Research article

Representation and stability of distributed order resolvent families

  • Received: 22 February 2022 Revised: 08 April 2022 Accepted: 11 April 2022 Published: 15 April 2022
  • MSC : 26A33, 45K05, 47A10, 47A60, 45D05

  • We consider the resolvent family of the following abstract Cauchy problem (1.1) with distributed order Caputo derivative, where $ A $ is a closed operator with dense domain and satisfies some further conditions. We first prove some stability results of distributed order resolvent family through the subordination principle. Next, we investigate the analyticity and decay estimate of the solution to (1.1) with operator $ A = \lambda > 0 $, then we show that the resolvent family of Eq (1.1) can be written as a contour integral. If $ A $ is self-adjoint, then the resolvent family can also be represented by resolution of identity of $ A $. And we give some examples as an application of our result.

    Citation: Chen-Yu Li. Representation and stability of distributed order resolvent families[J]. AIMS Mathematics, 2022, 7(7): 11663-11686. doi: 10.3934/math.2022650

    Related Papers:

  • We consider the resolvent family of the following abstract Cauchy problem (1.1) with distributed order Caputo derivative, where $ A $ is a closed operator with dense domain and satisfies some further conditions. We first prove some stability results of distributed order resolvent family through the subordination principle. Next, we investigate the analyticity and decay estimate of the solution to (1.1) with operator $ A = \lambda > 0 $, then we show that the resolvent family of Eq (1.1) can be written as a contour integral. If $ A $ is self-adjoint, then the resolvent family can also be represented by resolution of identity of $ A $. And we give some examples as an application of our result.



    加载中


    [1] W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Birkhäuser, 2010.
    [2] E. G. Bajlekova, Fractional evolution equations in Banach spaces, PhD thesis, Department of mathematics, Eindhoven University of Technology, 2001.
    [3] E. G. Bajlekova, Completely monotone functions and some classes of fractional evolution equations, Integr. Transf. Spec. Funct., 26 (2015), 737–769. https://doi.org/10.1080/10652469.2015.1039224 doi: 10.1080/10652469.2015.1039224
    [4] E. G. Bajlekova, Estimate for a general fractional relaxation equation and application to an inverse source problem, Math. Method. Appl. Sci., 41 (2018), 9018–9026. https://doi.org/10.1002/mma.4868 doi: 10.1002/mma.4868
    [5] A. H. Bhrawy, M. A. Zaky, Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations, Nonlinear Dynam., 89 (2017), 1415–1432. https://doi.org/10.1007/s11071-017-3525-y doi: 10.1007/s11071-017-3525-y
    [6] M. Bohner, O. Tunc, C. Tunc, Qualitative analysis of Caputo fractional integro-differential equations with constant delays, Comput. Appl. Math., 6 (2021). https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [7] E. Cuesta, Asymptotic behaviour of the solution of fractional integro-differential equations and some time discretizations, Discrete Contin. Dyn. Syst., 2007 (2013), 277–285.
    [8] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, McGraw-Hill, New York, 1955.
    [9] K. J. Engel, R. Nagel, One-Parameter semigroups for linear evolution equations, Springer, New York, 194 (2000).
    [10] A. Gomilko, Y. Tomilov, On convergence rates in approximation theory for operator semigroups, J. Funct. Anal., 266 (2014), 3040–3082. https://doi.org/10.1016/j.jfa.2013.11.012 doi: 10.1016/j.jfa.2013.11.012
    [11] J. R. Graef, C. Tunc, H. Sevli, Razumikhin qualitative analyses of Volterra integro-fractional delay differential equation with Caputo derivatives, Commun. Nonlinear Sci., 103 (2021). https://doi.org/10.1016/j.cnsns.2021.106037 doi: 10.1016/j.cnsns.2021.106037
    [12] M. Haase, The functional calculus for sectorial operators, Operator theory: Advances and applications, Birkhäuser Verlag, Basel, 169 (2006).
    [13] R. M. Hafez, M. A. Zaky, M. A. Abdelkawy, Jacobi spectral Galerkin method for distributed-order fractional Rayleigh-Stokes problem for a generalized second grade fluid, Front. Phys.-Lausanne, 240 (2020). https://doi.org/10.3389/fphy.2019.00240 doi: 10.3389/fphy.2019.00240
    [14] A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252–281. https://doi.org/10.1016/j.jmaa.2007.08.024 doi: 10.1016/j.jmaa.2007.08.024
    [15] A. N. Kochubei, Asymptotic properties of solutions of the fractional diffusion-wave equation, Fract. Calc. Appl. Anal., 17 (2014), 881–896. https://doi.org/10.2478/s13540-014-0203-3 doi: 10.2478/s13540-014-0203-3
    [16] A. Kubica, K. Ryszewska, Decay of solutions to parabolic-type problem with distributed order Caputo derivative, J. Math. Anal. Appl., 465 (2018), 75–99. https://doi.org/10.1016/j.jmaa.2018.04.067 doi: 10.1016/j.jmaa.2018.04.067
    [17] A. Kubica, K. Ryszewska, Fractional diffusion equation with the distributed order Caputo derivative, J. Integral Equ. Appl., 31 (2019), 195–243. https://doi.org/10.1216/JIE-2019-31-2-195 doi: 10.1216/JIE-2019-31-2-195
    [18] J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equations, 263 (2017), 149–201. https://doi.org/10.1016/j.jde.2017.02.030 doi: 10.1016/j.jde.2017.02.030
    [19] P. C. Kunstmann, L. Weis, Maximal $L_{p}$-regularity for parabolic equations, fourier multiplier theorems and $H^{\infty}$-functional calculus, Springer-Verlag, Berlin, Heidelberg, 2004.
    [20] Z. Y. Li, Y. Luchko, M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal., 17 (2014), 1114–1136. https://doi.org/10.2478/s13540-014-0217-x doi: 10.2478/s13540-014-0217-x
    [21] Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538–548. https://doi.org/10.1016/j.jmaa.2010.08.048 doi: 10.1016/j.jmaa.2010.08.048
    [22] Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam., 24 (1999).
    [23] Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput., 257 (2015), 381–397. https://doi.org/10.1016/j.amc.2014.11.073 doi: 10.1016/j.amc.2014.11.073
    [24] C. G. Li, M. Kostić, M. Li, On a class of time-fractional differential equations, Fract. Calc. Appl. Anal., 15 (2012), 639–668. https://doi.org/10.2478/s13540-012-0044-x doi: 10.2478/s13540-012-0044-x
    [25] C. Y. Li, M. Li, Asymptotic stability of fractional resolvent families, J. Evol. Equ., 21 (2021), 2523–2545. https://doi.org/10.1007/s00028-021-00694-2 doi: 10.1007/s00028-021-00694-2
    [26] M. Li, J. Pastor, S. Piskarev, Inverses of generators of integrated fractional resolvent functions, Fract. Calc. Appl. Anal., 21 (2018), 1542–1564. https://doi.org/10.1515/fca-2018-0081 doi: 10.1515/fca-2018-0081
    [27] M. A. Zaky, E. H. Doha, J. A. T. Machado, A spectral numerical method for solving distributed-order fractional initial value problems, J. Comput. Nonlinear Dyn., 13 (2018). https://doi.org/10.1115/1.4041030 doi: 10.1115/1.4041030
    [28] M. A. Zaky, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dynam., 91 (2018), 2667–2681. https://doi.org/10.1007/s11071-017-4038-4 doi: 10.1007/s11071-017-4038-4
    [29] M. A. Zaky, J. A. T, Machado, Multi-dimensional spectral tau-methods for distributed-order fractional diffusion equations, Comput. Math. Appl., 79 (2020), 476–488. https://doi.org/10.1016/j.camwa.2019.07.008 doi: 10.1016/j.camwa.2019.07.008
    [30] M. A. Zaky, J. A. T. Machado, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci., 52 (2017), 177–189. https://doi.org/10.1016/j.cnsns.2017.04.026 doi: 10.1016/j.cnsns.2017.04.026
    [31] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1993.
    [32] J. Prüss, Evolutionary integral equations and applications, Birkhäuser, Basel, 1993.
    [33] W. Rudin, Functional analysis, New York: McGraw-Hall, 1973.
    [34] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach Science Publishers, 1992.
    [35] K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 384 (2011), 426–447. https://doi.org/10.1016/j.jmaa.2011.04.058 doi: 10.1016/j.jmaa.2011.04.058
    [36] P. R. Stinga, J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Part. Diff. Eq., 35 (2010), 2092–2122. https://doi.org/10.1080/03605301003735680 doi: 10.1080/03605301003735680
    [37] C. Tunc, O. Tunc, On the stability, integrability and boundedness analyses of systems of integro-differential equations with time-delay retardation, RACSAM Rev. R Acad. A, 115 (2021). https://doi.org/10.1007/s13398-021-01058-8 doi: 10.1007/s13398-021-01058-8
    [38] S. Umarov, Introduction to fractional and pseudo-differential equations with singular symbols, Springer International Publishing, 2015.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1350) PDF downloads(94) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog