Research article Special Issues

The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators

  • Received: 26 October 2022 Revised: 26 February 2023 Accepted: 07 March 2023 Published: 13 March 2023
  • MSC : 34A08, 34A12

  • In this paper, a general framework for the fractional boundary value problems is presented. The problem is created by Riemann-Liouville type two-term fractional differential equations with a fractional bi-order setup. Moreover, the boundary conditions of the suggested system are considered as mixed Riemann-Liouville integro-derivative conditions with four different orders, which it cover a variety of specific instances previously researched. Further, the provided problem's Hyers-Ulam stability and the possibility of a fixed-point approach solution are both investigated. Finally, to support our theoretical findings, an example is developed.

    Citation: Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen. The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators[J]. AIMS Mathematics, 2023, 8(5): 11325-11349. doi: 10.3934/math.2023574

    Related Papers:

  • In this paper, a general framework for the fractional boundary value problems is presented. The problem is created by Riemann-Liouville type two-term fractional differential equations with a fractional bi-order setup. Moreover, the boundary conditions of the suggested system are considered as mixed Riemann-Liouville integro-derivative conditions with four different orders, which it cover a variety of specific instances previously researched. Further, the provided problem's Hyers-Ulam stability and the possibility of a fixed-point approach solution are both investigated. Finally, to support our theoretical findings, an example is developed.



    加载中


    [1] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367–386. https://doi.org/10.48550/arXiv.math/0110241 doi: 10.48550/arXiv.math/0110241
    [2] M. Du, Z. Wang, H. Hu, Measuring memory with the order of fractional derivative, Sci. Rep., 3 (2013), 3431. https://doi.org/10.1038/srep03431 doi: 10.1038/srep03431
    [3] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives: Theory and applications, 1993.
    [4] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1999.
    [5] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7
    [6] G. J. Fix, J. P. Roop, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl., 48 (2004), 1017–1033. https://doi.org/10.1016/j.camwa.2004.10.003 doi: 10.1016/j.camwa.2004.10.003
    [7] J. Erwin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Meth. Part. D. E., 22 (2006), 558–576. https://doi.org/10.1002/num.20112 doi: 10.1002/num.20112
    [8] R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. https://doi.org/10.1007/s10440-008-9356-6 doi: 10.1007/s10440-008-9356-6
    [9] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. Theor., 71 (2009), 2391–2396. https://doi.org/10.1016/j.na.2009.01.073 doi: 10.1016/j.na.2009.01.073
    [10] S. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl., 59 (2010), 1300–1309. https://doi.org/10.1016/j.camwa.2009.06.034 doi: 10.1016/j.camwa.2009.06.034
    [11] B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091
    [12] F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62 (2011), 1181–1199. https://doi.org/10.1016/j.camwa.2011.03.086 doi: 10.1016/j.camwa.2011.03.086
    [13] C. L. Tang, X. P. Wu, Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems, J. Differ. Equations, 248 (2010), 660–692. https://doi.org/10.1016/j.jde.2009.11.007 doi: 10.1016/j.jde.2009.11.007
    [14] D. Vivek, K. Kanagarajan, S. Harikrishnan, Analytic study on nonlocal initial value problems for pantograph equations with Hilfer-Hadamard fractional derivative, Int. J. Math. Appl., 6 (2018), 21-–32.
    [15] H. A. Hammad, M. De la Sen, Analytical solution of Urysohn integral equations by fixed point technique in complex valued metric spaces, Mathematics, 7 (2019), 852. https://doi.org/10.3390/math7090852 doi: 10.3390/math7090852
    [16] C. Wang, T. Z. Xu, Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative, Discrete Cont. Dyn. S, 10 (2017), 505–521. https://doi.org/10.3934/dcdss.2017025 doi: 10.3934/dcdss.2017025
    [17] N. Mehmood, N. Ahmad, Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions, AIMS Math., 5 (2020), 385–398. https://doi.org/10.3934/math.2020026 doi: 10.3934/math.2020026
    [18] Humaira, H. A. Hammad, M. Sarwar, M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differ. Equ. 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0
    [19] W. Al-Sadi, M. Hussein, T. Q. S. Abdullah, Existence and stability criterion for the results of fractional order $\Phi _{p}-$ Laplacian operator boundary value problem, Comput. Methods Diff. E., 9 (2021), 1042–1058. https://doi.org/10.22034/CMDE.2021.32807.1580 doi: 10.22034/CMDE.2021.32807.1580
    [20] K. R. Prasad, M. Khuddush, D. Leela, Existence, uniqueness and Hyers-Ulam stability of a fractional order iterative two-point boundary value Problems, Afr. Math., 32 (2021), 1227–1237. https://doi.org/10.1007/s13370-021-00895-5 doi: 10.1007/s13370-021-00895-5
    [21] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [22] H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
    [23] A. Devi, A. Kumar, Stability results and existence for fractional differential equation involving Atangana-Baleanu derivative with nonlocal integral conditions, Int. J. Appl. Comput. Math., 8 (2022), 228. https://doi.org/10.1007/s40819-022-01406-1 doi: 10.1007/s40819-022-01406-1
    [24] N. Abdellouahab, B. Tellab, K. Zennir, Existence and Stability results of a nonlinear fractional integro-differential equation with integral boundary conditions, Kragujevac J. Math., 46 (2022), 685–699. https://doi.org/10.46793/KgJMat2205.685A doi: 10.46793/KgJMat2205.685A
    [25] H. A. Hammad, H. Aydi, H. Işık, M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Math., 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350
    [26] R. P. Agarwal, S. Hristova, D. O'Regan, Boundary value problems for fractional differential equations of Caputo type and Ulam type stability: Basic concepts and study, Axioms, 12 (2023), 226. https://doi.org/10.3390/axioms12030226 doi: 10.3390/axioms12030226
    [27] L. P. Castro, A. S. Silva, On the existence and stability of solutions for a class of fractional Riemann-Liouville initial value problems, Mathematics, 11 (2023), 297. https://doi.org/10.3390/math11020297 doi: 10.3390/math11020297
    [28] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control., 2023. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
    [29] F. Develia, O. Duman, Existence and stability analysis of solution for fractional delay differential equations, Filomat, 37 (2023), 1869–1878. https://doi.org/10.2298/FIL2306869D doi: 10.2298/FIL2306869D
    [30] Y. Alruwaily, L. Almaghamsi, K. Karthikeyan, El-S El-hady, Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions, AIMS Math., 8 (2023), 10067–10094. https://doi.org/10.3934/math.2023510 doi: 10.3934/math.2023510
    [31] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [32] S. K. Ntouyas, J. Tariboon, Fractional boundary value problems with multiply orders of fractional derivatives and integrals, Electron. J. Differ. Eq., 2017 (2017), 100.
    [33] L. Xu, Q. Dong, G. Li, Existence and Hyers-Ulam stability for three-point boundary value problems with Riemann-Liouville fractional derivatives and integrals, Adv. Differ. Equ., 2018 (2018), 458. https://doi.org/10.1186/s13662-018-1903-5 doi: 10.1186/s13662-018-1903-5
    [34] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [35] S. Z. Rida, A. A. M. Arafa, Y. A. Gaber, Solution of the fractional epidemic model by L-ADM, J. Fract. Calc. Appl., 7 (2016), 189–195.
    [36] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Usp. Mat. Nauk., 10 (1955), 123–127.
    [37] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1736) PDF downloads(112) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog