Citation: Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions[J]. AIMS Mathematics, 2020, 5(3): 2629-2645. doi: 10.3934/math.2020171
[1] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[2] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[3] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[4] | XuRan Hai, ShuHong Wang . Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666 |
[5] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[6] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[7] | Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m)$-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052 |
[8] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[9] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[10] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . $ k $-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
There are numerous problems wherein fractional derivatives (non-integer order derivatives and integrals) attain a valuable position [4,5,8,16,24,27,31,36,41,60,62,63,70]. It must be emphasized that fractional derivatives are furnished in many techniques, especially, characterizing three distinct approaches, which we are able to mention in an effort to grow the work in certainly one of them. Every classical fractional operator is typically described in terms of a particular significance. Many of the most well recognized definitions of fractional operators we can also point out the Riemann-Liouville, Caputo, Grunwald-Letnikov, and Hadamard operators [13], whose formulations include integrals with singular kernels and which may be used to have a check, as an example, issues involving the reminiscence effect [34]. However, within the years 2010, specific formulations of fractional operators have seemed inside the literature [42].
On the other hand, there are numerous approaches to acquire a generalization of classical fractional integrals. Many authors introduce parameters in classical definitions or in some unique specific function [45], as we shall do below. Moreover, in a present paper, the authors introduce a parameter and enunciate a generalization for fractional integrals on a selected space, which they name generalized K-fractional integrals, and further advocate an Ostrowski type inequality modification of this generalization. A verity of such type of new definitions of fractional integrals and derivatives promotes future research to establish more new ideas and fractional integral inequalities by utilizing new fractional derivative and integral operators. Integral inequalities are used in countless mathematical problems such as approximation theory and spectral analysis, statistical analysis and the theory of distributions. Studies involving integral inequalities play an important role in several areas of science and engineering. In [53], the authors established certain Grüss type inequalities and some other inequalities containing generalized proportional fractional and generalized proportional fractional with respect to another function. Khan et al. [3] studied several inequalities for the conformable fractional integral operators. Nisar et al. [44] presented Gronwall inequalities involving the generalized Riemann-Liouville and Hadamard K-fractional derivatives with applications. In [39], Kwun et al. proved integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities involving the generalized Riemann-Liouville K-fractional integral operators. Especially, several striking inequalities, properties, and applicability for the fractional integrals and derivatives are recently studied by various researchers. We refer the interesting readers to the works by [30,37,52,55].
In 1937, Ostrowski [46] established an interesting integral inequality associated with differentiable mappings in one dimension stipulates a bound between a function evaluated at an interior point z and the average of the function ℏ over an interval. That is
|ℏ(z)−1ς2−ς1ς2∫ς1ℏ(λ)dλ|≤[14+(z−ς1+ς22)2ς2−ς1](ς2−ς1)‖ℏ‖∞ | (1.1) |
holds for all z∈[ς1,ς2], where ℏ∈L∞(ς1,ς2) and ℏ:[ς1,ς2]→R is a differentiable mapping on (ς1,ς2). The constant 14 is sharp in the sense that it cannot be replaced by a smaller one. We also observe that the tightest bound is obtained at z=ς1+ς22, resulting in the well-known mid-point inequality. Ostrowski inequalities have great importance while studying the error bounds of different numerical quadrature rules, for example, the midpoint rule, Simpson's rule, the trapezoidal rule, and other generalized K-fractional integrals, see [19,21].
Almost every mathematician knows the importance of convexity theory in every field of mathematics, for example in nonlinear programming and optimization theory. By using the concept of convexity, several integral inequalities have been introduced such as Jensen, Hermite-Hadamard and Slater inequalities, and so forth. Exponentially convex functions have emerged as a significant new class of convex functions, which have important applications in technology, data science, and statistics. The main motivation of this paper depends on new Ostrowski inequalities that have been proved via K-fractional integrals and applied for exponentially convex functions. Ostrowski inequality offers some new estimation of a function to its integral mean. It is beneficial in error estimations of quadrature rules in numerical analysis. Some particular cases have been discussed, which can be deduced from these consequences.
Recall the definition of an exponentially convex function, which is investigated by Dragomir and Gomm [20].
