Citation: Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions[J]. AIMS Mathematics, 2020, 5(3): 2629-2645. doi: 10.3934/math.2020171
[1] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[2] | M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4 |
[3] | M. Adil Khan, A. Iqbal, M. Suleman, et al. Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6 |
[4] | M. Adil Khan, Y. Khurshid, T. S. Du, et al. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals, J. Funct. Space., 2018 (2018), 1-12. |
[5] | M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0 |
[6] | M. Adil Khan, S. H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4 |
[7] | M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8 |
[8] | Y. Adjabi, F. Jarad, D. Baleanu, et al. On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661-681. |
[9] | G. Alirezaei, R. Mathar, On exponentially concave functions and their impact in information theory, J. Inf. Theory Appl., 9 (2018), 265-274. |
[10] | M. Andrić, A. Barbir, S. Iqbal, et al. An Opial-type integral inequality and exponentially convex functions, Fract. Differ. Calc., 5 (2015), 25-42. |
[11] | M. Avriel, r-convex functions, Math. Program., 2 (1972), 309-323. doi: 10.1007/BF01584551 |
[12] | M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215 |
[13] | D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional Calculus, World Scientific Publishing, Hackensack, 2012. |
[14] | S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1-66. doi: 10.1007/BF02592679 |
[15] | P. S. Bullen, D. S. Mitrinović, P. M. Vasić, Means and Their Inequalities, D. Reidel Publishing Co., Dordrecht, 1988. |
[16] | Y. M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0 |
[17] | Y. M. Chu, M. K. Wang, S. L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., 122 (2012), 41-51. doi: 10.1007/s12044-012-0062-y |
[18] | R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192. |
[19] | S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type, Springer, New York, 2012. |
[20] | S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babeş-Bolyai Math., 60 (2015), 527-534. |
[21] | S. S. Dragomir, T. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002. |
[22] | X. H. He, W. M. Qian, H. Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2 |
[23] | T. R. Huang, B. W. Han, X. Y. Ma, et al. Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl., 2018 (2018), 1-9. doi: 10.1186/s13660-017-1594-6 |
[24] | C. X. Huang, L. Z. Liu, Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator, Publ. Inst. Math., 92 (2012), 165-176. doi: 10.2298/PIM1206165H |
[25] | T. R. Huang, S. Y. Tan, X. Y. Ma, et al. Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 1-11. doi: 10.1186/s13660-017-1594-6 |
[26] | C. X. Huang, H. Zhang, L. H. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal., 18 (2019), 3337-3349. doi: 10.3934/cpaa.2019150 |
[27] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. |
[28] | J. Jakšetić, J. Pečarić, Exponential convexity method, J. Convex Anal., 20 (2013), 181-197. |
[29] | F. Jarad, E. Uǧurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16. doi: 10.1186/s13662-016-1057-2 |
[30] | F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. doi: 10.22436/jnsa.010.05.27 |
[31] | Y. J. Jiang, X. J. Xu, A monotone finite volume method for time fractional Fokker-Planck equations, Sci. China Math., 62 (2019), 783-794. doi: 10.1007/s11425-017-9179-x |
[32] | E. Kacar, Z. Kacar, H. Yildirim, Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iran. J. Math. Sci. Inform., 13 (2018), 1-13. doi: 10.22457/jmi.v13a1 |
[33] | U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv:1612.08596. |
[34] | R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[35] | T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. doi: 10.1016/j.cam.2018.07.018 |
[36] | S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 30 (2020), 2577-2587. |
[37] | Y. Khurshid, M. Adil Khan, Y. M. Chu, et al. Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1-9. |
[38] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. |
[39] | Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266 |
[40] | M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4 |
[41] | F. W. Liu, L. B. Feng, V. Anh, et al. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains, Comput. Math. Appl., 78 (2019), 1637-1650. doi: 10.1016/j.camwa.2019.01.007 |
[42] | F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010. |
[43] | S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94. |
[44] | K. S. Nisar, G. Rahman, J. Choi, et al. Certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249-263. |
[45] | D. S. Oliveira, E. Capelas de Oliveira, Hilfer-Katugampola fractional derivative, arXiv:1705.07733. |
[46] | A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1937), 226-227. doi: 10.1007/BF01214290 |
[47] | S. Pal, T. K. L. Wong, Exponentially concave functions and a new information geometry, Ann. Probab., 46 (2018), 1070-1113. doi: 10.1214/17-AOP1201 |
[48] | W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2 |
[49] | W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4 |
[50] | W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4 |
[51] | W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. |
[52] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Čebyšev type inequalities via generalized k-fractional integral, Adv. Differ. Equ., 2020 (2020). |
[53] | S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1-18. |
[54] | S. Rashid, F. Safdar, A. O. Akdemir, et al. Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 1-17. doi: 10.1186/s13660-019-1955-4 |
[55] | E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154. doi: 10.1016/j.camwa.2011.12.023 |
[56] | J. F. Wang, X. Y. Chen, L. H. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405-427. doi: 10.1016/j.jmaa.2018.09.024 |
[57] | M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 123388. |
[58] | M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
[59] | J. F. Wang, C. X. Huang, L. H. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162-178. doi: 10.1016/j.nahs.2019.03.004 |
[60] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. |
[61] | B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 7. |
[62] | M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39B (2019), 1440-1450. |
[63] | J. Wu, Y. C. Liu, Uniqueness results and convergence of successive approximations for fractional differential equations, Hacet. J. Math. Stat., 42 (2013), 149-158. |
[64] | S. H. Wu, Y. M. Chu, Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4 |
[65] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[66] | S. Zaheer Ullah, M. Adil Khan, et al. Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4 |
[67] | S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4 |
[68] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[69] | T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2 |
[70] | S. H. Zhou, Y. J. Jiang, Finite volume methods for N-dimensional time fractional Fokker-Planck equations, Malays. Math. Sci. Soc., 42 (2019), 3167-3186. doi: 10.1007/s40840-018-0652-7 |