
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(6): 13944–13979.

DOI:10.3934/math.2024678

Received: 13 March 2024

Revised: 06 April 2024

Accepted: 09 April 2024

Published: 16 April 2024

Research article

Assessing the accuracy and efficiency of kinematic analysis tools for six-DOF
industrial manipulators: The KUKA robot case study

Mohamed S. Elhadidy1,2,*, Waleed S. Abdalla1,2, Alaa A. Abdelrahman1, S. Elnaggar1 and
Mostafa Elhosseini3,4

1 Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig
University, Zagazig 44511, Egypt

2 Department of Mechatronics Engineering, Faculty of Engineering, Horus University, New Damietta
34517, Egypt

3 College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia
4 Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura

University, Mansoura 35516, Egypt

* Correspondence: Email: melhadidy@horus.edu.eg, Tel: +201012900010.

Abstract: Accuracy is an important factor to consider when evaluating the performance of a
manipulator. The accuracy of a manipulator is determined by its ability to accurately move and
position objects in a precise manner. This research paper aims to evaluate the performance of different
methods for the kinematic analysis of manipulators. The study employs four distinct techniques,
namely mathematical modeling using the closed form solutions method, roboanalyzer, Peter Corke
toolbox, and particle swarm optimization, to perform kinematic analysis for manipulators. The KUKA
industrial manipulator is used as an illustrative case study in this research due to its widespread use
in various industrial applications in addition to its high precision and stability. Its wide usage in the
industry makes the results of this research highly relevant and allows for a thorough evaluation of
the performance of the different methods being studied. Furthermore, understanding the kinematic
analysis of the manipulator can also help in improving the performance and increasing the efficiency of
the robot in different tasks. This paper conducts a comparison of the accuracy of the four methods, and
the results indicate that particle swarm optimization is the most accurate method. The RoboAnalyzer
approach achieved the fastest execution time.

Keywords: kinematic analysis; KUKA industrial manipulator; Peter Corke toolbox; roboanalyzer;
particle swarm optimization
Mathematics Subject Classification: 68T40, 70B15, 93C85

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2024678

13945

1. Introduction

Robotics is an inspiring and ever-growing field of engineering with an array of applications across
a broad range of industries. Robotics involves the design, development, simulation, management,
use in administrative offices, exploration of space, and application of robots to automate tasks that
would otherwise require a human work force. The robots of today help humans through their everyday
routines and do many mundane tasks [1]. An industrial manipulator is a versatile robot that operates
autonomously. Industrial manipulators are becoming increasingly popular in a broad range of industrial
applications such as production lines, painting, welding, assembly, etc., due to their benefits of large
workspace, compact construction, and excellent adaptability [2]. For these tasks to be done correctly,
the robots must be accurate [3].

The KUKA KR 22 R1610-2 industrial manipulator is a specific model of robot produced by KUKA.
It was chosen as an illustrative case study due to the unique characteristics that make it ideal for
kinematic analysis. It has six degrees of freedom (6-DOF) with a spherical wrist, which allows for a
wide range of motion and a high level of flexibility. This makes it an ideal subject for studying the
kinematics of a robot with a high degree of complexity [4]. Compared to other robots, the KUKA KR
22 R1610-2 is a compact robot with a high payload capacity and reach, making it suitable for a wide
range of applications, especially in small to medium-sized manufacturing [5].

The intricate issue of robot motion is known as robot kinematics [6]. Finding the conversion from
cartesian space to joint space and back is connected to the kinematics issue [7]. Any robot manipulator’s
kinematics issue has two sorts of solutions: forward kinematics and inverse kinematics [8]. In robotics,
forward kinematics is used to determine the position and orientation of the end effector, such as a
gripper or tool, based on the angles of rotation of the joints of the robot’s manipulator [9]. The process
of forward kinematics typically involves solving a set of equations called the forward kinematics
equations, which describe the relationship between the angles of rotation of the joints and the position
and orientation of the end effector or bones in the system. To move the end effector into the desired
position and orientation in a reference frame, a set of joint variables must be identified for the given
end effector position and orientation. It is known as inverse kinematics [10].

Robotics research is based on manipulator kinematics, which shows the relationship between the
robot’s final position and its kinematic parameters [11]. Robot path planning and motion control
research start with manipulator kinematics analysis [12]. Manipulators are rigid chains with revolute or
prismatic joints. Manipulator joint locations are relative to adjacent joints. Notably, 4×4 homogeneous
transformation matrices with robot orientation and position data define joint relationships [13]. Robot
degrees of freedom depend on transformation matrices. These transformation matrices generate n-DOF
manipulator orientation and position [6]. Forward kinematics calculates the robot manipulator’s end
effector location and orientation from joint angles [14]. The Denavit-Hartenberg (D-H) Convention
determined the homogeneous matrix from four consecutive movements that integrate the end effector’s
translational and rotational motions concerning the manipulator base [15]. The manipulator’s inverse
kinematics are harder to solve [16]. Inverse kinematics has nonlinear equations, singularities, and
many solutions [17]. The joint variable motions must be computed to discover all possible forms for
going from the end effector position to the base position [18].

There are many types of kinematics solution methods that depend on the kinematics type. One
solution method approach for forward kinematics serial chains is to simply concatenate transformations

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13946

between frames set in neighboring links of the chain [19]. In inverse kinematics, several different
methods have been proposed to solve this problem, including analytical methods, numerical methods,
and machine learning-based methods [20]. Analytical methods, such as closed form solutions, are
based on mathematical equations that can be used to calculate the joint angles of a robotic system.
These methods are computationally efficient and provide accurate solutions, but they are often limited
to specific types of robotic systems, such as serial robots, and may not be able to handle complex
or variable systems [21]. Algebraic methods and geometric methods like the roboanalyzer and
Peter Corke robotics toolbox are also analytical methods [22]. Various methods for solving inverse
kinematics can be summarized and illustrated in Figure 1.

Figure 1. Methods for solving inverse kinematics.

Roboanalyzer is a 3D model-based solution with multiple modules that may be used to efficiently
visualize different robotics topics. It can display D-H parameter animation and conduct forward
and inverse kinematics, as well as dynamic analyses of serial robots [23]. Peter Corke’s robotics
toolbox is an open-source toolbox for robotic systems. This toolbox contains a collection of functions
and tools for robotic systems that allow users to easily implement and test robot control and vision
algorithms [24]. Numerical methods, such as iterative methods, use numerical techniques to find a
solution to the inverse kinematics problem. These methods are more flexible than analytical methods
and can handle a wide range of robotic systems, but they can be computationally expensive and
may not always converge to a solution. Symbolic elimination methods and continuation methods
are also numerical methods [16]. Machine learning based methods use techniques from machine
learning, such as artificial neural networks (ANNs), to learn from data and make predictions. These
methods are effective for solving the inverse kinematics problem, particularly for complex and variable
systems [25]. However, these methods require large amounts of data for training, and their performance
can be influenced by the choice of hyper parameters. adaptive neuro fuzzy inference system (ANFIS),
genetic algorithm (GA), bat algorithm (BA), differential search (DS), artificial bee colony (ABC),

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13947

particle swarm optimization (PSO), and differential evolution (DE) are also machine learning based
methods [26].

Particle swarm optimization is a population-based metaheuristic optimization algorithm developed
by Kennedy and Eberhart in 1995. Inspired by the social behavior of bird flocking or fish schooling,
PSO simulates the collaborative movement of particles in a search space to find optimal solutions.
PSO maintains a population of candidate solutions, called particles, which fly through the search space
and update their positions based on the influence of their own best-known position and the best-known
position in the swarm [27]. PSO has been proven to be a promising alternative for solving IK problems.
In PSO-based IK, the particles represent the joint angles, and their positions are updated according
to the fitness function, which measures the distance between the current end-effector position and
the desired one. The particles also communicate with each other to share information and improve
their positions, mimicking the social behavior of birds or fish. One advantage of using PSO for
IK is its ability to handle non-linear constraints. Unlike traditional methods, PSO does not require
the computation of Jacobians or the inverse of the kinematic equations, making it more efficient and
suitable for real-time applications. Furthermore, PSO is a population-based algorithm, meaning that it
can explore a larger area of the search space and is less likely to get trapped in local optima [28].

In recent years, there has been a significant amount of research conducted in the field of inverse
kinematics, with numerous studies addressing various aspects of the problem. One tool that has been
integral to the advancement of the robotics field is Peter Corke’s robotics toolbox for MATLAB. The
toolbox provides users with the ability to quickly and easily design, program, and stimulate robotic
systems. The robotics toolbox has been used to solve the inverse kinematics of a PUMA 560 robot and
has been found to provide a simple and efficient solution [24]. According to Peter Corke, MATLAB
has several toolboxes that can be used to improve the learning experience in robotics and vision.

Several studies have been conducted to examine the potential of using the robotics toolbox as
a visualization and control tool for manipulator kinematics. In a study performed by Sadanand et
al. [29], it was found that a virtual robot module within the toolbox could be an effective visualization
tool for introducing robotics to students. Another study found that the robotics toolbox was able
to determine the joint angles accurately and efficiently for a given end effector position of a 6-DOF
manipulator [30]. In a study by Yu Long et al. [31], it was found that the robotics toolbox could
control 7-DOF manipulators with high precision, allowing the robot to move along a desired path.
Additionally, research by Long et al. [32] found that MATLAB and the robotics toolbox could be
used for the simulation of robotic arms, and the developed simulation model was found to be accurate
enough for use in industry applications.

Zhang et al. [33] studied the critical aspect of enhancing the positioning accuracy reliability of
industrial robots by employing probability and evidence theories. By incorporating probability theory,
which deals with the quantification of uncertainty, and evidence theory, which focuses on handling
uncertainties and imprecise information, the researchers aim to advance the reliability of positioning
accuracy in industrial robot systems. Probability theory-based methods are commonly used to evaluate
the positioning accuracy reliability of industrial robots. The suggested aleatory-epistemic hybrid
model describes parameters of industrial robots that are not always clear, which helps build the
kinematic equation. The study establishes a probability-evidence hybrid reliability analysis model
that provides a reliability interval for industrial robots under various thresholds. The effectiveness of
the proposed method is demonstrated through the application of a six-degrees of freedom industrial

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13948

robot. Zhang and Han [34] propose an efficient reliability analysis method to predict the kinematic
reliability of robotic manipulators by accounting for the random dimensions and joint angles of robotic
mechanisms. The method defines kinematic reliability as the probability that the actual position of an
end-effector falls within a specified tolerance sphere centered at the target position. The motion error
is indicated by a compound function of independent standard normal variables constructed by three
co-dependent coordinates of the end-effector. The saddle point approximation is applied to compute
kinematic reliability, resulting in satisfactory accuracy and efficiency compared to random simulation
methods. Zhang et al. [35] performed an in-depth study of the reliability of kinematic trajectory
accuracy for industrial robots while considering intercorrelations among multi-point positioning errors.
The research highlights the significance of understanding and evaluating the reliability of kinematic
trajectories in industrial robotic systems, which play a pivotal role in ensuring precise and efficient
operations. By examining the intercorrelations among multi-point positioning errors, the study offers
valuable insights into the complexities of industrial robot performance. This analysis is crucial for
enhancing the overall accuracy and reliability of industrial robots, ultimately contributing to improved
productivity and quality in manufacturing processes. Zhang et al.’s results show how multi-point
positioning errors and the reliability of kinematic trajectories are closely connected.

