1 1 0 0
0 0 0 0
0 0 −1 1



L3 =


2 −1 0 −1
0 0 0 0
0 −1 1 0
0 0 0 0

 , L4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Take the initial values of the leader as X0 = [0.23560.56880.6325], nonlinear function f (xi j(t)) =

0.5 × (
∣∣∣xi j + 1

∣∣∣ − ∣∣∣xi j − 1
∣∣∣), and other system parameters c = 0.4, a = 0.05, ξ = 0.1.

Figures 2 and 3 describe the position error and velocity error images. It is evident from these graphs
that the system error gradually diminishes over time. Figure 4 describes the motion position trajectory
of multi-agent i (0, 1, 2, 3, 4). It is easy to see that the followers’ states converge towards those of the
leader as time progresses. In addition, the system was attacked in 8–10 seconds, 15–18 seconds, 23–29
seconds. The network topology is changed due to a DoS attack. The trigger time of each agent is
shown in Figure 5. In the initial 10 seconds, the system state error is large and the trigger is more
frequent. When t=10s, the position of multiple agents gradually tends to be consistent, the trigger
times decrease, and the event trigger pulse control does not trigger after reaching an agreement, which
indicates that the event trigger pulse control can effectively solve the problem of limited bandwidth.
Moreover, comparing the proposed event-triggered mechanism in this paper with the one in [35] under
similar consensus performance, one can conclude from Table 1 that the communication burden can be
reduced greatly by adopting the mechanism in this paper. The design of event triggering function in
literature [35] is as follows

ti
k+1 = inf

{
t > ti

k| ‖qi(t)‖2 − ρ ‖ei(t)‖2 ≥ 0
}
,

where ρ = 1.2.

AIMS Mathematics Volume 9, Issue 6, 13998–14011.



14007

Figure 2. The Velocity errors’ response curves.

Figure 3. The position errors’ response curves.

Figure 4. Position’s response curves.
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Figure 5. Event trigger time instant for all agents.

Table 1. Compared with the traditional triggering protocols in [0,10 s].

Agent i 1 2 3 4
[35] 288 295 294 297

Our ETC 67 15 45 15

5. Conclusions

We investigate event-triggered impulsive consensus in second-order nonlinear MASs under DoS
attacks. By employing Lyapunov functions, matrix graph theory, and inequality techniques, the
conditions for asymptotic convergence of the global synchronization error system are studied. The
influence of DoS attacks is solved by the design of a appropriate event-triggered impulsive controller.
An example simulation substantiates the efficiency of the control schema. Furthermore, in future
research, we will consider other control strategies to alleviate the impact of diverse network attacks.
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