Definition 1.1. ([20]) A positive real-valued function ℏ:K⊆R⟶(0,∞) is said to be exponentially convex on K if the inequality
eℏ(λς1+(1−λ)ς2)≤λeℏ(ς1)+(1−λ)eℏ(ς2) |
holds for all ς1,ς2∈K and λ∈[0,1].
Exponentially convex function explored by Bernstein [14] in covariance formation then Avriel [11] established and investigated this concept by imposing the condition of r-convex functions. Dragomir and Gomm [20] proved the Hermite-Hadamard inequality by employing exponentially convex functions. Pal [47], Alirezai and Mathar [9] provided the fertile application of exponentially convex functions in information theory, optimization theory, and statistical theory. For observing various other kinds of exponentially convex functions and their generalizations, see [1,2,6,7,10,12,40,54,66,67]. Due to its significance, Jakšetić and Pečarić [28] used another kind of exponentially convex function introduced in reference [14] and have provided some applications in Euler-Radau expansions and stolarsky means. Our intention is to use the exponentially convexity property of the functions as well as the absolute values of their derivatives in order to establish estimates for generalized K-fractional integrals.
Inspired by the above works, we give a novel approach for deriving new generalizations of Ostrowski type that correlates with exponentially convex functions and generalized K-fractional techniques in this paper. One highlight is that our consequences, which are more consistent and efficient, are accelerated via the fractional calculus technique. In addition, our consequences also taking into account the estimates for Hermite-Hadamard inequality for exponentially convex functions by employing Remark 2.1. We also investigate the applications of the two proposed methods to exponentially convex functions and fractional calculus. Furthermore, we give some numerical examples to illustrate the convergence efficiency of our theorems. The proposed numerical experiments show that our results are superior to some related results.
In this section, we demonstrate some important concepts from fractional calculus that play a major role in proving the results of the present paper. The essential points of interest are exhibited in the monograph by Kilbas et al. [38].
Definition 2.1. ([38]) Let p≥1, u≥0 and ς1,ς2∈R with ς1<ς2. Then the Lp,u[ς1,ς2] space is defined by
Lp,u[ς1,ς2]={ℏ:‖ℏ‖Lp,u[ς1,ς2]=(∫ς2ς1|ℏ(λ)|pλudλ)1p<∞}. |
In particular, we denote
‖ℏ‖Lp[ς1,ς2]=‖ℏ‖Lp,0[ς1,ς2] |
and
Lp[ς1,ς2]=Lp,0[ς1,ς2] |
Definition 2.2. ([32]) Let p≥1 and Φ be an increasing and positive function on [0,∞) such that Φ′ is continuous on [0,∞) with Φ(0)=0. Then the χpΦ[0,∞) space is the set of all the real-valued Lebesgue measurable functions ℏ∈L1[0,∞) such that
‖ℏ‖χpΦ=(∞∫0|ℏ(λ)|pΦ′(λ)dλ)1p<∞. |
In particular, if p=∞, then ‖ℏ‖χ∞Φ is defined by
‖ℏ‖χ∞Φ=esssup0≤λ<∞[Φ′(λ)ℏ(λ)]. |
We clearly see that χpΦ[0,∞) becomes to Lp[0,∞) if Φ(z)=z, and χpΦ[0,∞) reduces to Lp,u[0,∞) if Φ(z)=1u+1zu+1.
Now, we present a new fractional operator that is known as the generalized K-fractional integral operator of a function in the sense of another function Φ.
Definition 2.3. Let ℏ∈χqΦ(0,∞) and Φ be an increasing positive function defined on [0,∞) such that Φ′(z) is continuous on [0,∞) with Φ(0)=0. Then the left and right generalized K-fractional integral operators of the function ℏ in the sense of the function Φ of order ρ>0 are defined by
Jρ,Kς+1,Φℏ(z)=1KΓK(ρ)z∫ς1Φ′(λ)(Φ(z)−Φ(λ))ρK−1ℏ1(λ)dλ(ς1<z) | (2.1) |
and
Jρ,Kς−2,Φℏ(z)=1KΓK(ρ)ς2∫zΦ′(λ)(Φ(λ)−Φ(z))ρK−1ℏ1(λ)dλ(z<ς2), | (2.2) |
respectively, where ρ∈C, ℜ(ρ)>0 and ΓK(z)=∞∫0λz−1e−λKKdλ (ℜ(z)>0) is the K-Gamma function [18].
Remark 2.1. From (2.1) and (2.2) we clearly see that
(1) They turn into the both sided generalized RL-fractional integral operators [38] if K=1.
(2) They reduce to the both-sided K-fractional integral operators [43] if Φ(z)=z.
(3) They lead to the both-sided RL-fractional integral operators if Φ(z)=z and K=1.
(4) They become to the both-sided Hadamard fractional integral operators [38] if Φ(z)=logz and K=1.
(5) They degenerate to the both-sided Katugampola fractional integral operators [33] if Φ(z)=zββ (β>0) and K=1.
(6) They turn out to be the both-sided conformable fractional integral operators defined by Jarad et al. [29] if Φ(z)=(z−a)ββ (β>0) and K=1.
(7) They change into the both-sided generalized conformable fractional integrals defined by Khan and Adil Khan [35] if Choosing Φ(z)=zu+vu+v and K=1.
In what follows, we assume that ς1,ς2∈R with ς1<ς2, I=[ς1,ς2] is a finite or infinite interval, ℏ is a positive integrable function defined on I and Φ is an increasing and positive function on (ς1,ς2] such that Φ′ is continuous on (ς1,ς2).
Now, we are going to present several new Ostrowski-type inequalities for the exponentially convex functions via the generalized K-fractional integrals.
Theorem 3.1. Let ρ,δ,K,M>0, I∘ be the interior of I, and ℏ:I→R be differentiable on I∘. Then the inequality
|((Φ(z)−Φ(ς1))ρK+(Φ(ς2)−Φ(z))δK)eℏ(z)−(ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)+ΓK(δ+K)Iδ,Kς−2,Φeℏ(z))| |
≤Mρρ+K(Φ(z)−Φ(ς1))ρK+1+Mδδ+K(Φ(ς2)−Φ(z))δK+1 | (3.1) |
holds if Φ′(z)≥1 and |(eℏ(λ))′|≤M for all z,λ∈I.
Proof. It follows from the monotonicity of Φ that
(Φ(z)−Φ(λ))ρK≤(Φ(z)−Φ(ς1))ρK | (3.2) |
for λ∈[ς1,z].
From (3.2) and the hypothesis |(eℏ(λ))′|≤M we clearly see that
z∫ς1(MΦ′(λ)−eℏ(λ)ℏ′(λ))(Φ(z)−Φ(λ))ρKdλ |
≤(Φ(z)−Φ(ς1))ρKz∫ς1(MΦ′(λ)−eℏ(λ)ℏ′(λ))dλ |
and
z∫ς1(MΦ′(λ)+eℏ(λ)ℏ′(λ))(Φ(z)−Φ(λ))ρKdλ |
≤(Φ(z)−Φ(ς1))ρKz∫ς1(MΦ′(λ)+eℏ(λ)ℏ′(λ))dλ. |
After integrating above inequalities and then using Definition 2.3 we get
(Φ(z)−Φ(ς1))ρKeℏ(z)−ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)≤Mρρ+K(Φ(z)−Φ(ς1))ρK+1 | (3.3) |
and
ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)−(Φ(z)−Φ(ς1))ρKeℏ(z)≤Mρρ+K(Φ(z)−Φ(ς1))ρK+1. | (3.4) |
Inequalities (3.3) and (3.4) lead to the following modulus inequality
|(Φ(z)−Φ(ς1))ρKeℏ(z)−ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)|≤Mρρ+K(Φ(z)−Φ(ς1))ρK+1. | (3.5) |
Analogously, we have
(Φ(λ)−Φ(z))δK≤(Φ(ς2)−Φ(z))δK | (3.6) |
for λ∈[z,ς2].
Making use of (3.6) and adopting the same procedure as we did for obtaining (3.5), we get the following modulus inequality
|(Φ(ς2)−Φ(z))ρKeℏ(z)−ΓK(δ+K)Iδ,Kς−2,Φeℏ(z)|≤Mδδ+K(Φ(ς2)−Φ(z))δK+1. | (3.7) |
Therefore, inequality (3.1) follows from (3.5) and (3.7).