Bahuguna et al. [36] solved the forward and inverse kinematics of a 6-DOF robot arm and
showed that a roboanalyzer helped students understand robot motion and develop and analyze robotic
devices. Thus, roboanalyzer are essential for robot kinematics education. Mehta et al. [23] created
a roboanalyzer teaching pendant. An operator interfaces input commands, and a robot’s graphical
representation display the motion. The teaching pendant also generated robot program code for later
usage. The technology accurately generated motion on multiple virtual robots. Gupta et al. [37]
discussed how roboanalyzers may assist robot technicians to analyze problems quickly and efficiently.
Roboanalyzer displays robot data in an easy-to-use graphical user interface, according to the creators.
Roboanalyzer also lets technicians zoom in to review data and easily access faulty robot parts for
diagnosis and repair. Othayoth et al. [38] developed a roboanalyzer to simplify robot kinematics
analysis and simulation. Other roboanalyzer features include the ability to produce code for controlling
a real-world robotic system and visualize its motion in 3D. SS Chauhan and Khare [18] conducted
a study using the roboanalyzer software. Their investigation demonstrated that the robot could
duplicate its desired movements and complete tasks efficiently. The analysis increased the robot’s
kinematic performance. The study shows that roboanalyzers help industrial robots do kinematic
analysis. Chang [39] proposed a closed form solution to the challenging problem of controlling
manipulators with kinematic redundancy. This solution focused on the use of a linear combination
of the positioning and velocity task space components. By combining the two components, a more
robust control system could be implemented, and a more stable solution could be found. Chang [40]
provided a closed form approach for robot manipulator inverse kinematics with redundancy. The
Generalized Inverse Jacobian (GINJ) approach underpinned this solution, which claimed to be more
efficient than previous numerical methods. Chang’s technique solved the inverse kinematics issue of
robotic manipulators with redundancy simply and efficiently, advancing robotics. Chen and Gao [41]
discussed the development of a closed form inverse kinematics solver for reconfigurable robots, with a
specific focus on the closed form solution for the inverse kinematics problem of a reconfigurable robot.
The algorithm proposed by the authors was tested on a reconfigurable robot, and the results showed
that the algorithm provided satisfactory solutions for a variety of configurations.

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13949

Gao et al. [42] provided an extensive analysis of the uncertainties involved in the kinematics of
cable-driven parallel robots. The research focuses on developing an error transfer model to quantify and
assess the impact of uncertainties on the robot’s kinematic performance. By incorporating uncertainties
into the kinematic model, the study aims to provide a more comprehensive understanding of the
robot’s behavior under varying conditions. The research establishes an inverse kinematic model for
a CDPR used for picking up medicines, considering the radii of fixed pulleys. The influence of
the radii of fixed pulleys on errors in cable lengths is explored. An error transfer model and an
evidence theory-based uncertainty analysis method (ETUAM) are presented to analyze the uncertain
sources of cable lengths in CDPRs. The ETUAM demonstrates accuracy and efficiency in kinematic
uncertainty analysis compared to the vertex method and Monte Carlo method. Zhang et al. [43]
evaluate the effectiveness of statistical moment-based methods for assessing the reliability of industrial
robots’ positional accuracy. They explore the significance of statistical moments as key descriptors
for characterizing the distribution of positional errors in robotic systems. Three different statistical
moment-based methods are applied in the study: the sparse grid numerical integration (SGNI) method,
the point estimation method (PEM), and the univariate dimension reduction method (UDRM). The
kinematics model of industrial robots is established using the Denavit-Hartenberg method. The SGNI
method is found to have the best computational accuracy, while the PEM method exhibits the highest
computational efficiency among the three methods. The positional accuracy reliability of industrial
robots is quantitatively evaluated using these methods and compared with the results from the monte
carlo simulation (MCS) method. Zhao et al. [44] delved into the complexities of assessing the
reliability of robotic manipulators in dynamic environments. The study addresses the issue of time-
dependent system kinematic reliability analysis for robotic manipulators, which is an area that has
receive limited investigation. The proposed method in the research is based on the first-passage method
and calculates the outcrossing rate to determine the time-dependent system kinematic reliability. Using
Lie group theory, the authors come up with a closed-form answer for the covariance of the joint
distribution of the pose error and its derivative. The outcrossing rate is calculated by decomposing the
outcrossing event of the pose error and determining the first-order moment of a truncated multivariate
Gaussian. The paper deduces an analytical formula for the outcrossing rate based on the independent
assumption that outcrossing events occur independently. The effectiveness of the proposed method is
demonstrated using a six-degrees-of-freedom (6-DOF) robotic manipulator, and it is compared with
Monte Carlo simulation and the finite-difference-based outcrossing rate method.

Danaci et al. [27] proposed a particle swarm optimization approach for solving the inverse
kinematics problem in robotic manipulators. The PSO approach provides a comprehensive solution for
both the position and orientation of the robot end effector. The results show that QPSO is more efficient
than PSO, FA, and ABC for solving IK. Abdor-Sierra et al. [45] delved into a comparative analysis of
metaheuristic algorithms to address the challenge of solving the inverse kinematics problem in robot
manipulators. The study evaluates various metaheuristic algorithms, including genetic algorithms
(GAs), particle swarm optimization (PSO), and artificial bee colony (ABC) optimization, among
others, in tackling the inverse kinematics problem. Comparative analysis provides insights into the
strengths and limitations of each algorithm in terms of convergence speed, solution quality, and
computational complexity when applied to robot manipulators. Liu et al. [46] proposed a novel
approach to solving the inverse kinematics problem for manipulators using a combination of Inverse
Particle Swarm Optimization (IPSO) and Back-Propagation Neural Network (BPNN) algorithms. The

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13950

proposed method aims to improve the accuracy and efficiency of inverse kinematics solutions for
manipulators by integrating IPSO, which is known for its global optimization abilities, with BPNN,
which is a powerful machine learning technique. The proposed method solves the inverse kinematics
of the UR3 manipulator, and the output error of the joint angle obtained is less than 0.1 degrees.

Although the listed literature shows promising methods and significant results in addressing
manipulator kinematics strategies there is still room for further research and improvements in the field
of manipulator kinematics to fill the following research gaps:

• Despite the potential of using the robotics toolbox as a visualization and control tool for
manipulator kinematics, there is a lack of studies that have examined KUKA KR 22 R1610-2
in industry applications.
• There is a gap in research on the use of roboanalyzers in industry applications, specifically in

terms of their ability to assist with robot diagnosis and repair.
• There is a lack of research comparing different inverse kinematics methods and their potential

advantages and disadvantages for specific manipulator types or applications.
• There is a need for further research on closed form inverse kinematics algorithms for continuum

manipulators, as current methods may not be accurate when the manipulator is subject to external
forces.
• The research on the closed form solution for the inverse kinematics problem of a reconfigurable

robot is limited.

Overall, the research indicates that while there have been advances in the field, there is still room
for further research and improvements in the field of manipulator kinematics. However, each of
these methods has its own set of advantages and limitations, and the selection of the appropriate
method is dependent on the specific characteristics of the robotic system and the requirements of
the application. The present work aims to fill the presented research gaps and solve the manipulator
kinematics problem using mathematical simulation with MATLAB, roboanalyzer software, the Peter
Corke robotics toolbox, and the particle swarm optimization. The results of this study are then
compared with the results available in the literature to assess their accuracy and efficiency. The goal
is to obtain good agreement between the results of this study and those found in previous research.
Additionally, this paper aims to evaluate the potential of using the robotics toolbox as a visualization
and control tool for manipulator kinematics, the PSO as an optimization tool for solving the inverse
kinematics problem, and the roboanalyzer software for robot kinematics education and analysis. This
work provides the following contributions:

• Advanced Kinematic Analysis: Provides an in-depth examination of the KUKA KR 22 R1610-2,
emphasizing operational strengths and practical limitations in industrial settings.
• Unique Simulation Framework: Introduces a novel, validated simulation framework for

evaluating manipulator performance, offering precise simulations and predictions.
• Validated Research Methodologies: Empirically validates our analytical methods against existing

literature, ensuring the accuracy, and reliability of our findings.
• Broad Applicability: Delivers actionable insights for the KUKA KR 22 R1610-2’s use in

industrial automation, robotics research, and education, fostering future advancements.
• Kinematics Analysis Using Particle Swarm Optimization (PSO): Applies the PSO algorithm to

accurately solve the inverse kinematics problem for the KUKA KR 22 R1610-2, targeting precise

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13951

end-effector positioning.

The structure of this paper is composed of four distinct sections. Section 2 provides a comprehensive
examination of the kinematics of the manipulator, which is divided into two subsections: forward
kinematics and inverse kinematics. In Section 3, the simulation results of forward and inverse
kinematics are presented using mathematical simulation, the roboanalyzer software, the Peter Corke
robotics toolbox, and particle swarm optimization. Section 4 offers an illustrative case study. In-depth
discussion of the obtained results is presented in Section 5. Lastly, Section 6 presents the conclusions
drawn from the research presented in the paper.

2. Materials and methods

2.1. Kinematics analysis of manipulator using mathematical formulation

The study of mechanism motion without considering the driving forces is known as kinematic
analysis. The primary goal of the kinematic analysis is to determine the characteristics of the end
effector of a manipulator concerning the manipulator base, like its location, displacement, velocity, and
acceleration. Kinematic analysis is based on the geometrical connection between the robotic linkages
and their joints, which can be described with several scenarios of motion, such as Denavit-Hartenberg
parameters, to investigate the robot’s motion [47]. Kinematics plays a significant role in controlling
serial manipulators in a variety of applications [48]. The solutions of any manipulator kinematics are
divided into two categories: forward kinematics and inverse kinematics. The forward kinematics of the
manipulator point to the calculation of its end effector orientation and position from the values of joint
angles, while the inverse kinematics point to the calculation of the values of joint angles from the end
effector orientation and position [49]. The forward and inverse kinematics of the manipulator must be
solved for kinematic modeling [50]. Kinematics analysis can be summarized as shown in Figure 2.

Figure 2. Kinematics analysis summarizing [51].

2.1.1. Forward kinematics

Forward kinematics is known as the method of estimating the pose of the end effector (location
and orientation) with specified joint angles [50]. To highlight the connection between the coordinate

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13952

systems and to define the location and orientation of connecting links, each connecting link was
developed in its own coordinate system [14]. The coordinate transformations are defined using the
Denavit-Hartenberg convention (D-H parameters) approach, as shown in Figure 3 [52]. Joint angle,
joint offset, link length, and twist angle are four factors that determine the transformation between
coordinates associated with the joints between two links, which were described as shown in Tables 1
and 2 [53]. Forward kinematics is solved with the Denavit-Hartenberg convention method [30].

