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Abstract: We recall classical themes such as “on hearing the shape of a drum” or “can one hear the
shape of a drum?”, and the discovery of Milnor, who constructed two flat tori which are isospectral
but not isometric. In this article, we consider the question of finding conditions under which an
n-dimensional closed Riemannian manifold (Mn, g) having a non-zero eigenvalue nc for a positive
constant c (that is, has same non-zero eigenvalue as first non-zero eigenvalue of the sphere S n(c)), is
isometric to S n(c). We address this issue in two situations. First, we consider the compact (Mn, g) as
the hypersurface of the Euclidean space

(
Rn+1, ⟨, ⟩

)
with isometric immersion f : (Mn, g)→

(
Rn+1, ⟨, ⟩

)
and a constant unit vector −→a such that the function ρ =

〈
f ,−→a

〉
satisfying ∆ρ = −ncρ for a positive

constant c is isometric to S n(c) if and only if (Mn, g) is isometric to S n(c) provided the integral of
Ricci curvature Ric (∇ρ,∇ρ) has an appropriate lower bound. In the second situation, we consider that
the compact (Mn, g) admits a non-trivial concircular vector field ξ with potential function σ satisfying
∆σ = −ncσ for a positive constant c and a specific function f related to ξ (called circular function) is
constant along the integral curves of ξ if and only if (Mn, g) is isometric to S n(c).
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1. Introduction

The Laplace operator ∆ acting on smooth functions of a Riemannian manifold (Mn, g), is defined
by ∆ f = div (∇ f ), where ∇ f is the gradient of f . It is known that ∆ is a self adjoint elliptic operator
with respect to the inner product (, ) defined on the algebra of smooth functions C∞ (Mn) with compact
support by

( f , h) =
∫
Mn

f hdVg,

where dVg is the volume form on Mn with respect to the metric g. If ∆ f = −λ f , for a constant λ, then λ
is said to be an eigenvalue of the Laplace operator ∆, the negative sign in the definition chosen so that
for non-zero eigenvalue λ, λ > 0. The set of eigenvalues λi of the Laplace operator ∆ on a Riemannian
manifold (Mn, g) is called the spectrum of (Mn, g). Spectra of known Riemannian manifolds such as the
sphere S n(c) and the real projective space RPn are known, and a nice description could be found in [2]
(Chapter 2, Section 5). Two Riemannian manifolds of same dimension (Mn, g) and

(
M

n
, g

)
having the

same spectra are said to be isospectral manifolds, whereas they are said to be isometric if there exists
a diffeomorphism ϕ : Mn → M

n
that preserves the metric ϕ∗ (g) = g ◦ ϕ, that is, ϕ is an isometry.

In the mid Nineteenth century, it was an open question whether isospectral Riemannian manifolds are
isometric. We see that physicists followed this question under the topic “On hearing the shape of a
drum” or “Can one hear the shape of a drum?” (cf. [5, 11]), while Milnor constructed two flat tori in
dimension 16, which are isospectral but not isometric (cf. [12]). In [12], the author constructed two 2-
dimensional compact manifolds of constant negative curvature which are isospectral and not isometric.
Further, Ejiri constructed two non-flat compact Riemannian manifolds which are isospectral but not
isometric (cf. [6]). This initiated an interest in comparing spectra of two Riemannian manifolds, for
further results in this direction, we refer to (cf. [1, 7–10, 15]). One of the natural questions is under
what conditions two isospectral Riemannian manifolds are isometric? We know that the n-sphere S n(c)
has first non-zero eigenvalue λ1 = nc, and, supposing an n-dimensional Riemannian manifold (Mn, g)
also has non-zero eigenvalue λ1 = nc, we reduce the above general question to the following specific
question: Under what condition is an n-dimensional Riemannian manifold (Mn, g) that has non-zero
eigenvalue λ1 = −nc for a positive constant c isometric to S n(c)? In order to answer this question,
naturally, we need a smooth function ρ on an n-dimensional Riemannian manifold (Mn, g) that satisfies
∆ρ = −ncρ. In order to address this issue of finding a smooth function, we consider two situations:

(i) Considering (Mn, g) as an isometrically immersed hypersurface in the Euclidean space
(
Rn+1, ⟨, ⟩

