In this paper using the Blaschke approach we generalized the Bertrand curves to spacelike ruled and developable surfaces. It is proved that, every spacelike ruled surface have a Bertrand offset if and only if an equation should be fulfilled among their dual integral invariants. Consequently, some new relationships and theorems for the developability of the Bertrand offsets of spacelike ruled surfaces are outlined.
Citation: Maryam T. Aldossary, Rashad A. Abdel-Baky. On the Blaschke approach of Bertrand offsets of spacelike ruled surfaces[J]. AIMS Mathematics, 2022, 7(10): 17843-17858. doi: 10.3934/math.2022983
In this paper using the Blaschke approach we generalized the Bertrand curves to spacelike ruled and developable surfaces. It is proved that, every spacelike ruled surface have a Bertrand offset if and only if an equation should be fulfilled among their dual integral invariants. Consequently, some new relationships and theorems for the developability of the Bertrand offsets of spacelike ruled surfaces are outlined.
[1] | O. Bottema, B. Roth, Theoretical kinematics, North-Holland Press, New York, 1979. |
[2] | A. Karger, J. Novak, Space kinematics and Lie groups, Gordon and Breach Science Publishers, New York, 1985. |
[3] | H. Pottman, J. Wallner, Computational line geometry, Springer-Verlag, Berlin, Heidelberg, 2001. |
[4] | B. Ravani, T. S. Ku, Bertrand offsets of ruled and developable surfaces, Comput. Aided Design, 23 (1991), 145–152. https://doi.org/10.1016/0010-4485(91)90005-H doi: 10.1016/0010-4485(91)90005-H |
[5] | A. Küçük, O. Gürsoy, On the invariants of Bertrand trajectory surface offsets, AMC, 2003, 11–23. https://doi.org/10.1002/0471141755.ph1107s23 doi: 10.1002/0471141755.ph1107s23 |
[6] | E. Kasap, N. Kuruoglu, Integral invariants of the pairs of the Bertrand ruled surface, Bull. Pure Appl. Sci. Sect. E Math., 21 (2002), 37–44. |
[7] | E. Kasap, N. Kuruoglu, The Bertrand offsets of ruled surfaces in $\mathbb{R}_{1}^{3}$, Acta Math. Vietnam., 31 (2006), 39–48. |
[8] | E. Kasap, S. Yuce, N. Kuruoglu, The involute-evolute offsets of ruled surfaces, Iran. J. Sci. Technol. A, 33 (2009), 195–201. |
[9] | K. Orbay, E. Kasap, I. Aydemir, Mannheim offsets of ruled surfaces, Math. Probl. Eng., 2009, 160917. |
[10] | M. Onder, H. H. Ugurlu, Frenet frames and invariants of timelike ruled surfaces, Ain Shams Eng. J., 4 (2013), 507–513. https://doi.org/10.1016/j.asej.2012.10.003 doi: 10.1016/j.asej.2012.10.003 |
[11] | G. Y. Sentrk, S. Yuce, Properties of integral invariants of the involute-evolute offsets of ruled surfaces, Int. J. Pure Appl. Math., 102 (2015), 75. |
[12] | M. T. Aldossary, R. A. Abdel-Baky, On the Bertrand offsets for ruled and developable surfaces, Boll. Unione Mat. Ital., 8 (2015), 53–64. https://doi.org/10.1007/s40574-015-0025-1 doi: 10.1007/s40574-015-0025-1 |
[13] | G. Y. Sentrk, S. Yuce, E. Kasap, Integral invariants of Mannheim offsets of ruled surfaces, Appl. Math. E-Notes, 16 (2016), 198–209. |
[14] | G. Y. Sentrk, S. Yuce, Bertrand offsets of ruled surfaces with Darboux frame, Results Math., 72 (2017), 1151–1159. https://doi.org/10.1007/s00025-016-0571-6 doi: 10.1007/s00025-016-0571-6 |
[15] | G. Y. Sentrk, S. Yuce, On the evolute offsets of ruled surfaces usin the Darboux frame, Commun. Fac. Sci. Univ., 68 (2019), 1256–1264. |
[16] | R. A Abdel-Baky, Y. Unluturk, A new construction of timelike ruled surfaces with constant Disteli-axis, Honam Math. J., 42 (2020), 551–568. |
[17] | N. S. Alluhaibi, R. A Abdel-Baky, M. F Naghi, On the Bertrand offsets of timelike ruled surfaces in Minkowski 3-space, Symmetry, 14 (2022), 673. https://doi.org/10.3390/sym14040673 doi: 10.3390/sym14040673 |
[18] | R. A Abdel-Baky, F. Mofarreh, A study on the Bertrand offsets of timelike ruled surfaces in Minkowski 3-space, Symmetry, 14 (2022), 783. https://doi.org/10.3390/sym14040783 doi: 10.3390/sym14040783 |
[19] | B. O'Neil, Semi-Riemannian Geometry geometry, with applications to relativity, Academic Press, New York, 1983. |
[20] | J. Walfare, Curves and surfaces in Minkowski space, Ph.D. Thesis, K. U. Leuven, Faculty of Science, Leuven, 1995. |
[21] | U. Pekmen, S. Pasali, Some characterizations of Lorentzian spherical spacelike curves, Math. Morav, 3 (1999), 31–37. |