Figure 3. Denavit-Hartenberg convention.

Table 1. D-H parameters description.

Parameter The description
an The distance between zn−1 and zn (along xn)
αn The twist angle between zn−1 and zn (measured about xn)
dn The offset distance between xn−1 and xn (along zn−1)
θn Angle between xn−1 andxn (measured about zn−1)

Table 2. D-H link and joint parameters.

Joint parameters Link parameters
θn: joint angle αn: link twist
dn: link offset an: link length

Each homogeneous transformation is the result of four fundamental transformations, as shown in

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13953

Eqs (2.1) and (2.2) [54].
An = Rot z,θn Trans z,dn Transx,an Rot x,an . (2.1)

For a link n the transformation matrix is as follows:

An =

Cθn −S θnCαn S θnSαn anCθn
S θn CθnCαn −CθnSαn anS θn
0 Sαn Cαn dn

0 0 0 1

 . (2.2)

As demonstrated in Figure 4 (a), the KUKA KR 22 R1610-2 industrial manipulator has six degrees
of freedom. This manipulator is located at Horus University in Egypt’s Faculty of Engineering. Figure 4
(b) depicts the manipulator dimensions, workspace, and joint-to-joint distances [4]. In Figure 4 (c),
the first three axes of the robot, A1, A2, and A3, are referred to as “major axes” because they are
responsible for determining the end effector position, whereas the other three axes, A4, A5, and A6,
are referred to as “minor axes” because they are used for describing the end effector to the specified
position, and the minor axes contribute to end effector orientation. Figure 4 (d) shows D-H parameter
frames for each axis of rotation [30]. First, choose the z-axis along the joint rotation axis, then choose
the x-axis based on the joint rotation direction. Industry and research utilize this. For forward and
inverse kinematic analysis, this model is used [18].

(a) (b)

(c) (d)

Figure 4. KUKA KR 22 R1610-2 manipulator configuration [4]: (a) Description of KUKA
KR 22 R1610-2 manipulator; (b) Description of workspace and link lengths; (c) Description
of major and minor axes; (d) Description of coordinate frames.

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13954

The D-H parameters of the manipulator are shown in Table 3. If it used the D-H parameter as a
guide, it could figure out the matrix transformation of each frame coordinate starting, at link n and
going all the way up to link n+1 [2]. Because none of the joints can be entirely rotated by 360 degrees,
all the joints have constraints on the lowest and greatest angle of rotation of which they are capable.
These rotational limitations of movement for various joints are provided in Table 3. These limitations
are going to be used in an inverse kinematics analysis later [18].

Table 3. D-H link and joint parameters.

In θn dn an α θn Limitation
1 θ1 d1 a1 90 −185◦ ≤ θ1 ≤ 185◦

2 θ2 0 a2 180 −185◦ ≤ θ2 ≤ 65◦

3 θ3 0 a3 90 −138◦ ≤ θ3 ≤ 175◦

4 θ4 d4 0 90 −350◦ ≤ θ4 ≤ 350◦

5 θ5 0 0 -90 −130◦ ≤ θ5 ≤ 130◦

6 θ6 d6 0 0 −350◦ ≤ θ6 ≤ 350◦

To solve forward kinematics and obtain the end effector’s pose, first calculate each coordinate of
the transformation separately using Eq (2.2) and then plug the values from Table 3 into Eq (2.2) to
obtain transformation matrices of the six joints [12]. It is initiated by analyzing the kinematics of the
first joint, situated at the base of the robot, and subsequently proceeding to the second joint, then the
third joint, and so on, until the final analysis of the end effector is achieved [55]. The transformation
matrices of the six joints are calculated as shown in Appendix A from Eqs (5.1)–(5.6).

T 0
6 =

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 =
[

R0
n P0

n

0 1

]
= A0

1 × A1
2 × A2

3 × A3
4 × A4

5 × A5
6. (2.3)

T 0
6 is a homogeneous transformation matrix of six degrees of freedom manipulator, and nx, ny, nz,

ox, oy, oz, ax, ay, az, px, py, andpz are functions of θ1, θ2, θ3, θ4, θ5, and θ6 where nx, ny, nz, ox, oy, oz, ax,
ay, and az express the orientation of the manipulator end effector and px, py, pz represent the position
of the end effector [56]. The forward kinematics equations (total transformations) of the KUKA KR 22
R1610-2 manipulator are calculated using Eq (2.3) as shown in Eq (2.4)–(2.15). Cn stands for Cosθn,
and S n stands for S inθn, and so on.

nx = −S 6 (C4S 1 + S 4 (C1S 2S 3 +C1C2C3)) −C6 (C5 (S 1S 4 −C4 (C1S 2S 3+ C1C2C3))

− S 5 (C1C2S 3 −C1C3S 2)).
(2.4)

ny = S 6 (C1C4 − S 4 (S 1S 2S 3 +C2C3S 1)) +C6 (C5 (C1S 4 +C4 (S 1S 2S 3 +C2C3S 1))+

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13955

S 5 (C2S 1S 3 −C3S 1S 2)) .
(2.5)

nz = C6 ((C2 −C3) S 5 + (S 2 − S 3) C4C5) − (S 2 − S 3) S 4S 6. (2.6)

ox = S 6 (C5 (S 1S 4 −C4 (C1S 2S 3 +C1C2C3)) − S 5 (C1C2S 3 −C1C3S 2)) −C6 (C4S 1+

S 4 (C1S 2S 3 +C1C2C3)) .
(2.7)

oy = C6 (C1C4 − S 4 (S 1S 2S 3 +C2C3S 1)) − S 6 (C5 (C1S 4 +C4 (S 1S 2S 3 +C2C3S 1))+
S 5 (C2S 1S 3 −C3S 1S 2)) .

(2.8)

oz = −S 6 ((C2 −C3) S 5 + (S 2 − S 3) C4C5) − (S 2 − S 3) C6S 4. (2.9)

ax = S 5 (S 1S 4 −C4 (C1S 2S 3 +C1C2C3)) +C5 (C1C2S 3 −C1C3S 2) . (2.10)

ay = C5 (C2S 1S 3 −C3S 1S 2) − S 5 (C1S 4 +C4 (S 1S 2S 3 +C2C3S 1)) . (2.11)

az = (C2 −C3) C5 − (S 2 − S 3) C4S 5. (2.12)

px = a1C1 + a2C1C2 − d4(S 2 − S 3)C1 + a3C1C2C3 + a3C1S 2S 3 + d6S 1S 4S 5 − d6(S 2 − S 3)C1C5

− d6C1C2C3C4S 5 − d6C1C4S 2S 3S 5.

(2.13)

py = a1S 1 + a2C2S 1 − d4 (S 2 − S 3) S 1 + a3C2C3S 1 − d6C1S 4S 5 + a3S 1S 2S 3 − d6 (S 2 − S 3) C5S 1

− d6C2C3C4S 1S 5 − d6C4S 1S 2S 3S 5.

(2.14)

pz = d1 + a2S 2 + d4(C2 −C3) + a3(S 2 − S 3) − (d6(S 2 − S 3)(S 4 + S 5))/2 + d6(C2 −C3)C5

+ (d6(S 2 − S 3)(S 4 − S 5))/2.
(2.15)

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13956

2.1.2. Inverse kinematics

Inverse kinematics is more complicated than forward kinematics [12]. Inverse kinematics plays a
crucial role in trajectory planning and motion control; on the other side, forward kinematics estimates
the pose of the end effector [14]. Many solutions, such as geometric and algebraic analysis, are
employed to obtain the inverse kinematics when the manipulator’s system structure is considered [50].
In inverse kinematics, for any location and orientation, the angles of joint θ1, θ2, θ3, θ4, θ5, and θ6 can
be calculated [57]. To calculate the joint angles of a six degree of freedom manipulator, multiply the
transformation matrix in Eq (2.3) by A−1

n on both sides of the equation sequentially for n = 1, 2, 3, 4, 5,
6 as shown in Eqs (2.16)–(2.20), then solve the resulting equations derived by equating terms on both
sides of matrices as shown in Eqs (2.21)–(2.42). The inverse of transformation matrices is calculated
as shown in Appendix A, from Eq (5.7) to Eq (5.11).

A−1
1 × T6 = T 1

6 . (2.16)

A−1
2 × A−1

1 × T6 = T 2
6 . (2.17)

A−1
3 × A−1

2 × A−1
1 × T6 = T 3

6 . (2.18)

A−1
4 × A−1

3 × A−1
2 × A−1

1 × T6 = T 4
6 . (2.19)

A−1
5 × A−1

4 × A−1
3 × A−1

2 × A−1
1 × T6 = T 5

6 . (2.20)

The use of trigonometric equations aids in the development of simple solutions. Multiply the
Eq (2.3) by A−1

1 on R.H.S. and L.H.S.:

A−1
1 ×

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 = A1
2 × A2

3 × A3
4 × A4

5 × A5
6. (2.21)

. . . .

. . . .

. . axS θ1 − ayCθ1 pxS θ1 − pyCθ1
0 0 0 1

 =

. . . .

. . . .

. . S θ4S θ5 d6S θ4S θ5
0 0 0 1

 . (2.22)

Equating (R33) and (R34) elements of both matrices:

d6

(
axS θ1 − ayCθ1

)
= pxS θ1 − pyCθ1. (2.23)

(
py − d6ay

)
Cθ1 − (px − d6ax) S θ1 = 0. (2.24)

θ1 = tan−1

(
py − d6ay

)
(px − d6ax)

 , Both θ and θ + π are solutions. (2.25)

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13957

Multiply the Eq (2.21) by A−1
6 on R.H.S. and L.H.S.:

A−1
1 ×

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 × A−1
6 = A1

2 × A2
3 × A3

4 × A4
5. (2.26)

. . . pxCθ1 − d6(axCθ1 + ayS θ1) − a1 + pyS θ1
. . . pz − d1 − azd6

. . . .

0 0 0 1

=

. . . a2Cθ2 + a3C (θ2 − θ3) − d4S (θ2 − θ3)

. . . a2S θ2 + a3S (θ2 − θ3) − d4C(θ2 − θ3)

. . . .

0 0 0 1

. (2.27)

Equating (R14) and (R24) elements of both matrices:

a2Cθ2 + a3C (θ2 − θ3) − d4S (θ2 − θ3) = pxCθ1 − d6

(
axCθ1 + ayS θ1

)
− a1 + pyS θ1. (2.28)

a2S θ2 + a3S (θ2 − θ3) − d4C (θ2 − θ3) = pz − d1 − azd6. (2.29)

B =

(√
(px − d6ax)2 +

(
py − d6ay

)2
− a1

)2

+ (pz − d6az − d1)2
− a2

2 − a3
2 − d4

2

2a2

(√
a22 + d4

2
) . (2.30)

θ3 = tan−1
[
d4

a3

]
+ tan−1

±√1 − B2

B

 . (2.31)

θ2 = tan−1

 pz − d6az − d1√
(px − d6ax)2 +

(
py − d6ay

)2
− a1

 − tan−1
[

a3S θ3
a2 + a3Cθ3

]
. (2.32)

Multiply the Eq (2.3) by A−1
1 , A−1

2 , A−1
3 on R.H.S. and L.H.S.:

A−1
3 × A−1

2 × A−1
1 ×

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 = A3
4 × A4

5 × A5
6. (2.33)

. . azS (θ2 − θ3) + axC (θ2 − θ3) Cθ1 + ayC (θ2 − θ3) S θ1 .

. . ayCθ1 − axS θ1 .

. . azC (θ2 − θ3) − axS (θ2 − θ3) Cθ1 − ayS (θ2 − θ3) S θ1 .

0 0 0 1

 =

. . −Cθ4S θ5 .

. . −S θ4S θ5 .

. . Cθ5 .

0 0 0 1

 . (2.34)

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13958

Equating (R13), (R23), and (R33) elements of both matrices:

θ4 = tan−1

(
ayCθ1 − axS θ1

)(
azS (θ2 − θ3) + axC (θ2 − θ3) Cθ1 + ayC (θ2 − θ3) S θ1

) . (2.35)

Cθ5 = azC (θ2 − θ3) − axS (θ2 − θ3) Cθ1 − ayS (θ2 − θ3) S θ1. (2.36)

θ5 = tan−1

±
√

1 −
(
azC (θ2 − θ3) − axS (θ2 − θ3) Cθ1 − ayS (θ2 − θ3) S θ1

)2(
azC (θ2 − θ3) − axS (θ2 − θ3) Cθ1 − ayS (θ2 − θ3) S θ1

)
 . (2.37)

Multiply the Eq (2.3) by A−1
5 , A−1

4 , A−1
3 , A−1

2 , A−1
1 on R.H.S. and L.H.S.:

A−1
5 × A−1

4 × A−1
3 × A−1

2 × A−1
1 ×

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 = A5
6. (2.38)

· · · ·

· · · ·

R31 R32 · ·

0 0 0 1

 =

· · · ·

· · · ·

Cθ6S θ5 −S θ5S θ6 · ·

0 0 0 1

 . (2.39)

R31 = nzC (θ2 − θ3) − nxS (θ2 − θ3) Cθ1 − nyS (θ2 − θ3) S θ1. (2.40)

R32 = ozC (θ2 − θ3) − oxS (θ2 − θ3) Cθ1 − oy (C (θ2 − θ3)) S θ1. (2.41)

Equating (R31) and (R32) elements of both matrices:

θ6 = tan−1

−
(
ozC (θ2 − θ3) − oxS (θ2 − θ3) Cθ1 − oy (C (θ2 − θ3)) S θ1

)
nzC (θ2 − θ3) − nxS (θ2 − θ3) Cθ1 − nyS (θ2 − θ3) S θ1

 . (2.42)

2.2. Kinematics analysis of manipulator using toolbox and software

Inverse kinematics is a powerful tool used in robotics, animation, and computer aided design (CAD)
to calculate the motion of a robotic arm or other mechanical systems. It is used to calculate the joint
angles of a robotic arm or other mechanical systems to achieve a desired end effector position [38].
Inverse kinematics is a complex problem, and there are a variety of toolboxes and software packages
available to help solve it, as shown in Figure 5. One of the most popular toolboxes for inverse
kinematics is the robotics toolbox for MATLAB (the Peter Corke toolbox) [58]. This toolbox provides
a set of functions and classes for solving inverse kinematics problems. It includes functions for
calculating joint angles, forward and inverse kinematics, and dynamics. It also includes a graphical
user interface (GUI) for visualizing the results of inverse kinematics calculations [24]. Another
toolbox for inverse kinematics is the Open Dynamics Engine (ODE). ODE is an open-source library

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13959

for simulating rigid body dynamics and has been used in robotics, animation, virtual reality, and
mechatronics applications [59]. A software platform called roboanalyzer was created to solve forward
and inverse kinematics using 3D modeling [60]. Robotica is a computer-aided design tool for robotic
manipulators [61]. It includes a set of applications for Mathematica environments that allow for robot
analysis [38]. Another program created to assist in the depiction of robot geometry is called Robot
Draw [62]. Another software for inverse kinematics is Kinematics Visualizer. Kinematics Visualizer is
software that is used to graphically represent the motion of objects in space. It can be used to analyze
and understand the motion of mechanisms such as robots or machines [19].

Figure 5. Software programs and toolbox for inverse kinematics.

Robotmaster is a software program designed for the offline programming of industrial robots. It is
used in the manufacturing and automation industries to create, edit, and optimize robot trajectories, as
well as manage and simulate robot work cells [63]. RoboDK is a comprehensive software package that
includes a 3D simulation environment, a library of robot models, and a library of robot programs.
The 3D simulation environment allows users to visualize and interact with their robot programs
in a realistic 3D environment [64]. In this paper, for simulation and solving forward and inverse
kinematics, the Peter Corke toolbox was used because the routines are typically written clearly to
allow for easy learning, the code is mature and serves as a benchmark for other implementations of
the same algorithms, and you can always modify the function to be more effective [24]. Roboanalyzer
was used too because it is easy to use and has many features like a serial manipulator with prismatic
and revolute joints, D-H parameters as input, the 3D model generated based on D-H parameters, the
ability to visualize D-H parameters, forward and inverse kinematics, animation with a trace of the end
effector, plot graphs, and so on [60]. Furthermore, the four methods (mathematical model, Peter Corke
toolbox, roboanalyzer, and particle swarm optimization) were not used in previous research on the
same manipulator.

2.3. Kinematics analysis of manipulator using particle soptimization

The Particle Swarm Optimization (PSO) approach is a metaheuristic algorithm based on the concept
of swarm intelligence, which is a powerful technique for solving complex mathematical engineering
problems. The PSO solves problems by using multiple agents called particles to investigate and
compare the quality of a population of candidate solutions. Each particle iteratively moves from one
candidate solution to another based on a mathematical formula. The formula involves the particle’s
current state, its own local best state (lbest), and the influence from the particle with the best solution
(gbest) in the search space. The formula consists of two equations [27]:

vn = c1r1 (plbest − xn) + wvn + c2r2

(
pgbest − xn

)
. (2.43)

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13960

xn = vn + xn. (2.44)

The first equation calculates the velocity of the particle at iteration n (vn) based on its inertia (wvn),
where current velocity (vn), inertia weight (w), cognitive parameter (c1), random numbers (r1) and (r2),
and the difference between its local best state (plbest) and its current state (xn), as well as the difference
between the global best state (pgbest) and its current state (xn). The personal influence term in the
PSO algorithm is represented by c1r1 (plbest − xn) and the social influence term in the PSO algorithm
is represented by c2r2

(
pgbest − xn

)
, where c2 is the social parameter. The second equation updates the

current state of the particle (xn) by adding its velocity (vn) to its current state (xn). The inertia weight
(w) and cognitive parameter (c1) are parameters that control the behavior of the PSO algorithm. The
PSO algorithm uses these equations to iteratively update the states of the particles and search for the
best solution in the search space.

The fitness function, represented as fn, is defined to evaluate the local and global best positions
among the particles in the swarm. The fitness function is calculated as the distance between the desired
end-effector pose, referred to as Pd, and the manipulator end-effector pose associated with the particle
state at iteration n, referred to as Pn, as shown in Eq (2.45) [28].

fn = ||Pd − Pn∥|. (2.45)

The algorithm applies the PSO approach to solve the inverse kinematics problem for the KUKA KR
22 R1610-2 manipulator, with the desired end-effector pose set as the target position Pd.

3. Results

The mathematical model, Peter Corke toolbox, particle swarm optimization, and roboanalyzer
software are applied to the studied manipulator (KUKA KR 22 R1610-2). By changing the manipulator
end effector positions and orientation as shown in Table 4, which describes the input positions of the
manipulator end effector, different sets of angles can be observed as outputs of inverse kinematics
analyses as shown in Tables 5–7. By changing the manipulator joint angle inputs as shown in Tables 8–
10. Table 4, which describes different sets of angles, the output positions, and the orientation of the
manipulator end effector, can be observed as a forward kinematics analysis. KUKA KR 22 R1610-
2 manipulator has the following dimensions: d1=520 mm, d4=655 mm, d6=153 mm, a1=160 mm,
a2=780 mm, a3=150 mm.

3.1. Inverse kinematics results

To obtain the possible solutions of θ1, θ2, θ3, θ4, θ5, θ6 for different cases, we used four kinematics
analysis methods (the Peter Corke toolbox, roboanalyzer, mathematical model, and particle swarm
optimization). For the mathematical model, the values listed in Table 4 are substituted for the previous
Eqs (2.24), (2.30), (2.31), (2.34), (2.36), and (2.41), which describe the position and orientation of
the end effector at a certain position. The same listed values in Table 4 were used for the Peter Corke
toolbox and roboanalyzer to obtain the possible solutions of θ1, θ2, θ3, θ4, θ5, θ6. In each case, we have
eight sets of solutions for joint rotation for a given position and orientation, but we have constraints on
rotation angles as shown in Table 3, so some results will be one solution and other results will be more
than one solution. Six random cases and one possible solution for each case have been selected to be
studied.

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13961

Table 4. End effector positions and orientation of selected cases.

Cases Px Py Pz n s a
x y z x y z x y z

1 1090 0 1328 1 0 0 0 1 0 0 0 1
2 -283 1442 378 1 0 0 0 1 0 0 0 1
3 1260 177 459 1 0 0 0 1 0 0 0 1
4 311 1379 1077 1 0 0 0 1 0 0 0 1
5 546 431 1025 1 0 0 0 1 0 0 0 1
6 655 -213 886 1 0 0 0 1 0 0 0 1

3.1.1. Inverse kinematics results using Peter Corke toolbox

Table 5 describes the output joints’ angles for the selected cases using the Peter Corke Toolbox. One
solution has been selected after avoiding the rejected solutions according to the manipulator joints’
limitations.

Table 5. Set of solutions of each case using Peter Corke toolbox.

Cases θ1 θ2 θ3 θ4 θ5 θ6
1 0 0 0 0 0 0
2 101 8 122 -180 -115 78
3 7 -47 -1 0 45 -8
4 77 -6 27 -179 -33 102
5 38 -23 -52 -1 -30 -39
6 -19 -36 -58 0 -23 18

By using GUI in MATLAB and collaborating with Peter Corke toolbox, a representative
manipulator simulation can be obtained for each case, as shown in Figure 6.

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13962

(a) (b) (c)

(d) (e) (f)

Figure 6. Simulation of solutions of each joint using Peter Corke toolbox (GUI): (a)
Description of case one; (b) Description of case two; (c) Description of case three; (d)
Description of case four; (e) Description of case five; (f) Description of case six.

3.1.2. Inverse kinematics results using roboanalyzer

Table 6 describes the output joints’ angles for the selected cases using roboanalyzer. One solution
has been selected after avoiding the rejected solutions according to the manipulator joints’ limitations.

Table 6. Set of solutions for each case using roboanalyzer.

Cases θ1 θ2 θ3 θ4 θ5 θ6
1 0 0 0 0 0 0
2 101.103 8.015 122.048 -180 -114.033 78.897
3 7.996 -46.311 -0.603 0 45.709 -7.996
4 77.291 -5.116 27.178 -180 -32.293 102.709
5 38.287 -22.094 -51.161 0 -29.067 -38.287
6 -18.014 -35.251 -57.417 0 -22.166 18.014

By using the roboanalyzer simulator platform, a representative manipulator simulation can be
obtained for each case, as shown in Figure 7.

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13963

(a) (b) (c)

(d) (e) (f)

Figure 7. Simulation of solutions of each joint using roboanalyzer: (a) Description of case
one; (b) Description of case two; (c) Description of case three; (d) Description of case four;
(e) Description of case five; (f) Description of case six.

3.1.3. Inverse kinematics results using the mathematical model

Using the mathematical model of inverse kinematics equations as described in Eqs (2.24), (2.30),
(2.31), (2.34), (2.36), and (2.41). Table 7 presents the output joints’ angles for the selected cases. To
avoid the rejected solutions due to the constraints of the manipulator’s joints, one solution has been
chosen.

Table 7. Set of solutions for each case using the mathematical model.

Cases θ1 θ2 θ3 θ4 θ5 θ6
1 0 0 0 0 0 0
2 101.41 8.059 121.56 -179.47 -116.022 76.746
3 8.02 -46.41 -0.63 0 45.84 -7.74
4 77.382 -6.06 27.72 -180.02 -31.92 101.097
5 38.783 -22.402 -50.97 0.079 -28.677 -37.878
6 -18.76 -35.52 -57.41 0 -22.79 18.05

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13964

3.1.4. Inverse kinematics results using particle swarm optimization

Table 8 presents the angles of the output joints for the selected cases, which were determined using
particle swarm optimization. A solution has been chosen after eliminating the rejected options based
on the constraints of the manipulator joints.

Table 8. Set of solutions for each case using particle swarm optimization.

Cases θ1 θ2 θ3 θ4 θ5 θ6
1 0 0 0 0 0 0
2 101 8 122 -180 -114 78.9
3 8 -46.3 -0.6 0 45.71 -7.7
4 77.3 -5.12 27.18 -180 -32.3 102.709
5 38.338 -22.074 -51.219 0 -29.146 -38.338
6 -18 -35.25 -57.4 0 -22.2 18

3.2. Forward kinematics results

In forward kinematics, to obtain the position of the end effector of the manipulator (px, py and
pz), the equations derived from the forward kinematics solution, from Eq (2.4) to Eq (2.15), are
used. The outputs in Tables 5–8, which include the output angles of each joint according to inverse
kinematics solutions, are used as inputs for forward kinematics for the same cases selected to be
studied. Distinct positions are observed by changing the output of the inverse kinematics results of
the four kinematics analysis methods (Peter Corke toolbox, roboanalyzer, mathematical model, and
particle swarm optimization).

3.2.1. Forward kinematics results using Peter Corke toolbox

Table 9 shows the results of the forward kinematics of the chosen cases using the Peter Corke
Toolbox. The inputs for solving forward kinematics were the output result angles of inverse kinematics
solutions for the same case using Peter Corke toolbox, as indicated in Table 5.

Table 9. Input angles and output position of each case using Peter Corke toolbox.

Cases Input Output
θ1 θ2 θ3 θ4 θ5 θ6 Px Py Pz

1 0 0 0 0 0 0 1090 0 1328
2 101 8 122 -180 -115 78 -280 1440 378
3 7 -47 -1 0 45 -8 1260 154 449
4 77 -6 27 -179 -33 102 317 1382 1059
5 38 -23 -52 -1 -30 -39 547 426 1013
6 -19 -36 -58 0 -23 18 649 -224 878

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13965

3.2.2. Forward kinematics results using roboanalyzer

Table 10 describes the output positions of the selected cases using a roboanalyzer. The output result
angles of inverse kinematics solutions for the same case using the roboanalyzer shown in Table 6 were
the inputs that have been used to solve forward kinematics.

Table 10. Input angles and output position of each case using roboanalyzer.

Cases Input Output
θ1 θ2 θ3 θ4 θ5 θ6 Px Py Pz

1 0 0 0 0 0 0 1090 0 1328
2 101.103 8.015 122.05 -180 -114.033 78.897 -282.98 1442 378
3 7.996 -46.311 -0.603 0 45.709 -7.996 1259.99 176.99 459.01
4 77.291 -5.116 27.178 -180 -32.293 102.71 310.99 1379 1076.99
5 38.287 -22.094 -51.161 0 -29.067 -38.287 545.99 431 1025
6 -18.014 -35.251 -57.417 0 -22.166 18.014 654.99 -212.99 886

3.2.3. Forward kinematics results using the mathematical model

The mathematical model is used to solve forward kinematics, Table 11 shows the output positions
of the selected cases. Table 7 shows the angles of the solutions to inverse kinematics for the same case
using a mathematical model. These angles were used to solve forward kinematics.

Table 11. Input angles and output position of each case using the mathematical model.

Cases Input Output
θ1 θ2 θ3 θ4 θ5 θ6 Px Py Pz

1 0 0 0 0 0 0 1090 0 1328
2 101.41 8.059 121.56 -179 -116.022 76.746 -288.9 1439.7 376.4
3 8.02 -46.41 -0.63 0 45.84 -7.74 1259.2 177.4 457.4
4 77.382 -6.06 27.72 -180 -31.92 101.1 312.2 1376.9 1075.6
5 38.783 -22.4 -50.97 0.079 -28.677 -37.878 545.6 432.5 1023.7
6 -18.76 -35.52 -57.41 0 -22.79 18.05 655.46 -212.62 883.51

3.2.4. Forward kinematics results using particle swarm optimization

The output positions of the selected cases are shown in Table 12, which displays the results of using
particle swarm optimization to solve forward kinematics. Angles of solutions to inverse kinematics
utilizing particle swarm optimization are shown in Table 8 for the identical instance. Forward
kinematics was solved using these angles.

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13966

Table 12. Input angles and output position of each case using particle swarm optimization.

Cases Input Output
θ1 θ2 θ3 θ4 θ5 θ6 Px Py Pz

1 0 0 0 0 0 0 1090 0 1328
2 101 8 122 -180 -114 78.9 -283.01 1441.99 378.02
3 8 -46.3 -0.6 0 45.71 -7.7 1260 177 458.98
4 77.3 -5.12 27.18 -180 -32.3 102.709 311 1379.01 1077
5 38.338 -22.074 -51.219 0 -29.146 -38.338 546.02 431 1025
6 -18 -35.25 -57.4 0 -22.2 18 655 -213 885.998

4. Discussion

The above-mentioned results will be discussed in terms of the purpose of this paper, which is to
define the most accurate method for accessing the manipulator’s end effector to its target destination
and to compare the time factor for executing the method in six different cases.

4.1. Performance metrics

The percentage of accuracy is calculated by estimating the mean absolute percentage error (MAPE)
and subtracting it from 100% using Eq (4.2) [65]. The mean absolute percentage error is computed as
shown in Eq (4.1) by dividing the absolute error of a point by the observed values for that point. Then,
the average of those set percentages is taken, where X1 is the actual value (input), X2 is the observed
value (output), and n is the number of fitted points. MAPE displays the amount of prediction error in
comparison to the actual value [66].

MAPE =

∑ |X1−X2 |

X1

n
× 100%. (4.1)

Percentage o f Accuracy = (100% − MAPE). (4.2)

4.2. Hardware and software specifications

A laptop with an intel Core i7 2nd Generation processor, eight gigabytes (GB) of random access
memory (RAM), a 64 bit operating system, Windows 10, 128 gigabytes (GB) of solid state drive (SSD)
hard disk, and Intel (R) High Definition (HD) Graphics 3000 graphics card specifications are used.

4.3. Forward and inverse results discussion

First, Table 13 shows an accurate comparison between the input positions of inverse kinematics
as target destinations and the output result positions of forward kinematics using the Peter Corke
toolbox as the final destination of the end effector of the manipulator. The accuracy of the Peter Corke
toolbox method in accessing the target can be determined through this comparison, as the average

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13967

access accuracy for the six cases was 98.350%. As for the execution time of each case, 1.707 seconds
were calculated as the average execution time for each case.

Table 13. Comparison between the input positions of inverse kinematics and output result
positions of forward kinematics using Peter Corke toolbox.

Cases Input Output
Px Py Pz Px Py Pz

1 1090 0 1328 1090 0 1328
2 -283 1442 378 -280 1440 378
3 1260 177 459 1260 154 449
4 311 1379 1077 317 1382 1059
5 546 431 1025 547 426 1013
6 655 -213 886 649 -224 878

Second, Table 14 illustrates an exact comparison of inverse kinematics input positions as target
destinations and forward kinematics output result positions using a roboanalyzer as the manipulator’s
end effector’s final destination. Because the average access accuracy for the six cases was 99.987%,
we can define how effectively the roboanalyzer approach performs at reaching targets using this
comparison. As for the execution time of each case, 0.278 seconds were calculated as the average
execution time.

Table 14. Comparison between the input positions of inverse kinematics and output result
positions of forward kinematics using roboanalyzer.

Cases Input Output
Px Py Pz Px Py Pz

1 1090 0 1328 1090 0 1328
2 -283 1442 378 -282.98 1442 378
3 1260 177 459 1260 176.99 459.01
4 311 1379 1077 310.99 1379 1077
5 546 431 1025 545.99 431 1025
6 655 -213 886 654.99 -213 886

Third, Table 15 provides a detailed comparison of the input positions of inverse kinematics as target
destinations and the output result positions of forward kinematics using a mathematical model as the
final destination of the end effector of the manipulator. This comparison shows that the average access
accuracy for the six examples was 99.719%, so it can be used to judge how well the mathematical
model method works for reaching goals. As for the execution time of each case, 0.281 seconds were
calculated as the average execution time for each case.

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13968

Table 15. Comparison between the input positions of inverse kinematics and output result
positions of forward kinematics using the mathematical model.

Cases Input Output
Px Py Pz Px Py Pz

1 1090 0 1328 1090 0 1328
2 -283 1442 378 -288.9 1439.7 376.4
3 1260 177 459 1259 177.4 457.4
4 311 1379 1077 312.2 1376.9 1076
5 546 431 1025 545.6 432.5 1024
6 655 -213 886 655.46 -212.62 883.51

Table 16 shows a detailed comparison of the results of forward kinematics with particle swarm
optimization as the manipulator’s end effector’s end point and the input positions of inverse kinematics
as target targets. In order to evaluate the efficacy of the particle swarm optimization method in reaching
objectives, this comparison reveals that the average access accuracy for the six instances was 99.999%.
The average execution time for each case was calculated to be 0.904 seconds.

Table 16. Comparison between the input positions of inverse kinematics and output result
positions of forward kinematics using the particle swarm optimization.

Cases Input Output
Px Py Pz Px Py Pz

1 1090 0 1328 1090 0 1328
2 -283 1442 378 -283.01 1441.99 378.02
3 1260 177 459 1260 177 458.98
4 311 1379 1077 311 1379.01 1077
5 546 431 1025 546.02 431 1025
6 655 -213 886 655 -213 885.998

4.4. End-effector pose error

The position error of the end-effector can be determined using the values Px, Py, and Pz in
Eq (2.3) by calculating the Euclidean distance between the actual position and the evaluated position,
represented by Eq (4.3) [45]. Through Tables 13–16, and utilizing Eq (4.3), the end-effector pose error
was computed for each of the four methods. Table 17 presents the result comparison of the end-effector
pose errors among the four methods.

Perror =

√(
px,E − px,A

)2
+

(
py,E − py,A

)2
+

(
pz,E − pz,A

)2. (4.3)

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13969

Table 17. End-effector pose error result comparison.

Cases Perror

Peter Cork Roboanalyze Mathematical Model PSO
1 0 0 0 0
2 3.606 0.020 6.531 0.024
3 25.080 0.014 1.929 0.020
4 19.209 0.010 2.617 0.010
5 13.038 0.010 1.847 0.020
6 14.866 0.010 2.560 0.002
Average 12.633 0.011 2.581 0.012

Figure 8. Comparison between the input positions of inverse kinematics and output result
positions of forward kinematics of the four method configurations.

When the accuracy of access for each of the four studied methods is known and compared, it is clear
that PSO is the most accurate in terms of the average accuracy of reaching each case by 99.999% with
execution time 0.904 second, compared to roboanalyzer with 99.987% with an execution time of 0.278
seconds, the mathematical model with 99.719% with an execution time of 0.281 seconds, and the Peter
Corke toolbox with 98.35% with an execution time of 1.707 seconds. Following the computation of
pose errors, it was observed that the RoboAnalyzer method exhibited the lowest average pose error,
measuring at 0.011 mm. Subsequently, the PSO method ranked second, with a marginal difference,
registering at 0.12 mm. The mathematical modeling method followed in third place, with a pose error

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13970

value of 2.581 mm. Lastly, the Peter Cork method demonstrated the largest pose error, measuring
12.633 mm. Figure 8 describes the six points connected as a path for each of the four methods
used compared with the input positions of inverse kinematics. The selection of the model depends
on the specific requirements of the application. Choosing the PSO and RoboAnalyzer approaches
is recommended when considering accuracy. On the other hand, the Peter Corke method is preferred
when the most important factor is simplicity in the structure of the code. When it comes to applications
where the speed of execution is crucial, the best choice is the RoboAnalyzer and mathematical model.

4.5. Universality and applicability

An additional case study was proposed to ensure the applicability of all the methods studied in this
paper to any type of mechanism. These methods were applied to a 6-DOF manipulator called the IRB
120 ABB. Figure 9 (a) shows the work space and dimensions of the manipulator. Figure 9 (b) also
shows the cartisian frames for each joint of the manipulator. Table 18 present the D-H parameters for
IRB 120 ABB Robot.

(a) (b)

Figure 9. IRB 120 ABB robot configuration: (a) Work space; (b) Cartisian frames.

Table 18. IRB 120 ABB robot D-H parameters.

In θn dn an α θn Limitation
1 θ1 0.290 0 90 −165◦ ≤ θ1 ≤ 165◦

2 θ2 0 0.270 0 −110◦ ≤ θ2 ≤ 110◦

3 θ3 0 0.070 90 −110◦ ≤ θ3 ≤ 70◦

4 θ4 0.302 0 -90 −160◦ ≤ θ4 ≤ 160◦

5 θ5 0 0 90 −120◦ ≤ θ5 ≤ 120◦

6 θ6 0.072 0 0 −400◦ ≤ θ6 ≤ 400◦

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13971

The homogeneous matrix parameters, which describe the position and orientation of the
manipulator end effector as a forward kinematic, are represented in Table 19. And it will be taken
as input for the four studied methods. Each of the four studied methods was applied to two cases
representing two different positions within the accessible workspace in order to ensure the universality
of the studied methods. The results for the four methods were compared with the inputs in Table 20.
The main absolute square error was used to evaluate the accuracy of the results using these methods,
just as we had previously done.

Table 19. Positions and orientations of the end effectors for the two stated cases.

Cases Px Py Pz n s a
x y z x y z x y z

1 130 27 510 1 0 0 0 -1 0 0 0 -1
2 121 -135 314 1 0 0 0 -1 0 0 0 -1

Table 20. Comparison between the input positions of inverse kinematics and the output
positions of the four methods.

Methods Input Output
Px Py Pz Px Py Pz

Mathematical model 130 27 510 127.73 25.42 508.34
121 -135 314 122.26 -132.13 313.57

Peter Corke 130 27 510 127 26 506
121 -135 314 117 -131 312

RoboAnalyzer 130 27 510 131.038 26.91 509.67
121 -135 314 120.976 -134.96 313.52

PSO 130 27 510 129.98 27.01 510
121 -135 314 121 -134.99 313.97

By evaluating the accuracy of the results using the absolute square error, it was found that the
most accurate method was PSO with an accuracy of 99.988%, then, RoboAnalyzer came in second
place with an accuracy of 99.767%, the mathematical model came in third place with an accuracy
of 98.129%, and finally Peter Corke ranked last with an accuracy of 97.716%. The quality of the
PSO method confirms the previous conclusions from the previous studied case, demonstrating the
universality of both the methods and the results.

5. Conclusions

In this paper, a comprehensive kinematics analysis of the KUKA KR 22 R1610-2 industrial
six degree of freedom manipulator is conducted utilizing four distinct methods: the Peter Corke
toolbox and GUI implemented in MATLAB, the roboanalyzer software platform, mathematical model,
and particle swarm optimization implemented in MATLAB. The accuracy of the inverse kinematics

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13972

solutions, represented as target destinations, was evaluated by comparing them to the output positions
obtained through forward kinematics, represented as final destinations, in six different cases. The
accuracy was determined using the mean absolute percentage error. The PSO method emerged as the
most accurate approach for achieving the target, followed by the RoboAnalyzer method, then the Peter
Corke method, and finally the mathematical model method. The RoboAnalyzer method was the most
effective in terms of execution time, followed by the mathematical model method, PSO, and the Peter
Corke method.

The future work of this research is to study the analysis of continuum manipulators under external
forces, which falls into the realm of dynamics. Closed-form solutions to inverse kinematics problems
for reconfigurable robots are also among the future work. The advanced machine learning techniques
can be applied to the inverse kinematics problem solution. Finally, we plan to explore enhancements
to the iterative cycle methodology, with a specific focus on addressing factors that influence solution
accuracy, including the end-effector pose error.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of
Education in Saudi Arabia, for funding this research work through project number 445-9-953.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

References

1. M. A. A. Mousa, A. T. Elgohr, H. A. Khater, Trajectory optimization for a 6 DOF robotic arm
based on reachability time, Annals of Emerging Technologies in Computing, 8 (2024), 22–35.
https://doi.org/10.33166/AETiC.2024.01.003

2. A. Krisbudiman, T. H. Nugroho, A. Musthofa, Analysis industrial robot arm with Matlab and
RoboAnalyzer, International Journal of Advanced Engineering, Management and Science, 7
(2021), 75–80. https://doi.org/10.22161/ijaems.73.10

3. J. W. Lee, G. T. Park, J. S. Shin, J. W. Woo,, Industrial robot calibration method using denavit-
Hatenberg parameters, 2017 17th International Conference on Control, Automation and Systems
(ICCAS), Jeju, Korea (South), 2017, 1834–1837. https://doi.org/10.23919/ICCAS.2017.8204265

4. Z. Y. He, J. C. Li, Six-degree-of-freedom robot trajectory planning based on MATLAB,
International Conference on Automation, Robotics and Computer Engineering (ICARCE), Wuhan,
China, 2022, 1–3. https://doi.org/10.1109/ICARCE55724.2022.10046483

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

https://dx.doi.org/https://doi.org/10.33166/AETiC.2024.01.003
https://dx.doi.org/https://doi.org/10.22161/ijaems.73.10
https://dx.doi.org/https://doi.org/10.23919/ICCAS.2017.8204265
https://dx.doi.org/https://doi.org/10.1109/ICARCE55724.2022.10046483

13973

5. KR 22 R1610-2-KUKA AG. Available from: https://www.infinitysolutions.co.jp/
wprenew/wp-content/uploads/2021/02/kr_cybertech_en.pdf.

6. D. Constantin, M. Lupoae, C. Baciu, B. D. Ilie, Forward kinematic analysis of an industrial robot,
International Conference on Mechanical Engineering (ME 2015), Vienna, Austria 2015, 90–95.

7. W. Chen, X. Li, H. L. Ge, L. Wang,Y. H. Zhang, Trajectory planning for spray
painting robot based on point cloud slicing technique, Electronics, 9 (2020), 908.
https://doi.org/10.3390/electronics9060908

8. T. P. Singh, P. Suresh, S. Chandan, Forward and inverse kinematic analysis of robotic manipulators,
International Research Journal of Engineering and Technology, 4 (2017), 1459–1469.

9. J. Villalobos, I. Y. Sanchez, F. Martell, Singularity analysis and complete methods to
compute the inverse kinematics for a 6-DOF UR/TM-type robot, Robotics, 11 (2022), 137.
https://doi.org/10.3390/robotics11060137

10. D. Sivasamy, M. D. Anand, K. A. Sheela, Robot forward and inverse kinematics research
using MATLAB, International Journal of Recent Technology and Engineering , 8 (2019), 29–35
https://doi.org/10.35940/ijrte.b1006.0782s319

11. A. Patwardhan, A. Prakash, R. G. Chittawadigi, Kinematic analysis and development of simulation
software for nex dexter robotic manipulator, Procedia Computer Science, 133 (2018), 660–667.
https://doi.org/10.1016/j.procs.2018.07.101

12. M. Kaur, S. Sondhi, V. K. Yanumula, Kinematics analysis and jacobian calculation for six degrees
of freedom robotic arm, 2020 IEEE 17th India Council International Conference (INDICON), New
Delhi, India, 2020, 1–6. https://doi.org/10.1109/INDICON49873.2020.9342093

13. S. KuCuk, Z. Bingul, The inverse kinematics solutions of industrial robot manipulators,
Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey, 2004, 274–
279. https://doi.org/10.1109/ICMECH.2004.1364451

14. M. G. Krishnan, S. Ashok, Kinematic analysis and validation of an industrial robot
manipulator, 2019 IEEE Region 10 Conference (TENCON), Kochi, India, 2019, 1393–1399.
https://doi.org/10.1109/TENCON.2019.8929712

15. D. P. Nayak, K. C Rath, Robot kinematics analysis with simulation of
manipulator trajectory utilising the DH parameter, YMER, 21 (2022), 273–285.
https://doi.org/10.37896/ymer21.08%2F24

16. A. El-Sherbiny, M. A. Elhosseini, A. Y Haikal, A comparative study of soft computing
methods to solve inverse kinematics problem, Ain Shams Eng. J., 9 (2018), 2535–2548.
https://doi.org/10.1016/j.asej.2017.08.001