)
with isometric immersion f : (Mn, g) →

(
Rn+1, ⟨, ⟩

)
, though there are several known functions on the

hypersurface (Mn, g), namely, the mean curvature function, the scalar curvature function, as well as the
support function, but they cannot be eigenfunctions of the Laplace operator corresponding to a non-
zero eigenvalue, while (Mn, g) is isometric to the sphere S n(c). Then, we go for the alternative, namely,
for a constant unit vector field −→a on the Euclidean space Rn+1, we get a smooth function ρ =

〈
f ,−→a

〉
on

the hypersurface (Mn, g), which we require to satisfy ∆ρ = −ncρ, c > 0.
(ii) We seek the Riemannian manifold (Mn, g), and there exists a non-trivial concircular vector field

ξ with potential function ρ and we require that the potential function ρ satisfies ∆ρ = −ncρ, c > 0.
In this article, we explore the above two situations that an n-dimensional Riemannian manifold (Mn, g)
has an eigenvalue of the Laplace operator same as the first non-zero eigenvalue of the sphere S n(c),
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and find an additional condition so that these two are isometric (See Theorems 1, 2, 3). In the language
of physics, “yes, we could hear a node through an apparatus to predict the shape of a drum”.

2. Preliminaries

On an n-dimensional Riemannian manifold (Mn, g), denote by ∇ the Riemannian connection. The
curvature tensor R of (Mn, g) is given by

R(X,Y)Z = [∇X,∇Y] Z − ∇[X,Y]Z, X,Y,Z ∈ Γ (T Mn) , (2.1)

where Γ (T Mn) is the space of smooth sections of the tangent bundle T Mn. The Ricci tensor Ric of
(Mn, g) is a symmetric tensor given by

Ric (X,Y) =
n∑

l=1

g (R (el, X) Y, el) , X,Y ∈ Γ (T Mn) , (2.2)

where {e1, .., en} is a local orthonormal frame (or lof) on (Mn, g). The Ricci operator Q of (Mn, g) is
related to the Ricci tensor by

Ric (X,Y) = g (QX,Y) , X,Y ∈ Γ (T Mn)

and therefore Q is a symmetric (1, 1) tensor field. The scalar curvature τ of the Riemannian manifold
(Mn, g) is given by

τ =

n∑
l=1

Ric (el, el) .

The following formula is well known (cf. [2]),

1
2
∇τ =

n∑
l=1

(
∇el Q

)
(el) ,

where ∇τ is the gradient of τ, and the covariant derivative is given by

(∇XQ) (Y) = ∇XQY − Q (∇XY) .

Given a smooth function f : Mn → R on a Riemannian manifold (Mn, g), the Laplace operator ∆ acts
on f , given by

∆ f = div (∇ f ) ,

where ∇ f is the gradient of f and

divX =
n∑

l=1

g
(
∇el X, el

)
.

If (Mn, g) is closed, then Stokes’s theorem implies∫
Mn

(divX) dVg = 0,
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where dVg is the volume element of (Mn, g).
Given a symmetric (1, 1) tensor field T on an n-dimensional Riemannian manifold (Mn, g) with

trace t, that is,

t =
n∑

l=1

g (Tel, el) ,

then the Cauchy–Schwartz inequality is

∥T∥2 ≥
1
n

t2, (2.3)

where

∥T∥2 =
n∑

l=1

g (Tel,Tel) .

Moreover, the equality in (2.3) holds if and only if

T =
t
n

I,

where I is the identity (1, 1) tensor.
Suppose on an n-dimensional closed Riemannian manifold (Mn, g) there is a smooth function f that

satisfies ∆ f = −nc f for a constant c. Then we have f∆ f = −nc f 2. Then, integrating by parts, the last
equation leads to ∫

Mn

∥∇ f ∥2 dVg = nc
∫
Mn

f 2dVg. (2.4)

3. Compact hypersurfaces in a Euclidean space with non-zero eigenvalue nc of the Laplace
operator

In this section, we consider an n-dimensional Riemannian manifold (Mn, g) that admits an isometric
immersion f : (Mn, g) →

(
Rn+1, ⟨, ⟩

)
into the Euclidean space

(
Rn+1, ⟨, ⟩

)
, where ⟨, ⟩ is the Euclidean

inner product. We denote by ς the unit normal to the hypersurface (Mn, g), and by B the shape operator
with respect to the isometric immersion f . Then, denoting the Euclidean connection on

(
Rn+1, ⟨, ⟩

)
by ∇

and the Riemannian connection on the hypersurface (Mn, g) by ∇, we have the following fundamental
equations for the hypersurface (cf. [2])

∇XY = ∇XY + g ⟨BX,Y⟩ ς, X,Y ∈ Γ (T Mn) (3.1)

and
∇Xς = −BX, X ∈ Γ (T Mn) . (3.2)

The mean curvature β of the hypersurface (Mn, g) is given by

β =
1
n

n∑
l=1

g (Bel, el) , (3.3)

where {e1, .., en} is a local orthonormal frame on (Mn, g).
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The curvature tensor, the Ricci tensor, and the scalar curvature of the hypersurface (Mn, g) are given
by (cf. [2])

R(X,Y)Z = g (BY,Z) BX − g (BX,Z) BX, X,Y,Z ∈ Γ (T Mn) ,

Ric (X,Y) = nβg (BX,Y) − g (BX.BY) , X,Y ∈ Γ (T Mn)

and
τ = n2β2 − ∥B∥2 .

Also, the shape operator B has the following wonderful property (Codazzi equation of the
hypersurfaces in flat spaces)

(∇X B) (Y) = (∇Y B) (X) , X,Y ∈ Γ (T Mn) . (3.4)

Using Eqs (3.3) and (3.4) as well as the symmetry of the shape operator, we have for any X ∈ Γ (T Mn)

nX (β) =
n∑

l=1

g (∇X Bel, el) +
n∑

l=1

g (Bel,∇Xel)

=

n∑
l=1

g ((∇X B) (el) + B (∇Xel) , el) +
n∑

l=1

g (Bel,∇Xel)

=

n∑
l=1

g
((
∇el B

)
(el) , X

)
+ 2

n∑
l=1

g (Bel,∇Xel) .

Note that Bel =
∑

j
g
(
Bel, e j

)
e j and ∇Xel =

∑
k
ωk

l (X)ek, where g
(
Bel, e j

)
is symmetric while the

connection forms ωk
l are skew symmetric. Therefore,

n∑
l=1

g (Bel,∇Xel) =
∑

jkl

g
(
Bel, e j

)
ωk

l (X)g
(
e j, ek

)
=

n∑
l=1

g
(
Bel, e j

)
ω

j
l (X) = 0.

Thus, above equation becomes

nX (β) =
n∑

l=1

g
((
∇el B

)
(el) , X

)
,

that is, we have
n∑

l=1

(
∇el B

)
(el) = n∇β. (3.5)

Treating the isometric immersion f : (Mn, g)→
(
Rn+1, ⟨, ⟩

)
as a position vector of points of Mn in Rn+1,

and defining σ = ⟨ f , ς⟩, called the support function of the hypersurface (Mn, g), we express f as

f = ξ + σς,

where ξ ∈ Γ (T Mn) is tangential to (Mn, g). Differentiating equation (2.4), while using Eqs (3.1) and
(3.2), we have upon equating the tangential and normal parts

∇Xξ = X + σBX (3.6)
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and
∇σ = −Bξ.

Taking a constant unit vector field −→a on the Euclidean space Rn+1 (for instance a coordinate vector
field), we define a smooth function h on the hypersurface (Mn, g), by h =

〈
−→a , ς

〉
. Denoting the

tangential part of −→a to the hypersurface (Mn, g) by ζ, we have

−→a = ζ + hς. (3.7)

Differentiating the above equation with respect to X ∈ Γ (T Mn), while using Eqs (3.1) and (3.2), we
have upon equating the tangential and normal parts

∇Xζ = hBX, X ∈ Γ (T Mn) (3.8)

and
∇h = −Bζ. (3.9)

Now, we prove the main result of this section.

Theorem 1. An n-dimensional compact and connected isometrically immersed hypersurface f :
(Mn, g) →

(
Rn+1, ⟨, ⟩

)
in the Euclidean space

(
Rn+1, ⟨, ⟩

)
with mean curvature β and a constant unit

vector −→a = ζ + hς on Rn+1, where the function ρ =
〈

f ,−→a
〉

satisfies ∆ρ = −ncρ for a positive constant
c, is isometric to the sphere S n(c) if and only if the Ricci curvature Ric (ζ, ζ) satisfies∫

Mn

Ric (ζ, ζ) dVg ≥ n (n − 1)
∫
Mn

h2β2dVg.