Corollary 3.1. Letting ρ=δ. Then Theorem 3.1 leads to
|((Φ(z)−Φ(ς1))ρK+(Φ(ς2)−Φ(z))ρK)eℏ(z)−ΓK(ρ+K)(Iρ,Kς+1,Φeℏ(z)+Iρ,Kς−2,Φeℏ(z))| |
≤Mρρ+K((Φ(z)−Φ(ς1))ρK+1+(Φ(ς2)−Φ(z))ρK+1). |
Corollary 3.2. Let K=1. Then Theorem 3.1 gives the Ostrowski-type inequality as follows
|((Φ(z)−Φ(ς1))ρ+(Φ(ς2)−Φ(z))δ)eℏ(z)−(Γ(ρ+1)Iρς+1,Φeℏ(z)+Γ(δ+1)Iδς−2,Φeℏ(z))| |
≤Mρρ+1(Φ(z)−Φ(ς1))ρ+1+Mδδ+1(Φ(ς2)−Φ(z))δ+1. |
Corollary 3.3. Letting Φ(z)=(z). Then Theorem 3.1 reduces to the following Ostrowski-type inequality for K-fractional integral
|((z−ς1)ρK+(ς2−z)δK)eℏ(z)−(ΓK(ρ+K)Iρ,Kς+1eℏ(z)+ΓK(δ+K)Iδ,Kς−2eℏ(z))| |
≤Mρρ+K(z−ς1)ρK+1+Mδδ+K(ς2−z)δK+1. |
Corollary 3.4. Let Φ(z)=(z) and K=1. Then Theorem 3.1 leads to
|((z−ς1)ρ+(ς2−z)δ)eℏ(z)−(Γ(ρ+1)Iρς+1eℏ(z)+Γ(δ+1)Iδς−2eℏ(z))| |
≤Mρρ+1(z−ς1)ρ+Mδδ+1(ς2−z)δ. |
Corollary 3.5. Let Φ(z)=(z) and ρ=δ=K=1. Then Theorem 3.1 becomes to the Ostrowski-type inequality
|eℏ(z)−1ς2−ς1ς2∫ς1eℏ(λ)dλ|≤[14+(z−ς1+ς22)2(ς2−ς1)2](ς2−ς1)M. |
In addition, we can get more results by use of Theorem 3.1 as follows.
(Ⅰ) By choosing z=ς1 and z=ς2 in (3.1), then adding the concluding terms, we have
|(Φ(ς2)−Φ(ς1))δKeℏ(ς1)+(Φ(ς2)−Φ(ς1))ρKeℏ(ς2)−(ΓK(δ+K)Iδ,Kς−2,Φeℏ(ς1)+ΓK(ρ+K)Iρ,Kς+1,Φeℏ(ς2))| |
≤Mδδ+K(Φ(ς2)−Φ(ς1))δK+1+Mρρ+K(Φ(ς2)−Φ(ς1))ρK+1. | (3.8) |
(Ⅱ) By choosing ρ=δ in (3.8), then we have
|(Φ(ς2)−Φ(ς1))ρK(eℏ(ς1)+eℏ(ς2))−ΓK(ρ+K)(Iρ,Kς−2,Φeℏ(ς1)+Iρ,Kς+1,Φeℏ(ς2))| |
≤2Mρρ+K(Φ(ς2)−Φ(ς1))ρK+1. | (3.9) |
(Ⅲ) By choosing Φ(z)=z in (3.9), then we get the Hermite-Hadamard type inequality for K-fractional integrals
|eℏ(ς1)+eℏ(ς2)2−ΓK(ρ+K)2(ς2−ς1)ρK(Iρ,Kς−2eℏ(ς1)+Iρ,Kς+1eℏ(ς2))|≤Mρρ+K(ς2−ς1). | (3.10) |
Theorem 3.2. Let ρ,δ,K,M>0, m≤0, ℏ:I→R be differentiable on I∘, and Φ:[ς1,ς2]→R be a strictly increasing function such that Φ′(z)≥1, |(eℏ(λ))′|≤M and m≤(eℏ(λ))′≤M for all z,λ∈[ς1,ς2]. Then we have the inequalities for generalized K-fractional integrals as follows
|((Φ(z)−Φ(ς1))ρK−(Φ(ς2)−Φ(z))δK)eℏ(z)−(ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)−ΓK(δ+K)Iδ,Kς−2,Φeℏ(z))| |
≤M(ρρ+K(Φ(z)−Φ(ς1))ρK+1+δδ+K(Φ(ς2)−Φ(z))δK+1) | (3.11) |
and
|((Φ(ς2)−Φ(z))δK−(Φ(z)−Φ(ς1))ρK)eℏ(z)+(ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)−ΓK(δ+K)Iδ,Kς−2,Φeℏ(z))| |
≤−m(ρρ+K(Φ(z)−Φ(ς1))ρK+1+δδ+K(Φ(ς2)−Φ(z))δK+1). | (3.12) |
Proof. It follows from (3.2) and the hypothesis in Theorem 3.2 that
z∫ς1(MΦ′(λ)−eℏ(λ)ℏ′(λ))(Φ(z)−Φ(λ))ρKdλ |
≤(Φ(z)−Φ(ς1))ρKz∫ς1(MΦ′(λ)−eℏ(λ)ℏ′(λ))dλ |
and
z∫ς1(eℏ(λ)ℏ′(λ)−mΦ′(λ))(Φ(z)−Φ(λ))ρKdλ |
≤(Φ(z)−Φ(ς1))ρKz∫ς1(eℏ(λ)ℏ′(λ)−mΦ′(λ))dλ. |
After integrating above inequalities and by using Definition 3.2 we get
(Φ(z)−Φ(ς1))ρKeℏ(z)−ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z) |
≤Mρρ+K(Φ(z)−Φ(ς1))ρK+1 | (3.13) |
and
ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)−(Φ(z)−Φ(ς1))ρKeℏ(z) |
≤−mρρ+K(Φ(z)−Φ(ς1))ρK+1. | (3.14) |
Analogously, we have
ΓK(δ+K)Iδ,Kς−2,Φeℏ(z)−(Φ(ς2)−Φ(z))ρKeℏ(z) |
≤Mδδ+K(Φ(ς2)−Φ(z))δK+1 | (3.15) |
and
(Φ(ς2)−Φ(z))ρKeℏ(z)−ΓK(δ+K)Iδ,Kς−2,Φeℏ(z) |
≤−mδδ+K(Φ(ς2)−Φ(z))δK+1. | (3.16) |
Therefore, inequality (3.11) follows from (3.13) and (3.15), and inequality (3.12) follows from (3.14) and (3.16).
Remark 3.1. Theorem 3.2 leads to the conclusion that
(i) If K=1, then we attain the Ostrowski-type inequality for GRLFI.
(ii) If Φ(z)=z, then we get the Ostrowski-type inequality for K-fractional integral.
(iii) If K=1 and Φ(z)=z, then we obtain the the Ostrowski-type inequality for RLFI.
(iv) If m=−M, then after some calculations it constitutes Theorem 3.1.
Theorem 3.3. Let ρ,δ,K,M>0, m≤0, ℏ:I→R be differentiable on I∘, and Φ:[ς1,ς2]→R be a strictly increasing function such that Φ′(z)≥1, |(eℏ(λ))′|≤M and m≤(eℏ(λ))′≤M for all z,λ∈[ς1,ς2]. Then one has the generalized K-fractional integrals inequalities
|((Φ(z)−Φ(ς1))ρK+(Φ(ς2)−Φ(z))δK)eℏ(z)−(ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)+ΓK(δ+K)Iδ,Kς−2,Φeℏ(z))| |
≤Mρρ+K(Φ(z)−Φ(ς1))ρK+1−mδδ+K(Φ(ς2)−Φ(z))δK+1 | (3.17) |
and
|−((Φ(ς2)−Φ(z))δK+(Φ(z)−Φ(ς1))ρK)eℏ(z)+(ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)+ΓK(δ+K)Iδ,Kς−2,Φeℏ(z))| |
≤(−mρρ+K(Φ(z)−Φ(ς1))ρK+1+Mδδ+K(Φ(ς2)−Φ(z))δK+1). | (3.18) |
Proof. Inequality (3.17) follows from (3.13) and (3.16), and inequality (3.18) follows from (3.14) and (3.15).