17. I. Chavdarov, B. Naydenov, Algorithm for determining the types of inverse kinematics solutions for
sequential planar robots and their representation in the configuration space, Algorithms, 15 (2022),
469. https://doi.org/10.3390/a15120469

18. S. S. Chauhan, A. K. Khare, Kinematic analysis of the ABB IRB 1520 industrial robot using
RoboAnalyzer software, Evergreen, 7 (2022), 510–518. https://doi.org/10.5109/4150470

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

https://www.infinitysolutions.co.jp/wprenew/wp-content/uploads/2021/02/kr_cybertech_en.pdf
https://www.infinitysolutions.co.jp/wprenew/wp-content/uploads/2021/02/kr_cybertech_en.pdf
https://dx.doi.org/https://doi.org/10.3390/electronics9060908
https://dx.doi.org/https://doi.org/10.3390/robotics11060137
https://dx.doi.org/https://doi.org/10.35940/ijrte.b1006.0782s319
https://dx.doi.org/https://doi.org/10.1016/j.procs.2018.07.101
https://dx.doi.org/https://doi.org/10.1109/INDICON49873.2020.9342093
https://dx.doi.org/https://doi.org/10.1109/ICMECH.2004.1364451
https://dx.doi.org/https://doi.org/10.1109/TENCON.2019.8929712
https://dx.doi.org/https://doi.org/10.37896/ymer21.08%2F24
https://dx.doi.org/https://doi.org/10.1016/j.asej.2017.08.001
https://dx.doi.org/https://doi.org/10.3390/a15120469
https://dx.doi.org/https://doi.org/10.5109/4150470

13974

19. M. W. Spong, S. Hutchinson, M. Vidyasagar, Robot modeling and control, 2 Eds., Hoboken: Wiley,
2020. https://doi.org/10.1109/MCS.2006.252815

20. B. Siciliano, O. Khatib, Robotics and the handbook, In: Springer handbook of robotics, Cham:
Springer, 2016, 1–6. https://doi.org/10.1007/978-3-319-32552-1

21. Z. Bingul, H. M. Ertunc, C. Oysu, Comparison of inverse kinematics solutions
using neural network for 6R robot manipulator with offset, 2005 ICSC Congress
on Computational Intelligence Methods and Applications, Istanbul, Turkey, 2005, 5.
https://doi.org/10.1109/CIMA.2005.1662342

22. P. Corke, Robotics and control: Fundamental algorithms in MATLAB, Cham: Springer, 2022.
https://doi.org/10.1007/978-3-030-79179-7

23. I. Mehta, K. Bimbraw, R. G. Chittawadigi, S. K. Saha, A teach pendant to control virtual robots
in Roboanalyzer, 2016 International Conference on Robotics and Automation for Humanitarian
Applications (RAHA), Amritapuri, India, 2016, 1–6. https://doi.org/10.1109/RAHA.2016.7931881

24. P. I. Corke, A robotics toolbox for MATLAB, IEEE Robot. Autom. Mag., 3 (1996), 24–32.
https://doi.org/10.1109/100.486658

25. A. El-Sherbiny, M. A. Elhosseini, A. Y. Haikal, A new ABC variant for solving
inverse kinematics problem in 5 DOF robot arm, Appl. Soft Comput., 73 (2018), 24–38.
https://doi.org/10.1016/j.asoc.2018.08.028

26. M. A. A. Mousa, A. T. Elgohr, H. A.Khater, Path planning for a 6 DoF robotic arm based
on whale optimization algorithm and genetic algorithm, J. Eng. Res., 7 (2023), 160–168.
https://doi.org/10.21608/erjeng.2023.237586.1256

27. H. Danaci, L. A. Nguyen, T. L. Harman, M. Pagan, Inverse kinematics for serial robot manipulators
by particle swarm optimization and POSIX threads implementation, Appl. Sci., 13 (2023), 4515.
https://doi.org/10.3390/app13074515

28. S. Djeffal, C. Mahfoudi, Inverse kinematic model of multi-section continuum robots using particle
swarm optimization and comparison to four meta-heuristic approaches, SIMULATION, 99 (2023),
817–830. https://doi.org/10.1177/00375497231164645

29. R. Sadanand, R. G. Chittawadigi, R. P. Joshi, S. K Saha, Virtual robots module: An effective
visualization tool for robotics toolbox, Proceedings of the 2015 Conference on Advances In
Robotics, Goa, India, 2015, 1–6. https://doi.org/10.1145/2783449.2783475

30. A. N. Barakat, K. A. Gouda, K. A Bozed, Kinematics analysis and simulation of a robotic arm using
MATLAB., 2016 4th International Conference on Control Engineering & Information Technology
(CEIT), Hammamet, Tunisia, 2016, 1–5. https://doi.org/10.1109/CEIT.2016.7929032

31. Y. L. Bao, K. M. Hamza, K. D. Kallu, S. J. Abbasi, M. C. Lee, A study on 7-DOF manipulator
control by using MATLAB robotics toolbox, 2019 16th International Conference on Ubiquitous
Robots, Jeju, Korea, 2019, 24–27.

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

https://dx.doi.org/https://doi.org/10.1109/MCS.2006.252815
https://dx.doi.org/https://doi.org/10.1007/978-3-319-32552-1
https://dx.doi.org/https://doi.org/10.1109/CIMA.2005.1662342
https://dx.doi.org/https://doi.org/10.1007/978-3-030-79179-7
https://dx.doi.org/https://doi.org/10.1109/RAHA.2016.7931881
https://dx.doi.org/https://doi.org/10.1109/100.486658
https://dx.doi.org/https://doi.org/10.1016/j.asoc.2018.08.028
https://dx.doi.org/https://doi.org/10.21608/erjeng.2023.237586.1256
https://dx.doi.org/https://doi.org/10.3390/app13074515
https://dx.doi.org/https://doi.org/10.1177/00375497231164645
https://dx.doi.org/https://doi.org/10.1145/2783449.2783475
https://dx.doi.org/https://doi.org/10.1109/CEIT.2016.7929032

13975

32. D. T. Long, T. V. Binh, R. V. Hoa, L. V. Anh, N. V. Toan, Robotic arm simulation by
using matlab and robotics toolbox for industry application, International Journal of Electronics
and Communication Engineering, 7 (2020), 1–4. https://doi.org/10.14445/23488549%2Fijece-
v7i10p101

33. D. Q. Zhang, Z. Y. Peng, G. S. Ning, X. Han, Positioning accuracy reliability of industrial
robots through probability and evidence theories, J. Mech. Des., 143 (2021), 011704.
https://doi.org/10.1115/1.4047436

34. D. Q. Zhang, X. Han, Kinematic reliability analysis of robotic manipulator, J. Mech. Des., 142
(2020), 044502. https://doi.org/10.1115/1.4044436

35. D. Q. Zhang, S. S. Shen, J. H. Wu, F. Wang, X. Han, Kinematic trajectory accuracy reliability
analysis for industrial robots considering intercorrelations among multi-point positioning errors,
Reliab. Eng. Syst. Safe., 229 (2023), 108808. https://doi.org/10.1016/j.ress.2022.108808

36. J. Bahuguna, R. G. Chittawadigi, S. K. Saha, Teaching and learning of robot kinematics using
RoboAnalyzer software, In: Proceedings of conference on advances in robotics, New York:
Association for Computing Machinery, 2013, 1–6. https://doi.org/10.1145/2506095.2506142

37. V. Gupta, R. G. Chittawadigi, S. K. Saha, RoboAnalyzer: Robot visualization software for robot
technicians, In: Proceedings of the advances in robotics, Association for Computing Machinery,
2017, 1–5. https://doi.org/10.1145/3132446.3134890

38. R. S. Othayoth, R. G. Chittawadigi, R. P. Joshi, S. K. Saha, Robot kinematics made
easy using RoboAnalyzer software, Comput. Appl. Eng. Educ., 25 (2017), 669–680.
https://doi.org/10.1002/cae.21828

39. P. Chang, A closed-form solution for the control of manipulators with kinematic redundancy, 1986
IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 1986, 9–
14. https://doi.org/10.1109/ROBOT.1986.1087725

40. P. Chang, A closed-form solution for inverse kinematics of robot manipulators
with redundancy, IEEE Journal on Robotics and Automation, 3 (1987), 393–403.
https://doi.org/10.1109/jra.1987.1087114

41. I. M. Chen, Y. Gao, Closed-form inverse kinematics solver for reconfigurable robots, IEEE
International Conference on Robotics and Automation, Seoul, South Korea, 2001, 2395–2400.
https://doi.org/10.1109/ROBOT.2001.932980

42. J. Gao, B. Zhou, B. Zi, S. Qian, P. Zhao, Kinematic uncertainty analysis of a Cable-Driven
parallel robot based on an error transfer model, J. Mechanisms Robotics, 14 (2022), 051008.
https://doi.org/10.1115/1.4053219

43. D. Q. Zhang, Z. H. Han, F. Wang, X. Han, Proficiency of statistical moment-based methods for
analysis of positional accuracy reliability of industrial robots, Int. J. Mech. Mater. Des., 17 (2021),
403–418. https://doi.org/10.1007/s10999-021-09532-2

44. Q. Q. Zhao, J. K. Guo, D. T. Zhao, D. W. Yu, J. Hong, Time-dependent system
kinematic reliability analysis for robotic manipulators, J. Mech. Des., 143 (2021), 041704.
https://doi.org/10.1115/1.4049082

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

https://dx.doi.org/https://doi.org/10.14445/23488549%2Fijece-v7i10p101
https://dx.doi.org/https://doi.org/10.14445/23488549%2Fijece-v7i10p101
https://dx.doi.org/https://doi.org/10.1115/1.4047436
https://dx.doi.org/https://doi.org/10.1115/1.4044436
https://dx.doi.org/https://doi.org/10.1016/j.ress.2022.108808
https://dx.doi.org/https://doi.org/10.1145/2506095.2506142
https://dx.doi.org/https://doi.org/10.1145/3132446.3134890
https://dx.doi.org/https://doi.org/10.1002/cae.21828
https://dx.doi.org/https://doi.org/10.1109/ROBOT.1986.1087725
https://dx.doi.org/https://doi.org/10.1109/jra.1987.1087114
https://dx.doi.org/https://doi.org/10.1109/ROBOT.2001.932980
https://dx.doi.org/https://doi.org/10.1115/1.4053219
https://dx.doi.org/https://doi.org/10.1007/s10999-021-09532-2
https://dx.doi.org/https://doi.org/10.1115/1.4049082

13976

45. J. A. Abdor-Sierra, E. A. Merchán-Cruz, R. G. Rodrı́guez-Cañizo, A comparative analysis of
metaheuristic algorithms for solving the inverse kinematics of robot manipulators, Results in
Engineering, 16 (2022), 100597. https://doi.org/10.1016/j.rineng.2022.100597

46. C. J. Liu, X. Y. Wang, H. S. Jiang, X. Y. Wang, H. Y. Guo, Inverse kinematics
solution of manipulator based on IPSO-BPNN, 2022 5th International Conference on
Pattern Recognition and Artificial Intelligence (PRAI), Chengdu, China, 2022, 175–179.
https://doi.org/10.1109/PRAI55851.2022.9904288

47. A. X. Wu, Z. P. Shi, Y. D. Li, M. H. Wu, Y. Guan, J. Zhang, et al., Formal kinematic analysis
of a general 6R manipulator using the screw theory, Math. Probl. Eng., 2015 (2015), 549797.
https://doi.org/10.1155/2015/549797

48. Q. D. Li, H. H. Ju, P. F. Xiao, Kinematics analysis and optimization of 6R manipulator, IOP Conf.
Ser.: Mater. Sci. Eng., 816 (2020), 012016. https://doi.org/10.1088/1757-899X/816/1/012016

49. M. T. Nguyen, C. Yuan, J. H. Huang, Kinematic analysis of a 6-DOF robotic arm, In: Mechanisms
and machine science, Cham: Springer, 2019, 2965–2974. https://doi.org/10.1007/978-3-030-
20131-9 292

50. H. A. R. Akkar, A. N. A-Amir, Kinematics analysis and modeling of 6 degree of freedom
robotic arm from DFROBOT on Labview, Research Journal of Applied Sciences, Engineering
and Technology, 7 (2016), 569–575. https://doi.org/10.19026/rjaset.13.3016

51. A. Talli, A. C. Giriyapur, Kinematic analysis and simulation of industrial robot based on
RoboAnalyzer, In: Recent advances in mechanical infrastructure, Singapore: Springer, 2021, 473–
483. https://doi.org/10.1007/978-981-33-4176-0 40

52. J. Z. Vidaković, M. P. Lazarević, V. M. Kvrgić, Z. Z. Dančuo, G. Z. Ferenc, Advanced quaternion
forward kinematics algorithm including overview of different methods for robot kinematics, FME
Trans., 42 (2014), 189–199. https://doi.org/10.5937/fmet1403189v

53. T. Aravinthkumar, M. Suresh, B. Vinod, Kinematic analysis of 6 DOF articulated robotic
arm, International Research Journal of Multidisciplinary Technovation, 3 (2021), 1–5.
https://doi.org/10.34256/irjmt2111

54. K. S. Gaeid, A. F. Nashee, I. A. Ahmed, M. H. Dekheel, Robot control and kinematic analysis
with 6DoF manipulator using direct kinematic method, Bulletin of Electrical Engineering and
Informatics, 10 (2021), 70–78. https://doi.org/10.11591/eei.v10i1.2482

55. M. Dahari, J. D. Tan, Forward and inverse kinematics model for robotic welding
process using KR-16KS KUKA robot, 2011 Fourth International Conference on
Modeling, Simulation and Applied Optimization, Kuala Lumpur, Malaysia, 2011, 1–6.
https://doi.org/10.1109/ICMSAO.2011.5775598

56. J. X. Yu, D. Z. You, J. S. Liu, Analysis of inverse kinematics method for six degrees
of freedom manipulator based on MATLAB, 2017 3rd IEEE International Conference
on Control Science and Systems Engineering (ICCSSE), Beijing, China, 2017, 211–215.
https://doi.org/10.1109/CCSSE.2017.8087925

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

https://dx.doi.org/https://doi.org/10.1016/j.rineng.2022.100597
https://dx.doi.org/https://doi.org/10.1109/PRAI55851.2022.9904288
https://dx.doi.org/https://doi.org/10.1155/2015/549797
https://dx.doi.org/https://doi.org/10.1088/1757-899X/816/1/012016
https://dx.doi.org/https://doi.org/10.1007/978-3-030-20131-9_292
https://dx.doi.org/https://doi.org/10.1007/978-3-030-20131-9_292
https://dx.doi.org/https://doi.org/10.19026/rjaset.13.3016
https://dx.doi.org/https://doi.org/10.1007/978-981-33-4176-0_40
https://dx.doi.org/https://doi.org/10.5937/fmet1403189v
https://dx.doi.org/https://doi.org/10.34256/irjmt2111
https://dx.doi.org/https://doi.org/10.11591/eei.v10i1.2482
https://dx.doi.org/https://doi.org/10.1109/ICMSAO.2011.5775598
https://dx.doi.org/https://doi.org/10.1109/CCSSE.2017.8087925

13977

57. S. Asif, P. Webb, Kinematics analysis of 6-DoF articulated robot with spherical wrist, Math. Probl.
Eng., 2021 (2021), 6647035. https://doi.org/10.1155/2021/6647035

58. P. Corke, MATLAB toolboxes: Robotics and vision for students and teachers, IEEE Robot. Autom.
Mag., 14 (2007), 16–17. https://doi.org/10.1109/m-ra.2007.912004

59. E. Drumwright, J. Hsu, N. Koenig, D. Shell, Extending open dynamics engine for robotics
simulation, In: Simulation, modeling, and programming for autonomous robots, Berlin: Springer,
2010, 38–50. https://doi.org/10.1007/978-3-642-17319-6 7

60. N. A. S. Laksana, R. Ariawan, U. S. Jati, J. Sodikin, Ulikaryani, Analisis kinematik singularty pada
manipulator 7 DOF dengan software simulasi RoboAnalyzer, Infotekmesin, 13 (2022), 265–271.
https://doi.org/10.35970/infotekmesin.v13i2.1538

61. J. F. Nethery, M. W.Spong, Robotica: A mathematica package for robot analysis, IEEE Robot.
Autom. Mag., 1 (1994), 13–20. https://doi.org/10.1109/100.296449

62. M. F. Robinette, R. Manseur, Robot-draw, an internet-based visualization tool for robotics
education, IEEE T. Educ., 44 (2001), 29–34. https://doi.org/10.1109/13.912707

63. M. Morozov, S. G. Pierce, C. N. MacLeod, C. Mineo, R. Summan, Off-
line scan path planning for robotic NDT, Measurement, 122 (2018), 284–290.
https://doi.org/10.1016/j.measurement.2018.02.020

64. A. Garbev, A. Atanassov, Comparative analysis of RoboDK and robot operating system for
solving diagnostics tasks in off-line programming, 2020 International Conference Automatics and
Informatics (ICAI), Varna, Bulgaria, 2020, 1–5. https://doi.org/10.1109/ICAI50593.2020.9311332

65. M. K. Elshaarawy, A. K. Hamed, Predicting discharge coefficient of triangular
side orifice using ANN and GEP models, Water Science, 38 (2024), 1–20.
https://doi.org/10.1080/23570008.2023.2290301

66. U. Khair, H. Fahmi, S. A. Hakim, R. Rahim, Forecasting error calculation with mean absolute
deviation and mean absolute percentage error, J. Phys.: Conf. Ser., 930 (2017), 012002.
https://doi.org/10.1088/1742-6596/930/1/012002

Appendix A

The transformation matrices of the six joints.
A0

1 is a the transformation matrix for θ = θ1, d = d1, a = a1, α1 = 90◦

A0
1 = A1 =

Cθ1 0 S θ1 a1Cθ1
S θ1 0 −Cθ1 a1S θ1
0 1 0 d1

0 0 0 1

 . (5.1)

A1
2 is the transformation matrix for θ = θ2, d = 0, a = a2, α2 = 180◦

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

https://dx.doi.org/https://doi.org/10.1155/2021/6647035
https://dx.doi.org/https://doi.org/10.1109/m-ra.2007.912004
https://dx.doi.org/https://doi.org/10.1007/978-3-642-17319-6_7
https://dx.doi.org/https://doi.org/10.35970/infotekmesin.v13i2.1538
https://dx.doi.org/https://doi.org/10.1109/100.296449
https://dx.doi.org/https://doi.org/10.1109/13.912707
https://dx.doi.org/https://doi.org/10.1016/j.measurement.2018.02.020
https://dx.doi.org/https://doi.org/10.1109/ICAI50593.2020.9311332
https://dx.doi.org/https://doi.org/10.1080/23570008.2023.2290301
https://dx.doi.org/https://doi.org/10.1088/1742-6596/930/1/012002

13978

A1
2 = A2 =

Cθ2 S θ2 0 a2Cθ2
S θ2 −Cθ2 0 a2S θ2
0 1 −1 0
0 0 0 1

. (5.2)

A2
3 is the transformation matrix for θ = θ3, d = 0, a = a3, α3 = 90◦

A2
3 = A3 =

Cθ3 0 S θ3 a3Cθ3
S θ3 0 −Cθ3 a3S θ3
0 1 0 0
0 0 0 1

. (5.3)

A3
4 is the transformation matrix for θ=θ4, d = d4, a = 0, α4 = 90◦

A3
4 = A4 =

Cθ4 0 S θ4 0
S θ4 0 −Cθ4 0
0 1 0 d4

0 0 0 1

. (5.4)

A4
5 is the transformation matrix for θ5 ,d, d = 0 ,a = 0 ,α5 = −90◦

A4
5 = A5 =

Cθ5 0 −S θ5 0
S θ5 0 Cθ5 0
0 −1 0 0
0 0 0 1

. (5.5)

A5
6 is the transformation matrix for θ=θ6, d = d6, a = 0, α6 = 0◦

A5
6 = A6 =

Cθ6 −S θ6 0 0
S θ6 Cθ6 0 0
0 0 1 d6

0 0 0 1

. (5.6)

The inverse of transformation matrices of the six joints:

A−1
1 =

Cθ1 S θ1 0 −a1

0 0 1 −d1

S θ1 −Cθ1 0 0
0 0 0 1

 . (5.7)

A−1
2 =

Cθ2 S θ2 0 −a2

S θ2 −Cθ2 0 0
0 0 −1 0
0 0 0 1

 . (5.8)

A−1
3 =

Cθ3 S θ3 0 −a3

0 0 1 0
S θ3 −Cθ3 0 0
0 0 0 1

 . (5.9)

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

13979

A−1
4 =

Cθ4 S θ4 0 0

0 0 1 −d4

S θ4 −Cθ4 0 0
0 0 0 1

 . (5.10)

A−1
5 =

Cθ5 S θ5 0 0

0 0 −1 0
−S θ5 Cθ5 0 0

0 0 0 1

 . (5.11)

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 6, 13944–13979.

https://creativecommons.org/licenses/by/4.0

	Introduction
	Materials and methods
	Kinematics analysis of manipulator using mathematical formulation
	Forward kinematics
	Inverse kinematics

	Kinematics analysis of manipulator using toolbox and software
	Kinematics analysis of manipulator using particle soptimization

	Results
	Inverse kinematics results
	Inverse kinematics results using Peter Corke toolbox
	Inverse kinematics results using roboanalyzer
	 Inverse kinematics results using the mathematical model
	Inverse kinematics results using particle swarm optimization

	Forward kinematics results
	Forward kinematics results using Peter Corke toolbox
	Forward kinematics results using roboanalyzer
	Forward kinematics results using the mathematical model
	Forward kinematics results using particle swarm optimization

	Discussion
	Performance metrics
	Hardware and software specifications
	Forward and inverse results discussion
	End-effector pose error
	Universality and applicability

	Conclusions