Proof. Consider an n-dimensional compact and connected Riemannian manifold (Mn, g) that admits
an isometric immersion f : (Mn, g)→

(
Rn+1, ⟨, ⟩

)
in the Euclidean space

(
Rn+1, ⟨, ⟩

)
with shape operator

B, mean curvature β, and a constant unit vector −→a = ζ + hς on Rn+1, where the function ρ =
〈

f ,−→a
〉

satisfies
∆ρ = −ncρ (3.10)

for a positive constant c. Also, the Ricci curvature Ric (ζ, ζ) satisfies∫
Mn

Ric (ζ, ζ) dVg ≥ n (n − 1)
∫
Mn

h2β2dVg. (3.11)

Now, differentiating ρ =
〈

f ,−→a
〉
in the direction of X ∈ Γ (T Mn), we get X (ρ) =

〈
X,−→a

〉
= ⟨ f , ζ⟩. This

gives us the gradient of ρ as
∇ρ = ζ. (3.12)

The Hessian operatorHρ of the function ρ is given byHρX = ∇X∇ρ, X ∈ Γ (T Mn), and using Eqs (3.8)
and (3.12), we arrive at

HρX = hBX, X ∈ Γ (T Mn) . (3.13)

Taking the trace in the above equation and taking account of Eq (3.10), we get

cρ = −hβ (3.14)
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and therefore, through Eq (3.13), we conclude

HρX + cρX = hBX − hβX, X ∈ Γ (T Mn) .

From the above equation, we reach ∥∥∥Hρ + cρI
∥∥∥2
= h2 ∥B − βI∥2 . (3.15)

Next, using Eq (3.8), we have
h (BX − βX) = ∇Xζ − hβX,

which yields
h2 ∥B − βI∥2 = ∥∇ζ∥2 + nh2β2 − 2hβdivζ.

Inserting divζ = nhβ (an outcome of Eq (3.8)), in the above equation, we arrive at

h2 ∥B − βI∥2 = ∥∇ζ∥2 − nh2β2. (3.16)

Recalling the following well known integral formula (cf. [16])∫
Mn

(
Ric (ζ, ζ) +

1
2

∣∣∣£ζg∣∣∣2 − ∥∇ζ∥2 − (divζ)2
)

dVg = 0,

and integrating Eq (3.16) while using the above integral formula, we conclude∫
Mn

h2 ∥B − βI∥2 dVg =

∫
Mn

(
Ric (ζ, ζ) +

1
2

∣∣∣£ζg∣∣∣2 − (divζ)2
− nh2β2

)
dVg. (3.17)

Using Eq (3.8), we compute(
£ζg

)
(X,Y) = 2hg (BX,Y) , X,Y ∈ Γ (T Mn)

and consequently, we have
1
2

∣∣∣£ζg∣∣∣2 = 2h2 ∥B∥2 .

Thus, inserting above equation and divζ = nhβ in Eq (3.17) confirms∫
Mn

h2 ∥B − βI∥2 dVg =

∫
Mn

(
Ric (ζ, ζ) + 2h2 ∥B∥2 − n2h2β2 − nh2β2

)
dVg,

that is, ∫
Mn

h2 ∥B − βI∥2 dVg =

∫
Mn

(
Ric (ζ, ζ) + 2h2

(
∥B∥2 − nβ2

)
− n(n − 1)h2β2

)
dVg. (3.18)

For a local orthonormal frame {e1, .., en}, we have

∥B − βI∥2 =
∑

k

g (Bek − βek, Bek − βek)
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= ∥B∥2 + nβ2 − 2β
∑

k

g (Bek, ek)

= ∥B∥2 − nβ2.

Utilizing the above equation in (3.18), we arrive at∫
Mn

h2 ∥B − βI∥2 dVg =

∫
Mn

(
n(n − 1)h2β2 − Ric (ζ, ζ)

)
dVg.

Inserting from Eq (3.15) in the above equation, we have∫
Mn

∥∥∥Hρ + cρI
∥∥∥2

dVg =

∫
Mn

(
n(n − 1)h2β2 − Ric (ζ, ζ)

)
dVg

and treating it with inequality (3.11) allows us to reach the conclusion

Hρ = −cρI.

Note that ρ satisfies Eq (3.10), that is, ∆ρ = −ncρ for a non-zero constant c. We claim that ρ can not
be a constant, for if it were, Equation (3.10) will imply ρ = 0, and then Eq (3.14) will imply hβ = 0.
Note that by Eq (3.6) we have divξ = n (1 + σβ), and therefore on the compact hypersurface (Mn, g),
we have (cf. [4]) ∫

Mn

(1 + σβ) = 0,

which does not allow β = 0. Hence, in the situation where ρ is a constant, we have h = 0, and, also,
by Eq (3.12), ζ = 0, and by virtue of Eq (3.7), we will reach the conclusion −→a = 0, contrary to the
assumption that −→a is a unit vector. Thus, ρ is a non-constant function which satisfies Obata’s equation
(3.8) proving that (Mn, g) is isometric to the sphere S n(c) (cf. [13, 14]).

Conversely, consider the isometric immersion f : S n(c) →
(
Rn+1, ⟨, ⟩

)
of the sphere S n(c) in the

Euclidean space
(
Rn+1, ⟨, ⟩

)
given by f (x) = x. Then, the unit normal ς =

√
c f , the shape operator

B = −
√

cI, and the mean curvature β = −
√

c. Consider the unit constant vector −→a given by the first
Euclidean coordinate vector field, that is,

−→a =
∂

∂x1 = ζ + hς,

where ζ is tangent to the sphere S n(c) and h =
〈
−→a , ς

〉
=

〈
−→a ,
√

c f
〉
=
√

c
〈

f ,−→a
〉
. Thus, defining

ρ =
〈

f ,−→a
〉
, we have

h =
√

cρ. (3.19)

Now, differentiating (3.19) in the direction of X ∈ Γ (TS n(c)) and equating the tangential and normal
parts, we confirm

∇Xζ = −
√

chX, ∇h =
√

cζ (3.20)

Using Eqs (3.19) and (3.20), we see
√

cζ =
√

c∇ρ, that is,

ζ = ∇ρ, (3.21)
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which, in view of the first equation in (3.20), provides

∆ρ = divζ = −n
√

ch = −ncρ. (3.22)

Finally, using Eq (3.21), the Ricci curvature Ric (ζ, ζ) of the sphere S n(c) is given by

Ric (ζ, ζ) = (n − 1)c ∥ζ∥2 = (n − 1)c ∥∇ρ∥2 . (3.23)

However, Equations (3.19) and (3.22) confirm∫
S n(c)

∥∇ρ∥2 dVg = nc
∫

S n(c)

ρ2dVg = n
∫

S n(c)

h2dVg =
n
c

∫
S n(c)

h2β2dVg.

Now, integrating Eq (3.23) while using above equation yields∫
S n(c)

Ric (ζ, ζ) dVg = n(n − 1)
∫

S n(c)

h2β2dVg.

Hence, the converse also holds. □

Next, we prove the following result for the complete hypersurface (Mn, g) of the Euclidean space(
Rn+1, ⟨, ⟩

)
.

Theorem 2. An n-dimensional complete and simply connected isometrically immersed hypersurface
f : (Mn, g) →

(
Rn+1, ⟨, ⟩

)
, n > 1, in the Euclidean space

(
Rn+1, ⟨, ⟩

)
with mean curvature β and a

constant unit vector −→a = ζ + hς on Rn+1, where the function h =
〈
−→a , ς

〉
, 0 satisfies ∆h = −nch for

a positive constant c, is isometric to the sphere S n(c) if and only if the mean curvature β is a constant
along the integral curves of ζ and β2 ≥ c holds.

Proof. Consider an n-dimensional complete and simply connected Riemannian manifold (Mn, g) that
admits an isometric immersion f : (Mn, g) →

(
Rn+1, ⟨, ⟩

)
in the Euclidean space

(
Rn+1, ⟨, ⟩

)
such that

the function h =
〈
−→a , ς

〉
, 0 satisfies

∆h = −nch, (3.24)

with mean curvature β satisfying
ζ (β) = 0

and
β2 ≥ c. (3.25)

We use Eqs (3.5) and (3.8), the symmetry of the shape operator B, and a local orthonormal frame
{e1, .., en} in order to find div (Bζ),

div (Bζ) =
n∑

l=1

g
(
∇el Bζ, el

)
=

n∑
l=1

g
((
∇el B

)
(ζ) + B (hBel) , el

)
=

n∑
l=1

g
(
ζ,

(
∇el B

)
(el)

)
+ h ∥B∥2 = nζ (β) + h ∥B∥2 .
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Using Eq (3.15), we get

div (Bζ) = h ∥B∥2 .

Now, taking the divergence in Eq (3.9) and using the above equation with Eq (3.24) yields

h ∥B∥2 = nch,

that is,

h2
(
∥B∥2 − nβ2

)
= nh2

(
c − β2

)
. (3.26)

Combining above equation with inequality (3.25), while keeping in view Cauchy–Schwartz’s
inequality ∥B∥2 ≥ nβ2, we get

h2
(
∥B∥2 − nβ2

)
= 0.

Since h , 0, we get

∥B∥2 = nβ2,

which, being an inequality in Cauchy–Schwartz’s inequality ∥B∥2 ≥ nβ2, we must have

B = βI. (3.27)

The above equation implies

(∇X B) (Y) = X (β) Y , X,Y ∈ Γ (T Mn) ,

which gives
n∑

l=1

(
∇el B

)
(el) = ∇β.

Combining the above equation with Eq (3.5) yields

(n − 1)∇β = 0

and, as n > 1, we get that β is a constant, and by virtue of Eqs (3.26) and (3.27), we have

β2 = c.

Now, using Eq (3.27) in the expression of the curvature tensor of the hypersurface with the above
equation gives

R (X,Y) Z = c {g (Y,Z) X − g (X,Z) Y} , X, ,Y,Z ∈ Γ (T Mn) ,

that is, (Mn, g) is a complete and simply connected space of constant positive curvature c. Hence,
(Mn, g) is isometric to S n(c). The converse is trivial. □
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4. Concircular vector field with potential function σ an eigenfunction of Laplace operator with
eigenvalue nc

Consider an n-dimensional Riemannian manifold (Mn, g) that possesses a concircular vector field ξ
(cf. [3]), that is, the vector field satisfies

∇Xξ = σX, X ∈ Γ (T Mn) , (4.1)

whereσ is a smooth function, called the potential function of the concircular vector field. A concircular
vector field is said to be non-trivial if the potential function σ , 0. Using Eq (4.1), we immediately
have

divξ = nσ. (4.2)

In this section, we are interested in an n-dimensional compact Riemannian manifold (Mn, g) that
possesses a non-trivial concircular vector field ξ with potential function σ satisfying

∆σ = −ncσ,

where c > 0 is a constant, that is, σ is an eigenfunction of the Laplace operator with eigenvalue the
same as the first non-zero eigenvalue of the sphere S n(c), and we find a condition under which (Mn, g)
is isometric to the sphere S n(c).

Before we approach this issue, we first prepare an auxiliary result to prove the main result. First, for
Eq (4.1), using Eq (2.1) immediately gives the following expression of the curvature tensor, namely

R (X,Y) ξ = X (σ) Y − Y (σ) X, X,Y ∈ Γ (T Mn) .

Taking the trace in the above equation and using Eq (2.2), we reach

Ric (X, ξ) = −(n − 1)X (σ) (4.3)

and this equation gives the following expression for the Ricci operator Q operating on ξ, namely

Q (ξ) = − (n − 1)∇σ,

where ∇σ is the gradient of the potential function σ.
In the following paragraph, we show that for each concircular vector field ξ on a connected

Riemannian manifold (Mn, g) there corresponds a smooth function f , which we call a concircular
function of the concircular vector field ξ. Note that Eq (4.2) implies

R (X, ξ) ξ = X (σ) ξ − ξ (σ) X, X ∈ Γ (T Mn)

and the operator R (X, ξ) ξ, X ∈ Γ (T Mn) is symmetric in X, and, therefore, the above equation implies

X (σ) g (ξ,Y) = Y (σ) g (ξ, X) , X ∈ Γ (T Mn) .

The above equation implies
X (σ) ξ = g (ξ, X)∇σ
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and taking the inner product in the above equation with ∇σ and replacing X by ξ, we conclude

(ξ (σ))2 = ∥ξ∥2 ∥∇σ∥2 ,

that is
∥ξ∥2 ∥∇σ∥2 = g (ξ,∇σ)2 .

This proves that vector fields ∇σ and ξ are parallel, and, consequently, there exists a smooth function
f such that

∇σ = f ξ.

We call this function f the concircular function of the concircular vector field ξ.

First, we prove the following proposition.

Proposition 1. Let ξ be a non-trivial concircular vector field on an n-dimensional compact Riemannian
manifold (Mn, g) with potential function σ and concircular function f . If the potential function σ
satisfies

∆σ = −ncσ

for a positive constant c, then∫
Mn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)

dVg =
n − 1

n

∫
Mn

(ξ ( f ))2 dVg.

Proof. Let ξ be a non-trivial concircular vector field on an n-dimensional compact Riemannian
manifold (Mn, g) with potential function σ and concircular function f , and the potential function σ
satisfies

∆σ = −ncσ (4.4)

for a positive constant c. Using Eqs (4.2) and (4.3), we have

Ric (ξ, ξ) = −(n − 1)ξ (σ) = −(n − 1)
[
div (σξ) − nσ2

]
and integrating the above equation, we confirm∫

Mn

Ric (ξ, ξ) dVg = n(n − 1)
∫
Mn

σ2dVg.

Using the integral formula in [16], we have for a vector field ζ on (Mn, g)∫
Mn

(
Ric (ζ, ζ) +

1
2

∣∣∣£ζg∣∣∣2 − ∥∇ζ∥2 − (divζ)2
)

dVg = 0.

Replacing ζ in the above equation by ∇σ and noting that

1
2

∣∣∣£ζg∣∣∣2 = 2 ∥Hσ∥
2 , ∥∇ζ∥2 = ∥Hσ∥

2 ,
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we conclude ∫
Mn

(
Ric (∇σ,∇σ) + ∥Hσ∥

2
− (∆σ)2

)
dVg = 0.

Thus, we have ∫
Mn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)

dVg =

∫
Mn

(
n − 1

n
(∆σ)2

− Ric (∇σ,∇σ)
)

dVg

and, inserting Eq (4.4), we reach∫
Mn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)

dVg =

∫
Mn

(
n(n − 1)c2σ2 − Ric (∇σ,∇σ)

)
dVg.

Now, inserting from Eq (4.4) in the above equation takes us to∫
Mn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)

dVg =

∫
Mn

(
n(n − 1)c2σ2 − f 2Ric (ξ, ξ)

)
dVg. (4.5)

Using Eqs (4.3) and (4.4), we have

Ric (ξ, ξ) = −(n − 1)ξ (σ) = −(n − 1)g (ξ,∇σ) = −(n − 1) f ∥ξ∥2

and using this in Eq (4.5) leads to∫
Mn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)

dVg = (n − 1)
∫
Mn

(
nc2σ2 + f 3 ∥ξ∥2

)
dVg. (4.6)

Note that taking the divergence on both sides of Eq (4.4) and using Eq (4.2) gives

∆σ = ξ ( f ) + n fσ

and combining this with Eq (4.4) allows us to conclude

ξ ( f ) = −nσ (c + f ) . (4.7)

Using Eqs (4.2), (4.4), and (4.7), we compute

div
(

f 2σξ
)
= ξ

(
f 2σ

)
+ n f 2σ2 = f 2g (ξ,∇σ) + 2σ f ξ ( f ) + n f 2σ2

= f 3 ∥ξ∥2 − 2nσ2 f (c + f ) + n f 2σ2

and, integrating the above equation, gives∫
Mn

f 3 ∥ξ∥2 dVg =

∫
Mn

(
n f 2σ2 + 2nc fσ2

)
dVg.
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Inserting the above equation into Eq (4.6) leads to∫
Mn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)

dVg = n(n − 1)
∫
Mn

σ2 (c + f )2 dVg

and combining it with Eq (4.7) yields∫
Mn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)

dVg =
(n − 1)

n

∫
Mn

(ξ ( f ))2 dVg.

□

As a straightforward application of the above result, we have the following theorem.

Theorem 3. An n-dimensional compact and connected Riemannian manifold (Mn, g) admits a non-
trivial concircular vector field ξ with potential function σ and concircular function f such that the
potential function σ satisfies

∆σ = −ncσ

for a positive constant c, and the concircular function f is a constant along the integral curves of ξ if
and only if (Mn, g) is isometric to S n(c).

Proof. Suppose an n-dimensional compact and connected Riemannian manifold (Mn, g) admits a non-
trivial concircular vector field ξ with potential function σ and concircular function f such that the
potential function σ satisfies

∆σ = −ncσ (4.8)

for a positive constant c, and the concircular function f is a constant along the integral curves of ξ.
Then, by Proposition 1 we have ∫

Mn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)

dVg = 0. (4.9)

The Cauchy–Schwartz inequality implies

∥Hσ∥
2
≥

1
n

(∆σ)2 (4.10)

and equality holds if and only if

Hσ =
∆σ

n
I. (4.11)

In view of inequality (4.10) and Eq (4.9), we are ready to conclude the equality

∥Hσ∥
2
=

1
n

(∆σ)2

and, therefore, Eq (4.11) holds. Combining Eqs (4.8) and (4.11), we arrive at

Hσ = −cσI. (4.12)
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Note that the potential function σ can not be a constant, for if it were a constant, the above equation
would imply σ = 0, which is contrary to the assumption that ξ is a non-trivial concircular vector
field. Thus, Equation (4.12) is Obata’s equation, and therefore (Mn, g) is isometric to the sphere S n(c)
(cf. [13, 14]).

Conversely, take a constant unit vector −→a on the Euclidean space
(
Rn+1, ⟨, ⟩

)
while treating S n(c) as

a hypersurface of
(
Rn+1, ⟨, ⟩

)
with unit normal ς, shape operator B = −

√
cI, and expressing −→a as

−→a = ξ + hς, (4.13)

where ξ is tangent to S n(c) and h =
〈
−→a , ς

〉
. Differentiating equation (4.13) with respect to X ∈

Γ (TS n(c)) and equating the tangential and normal parts, we arrive at

∇Xξ = −
√

chX, ∇h =
√

cξ. (4.14)

This confirms that ξ is a concircular vector field on S n(c) with potential function σ = −
√

ch, and the
second equation gives ∇σ = −cξ. This proves that the concircular function f = −c. Moreover, if the
potential function σ = 0, we get h = 0, and by the second equation in (4.14), we get ξ = 0. In this case,
Eq (4.13) confirms −→a = 0, a contradiction to the fact that −→a is a unit vector. Thus, the potential function
σ , 0, that is, the concircular vector field ξ on S n(c) is non-trivial. Note that divξ = −n

√
ch = nσ,

and, combining it with the equation ∇σ = −cξ, we get ∆σ = −ncσ with c a positive constant. Hence,
the converse holds. □

5. Conclusions

We have initiated the study of an n-dimensional compact Riemannian manifold (Mn, g) that has an
eigenvalue nc for a positive constant c of the Laplace operator the same as the first non-zero eigenvalue
of the n-sphere S n(c) of constant curvature c, and searched for an additional condition under which
(Mn, g) is isometric to the sphere S n(c). The main aim was to find an appropriate smooth function
on (Mn, g) that will become the eigenfunction of the Laplace operator with eigenvalue nc as seen in
Theorems 1 and 3. Naturally, the scope of this study is quite modest, for instance one can consider
an n-dimensional compact Riemannian manifold (Mn, g) that admits a torse forming vector field ξ
(cf. [17]). Recall that a torse forming vector field ξ on (Mn, g) satisfies

∇Xξ = σX + ω(X)ξ, X ∈ Γ (T Mn) ,

where σ is a smooth function defined on Mn called the conformal scalar and ω is a smooth 1-form on
Mn called the generating form of the a torse forming vector field ξ. It will be an interesting question to
consider torse forming vector field ξ on an n-dimensional compact Riemannian manifold (Mn, g) such
that its conformal scalar σ satisfies ∆σ = −ncσ for a positive constant c, and find conditions under
which (Mn, g) is isometric to S n(c).

We know that the second non-zero eigenvalue of the sphere S n(c) is given by λ2 = 2(n + 1)c, and
another aspect of our work could be, if there is a smooth function f on an n-dimensional compact
Riemannian manifold (Mn, g) such that ∆ f = −2(n + 1)c f , that is, (Mn, g) has an eigenvalue same as
second non-zero eigenvalue of the sphere S n(c), to find additional condition on (Mn, g) so that (Mn, g)
is isometric to S n(c).
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