Theorem 3.4. Let ρ,δ,K,M>0, I∘ be the interior of I, and ℏ:I→R be differentiable on I∘. Then the inequality
|((Φ(ς2)−Φ(z))δKeℏ(ς2)+(Φ(z)−Φ(ς1))ρKeℏ(ς1))−(ΓK(ρ+K)Iρ,Kz−,Φeℏ(ς1)+ΓK(δ+K)Iδ,Kz+,Φeℏ(ς2))| |
≤M(ρρ+K(Φ(z)−Φ(ς1))ρK+1+δδ+K(Φ(ς2)−Φ(z))δK+1) | (3.19) |
holds if Φ′(z)≥1 and |(eℏ(λ))′|≤M for all z,λ∈I.
Proof. It follows from the monotonicity of Φ that
(Φ(λ)−Φ(ς1))ρK≤(Φ(z)−Φ(ς1))ρK | (3.20) |
for λ∈[ς1,z].
Inequality (3.20) and the hypothesis on (eℏ)′ lead to
z∫ς1(MΦ′(λ)−eℏ(λ)ℏ′(λ))(Φ(λ)−Φ(ς1))ρKdλ |
≤(Φ(z)−Φ(ς1))ρKz∫ς1(MΦ′(λ)−eℏ(λ)ℏ′(λ))dλ |
and
z∫ς1(MΦ′(λ)+eℏ(λ)ℏ′(λ))(Φ(λ)−Φ(ς1))ρKdλ |
≤(Φ(z)−Φ(ς1))ρKz∫ς1(MΦ′(λ)+eℏ(λ)ℏ′(λ))dλ. |
Integrating above inequalities and using the Definition 2.3 lead to
ΓK(ρ+K)Iρ,Kz−,Φeℏ(ς1)−(Φ(z)−Φ(ς1))ρKeℏ(ς1) |
≤Mρρ+K(Φ(z)−Φ(ς1))ρK+1 | (3.21) |
and
(Φ(z)−Φ(ς1))ρKeℏ(ς1)−ΓK(ρ+K)Iρ,Kz−,Φeℏ(ς1) |
≤Mρρ+K(Φ(z)−Φ(ς1))ρK+1. | (3.22) |
From (3.21) and (3.22) we obtain the modulus inequality
|(Φ(z)−Φ(ς1))ρKeℏ(ς1)−ΓK(ρ+K)Iρ,Kz−,Φeℏ(ς1)| |
≤Mδδ+K(Φ(z)−Φ(ς1))ρK+1. | (3.23) |
Again, making use of the fact the monotonicity of Φ we have
(Φ(ς2)−Φ(λ))δK≤(Φ(ς2)−Φ(z))δK. | (3.24) |
for λ∈[z,ς2].
Using (3.24) and adopting the same procedure as we did for obtaining (3.23), we get
|(Φ(ς2)−Φ(z))δKeℏ(ς1)−ΓK(δ+K)Iδ,Kz+,Φeℏ(ς1)| |
≤Mδδ+K(Φ(ς1)−Φ(z))δK+1. | (3.25) |
Therefore, inequality (3.19) follows easily from (3.23) and (3.25).
Remark 3.2. From Theorem 3.4 we clearly see that
(i) If K=1, then we get the Ostrowski type inequality for the GRLFI.
(ii) If Φ(z)=z, then we attain the Ostrowski type inequality for the K-fractional integral.
(iii) If Φ(z)=z and K=1, then we have the Ostrowski type inequality for the RLFI.
The generalized K-fractional integral operator is very a useful operator in the theory of fractional calculus and its applications since it is already mentioned that it is eligible to use it as a solution of fractional order differential equations, integral equations and fractional Schrödinger equations. To show the accuracy of our results, we present two examples to support our obtained results in the previous section.
Example 4.1. Let K=1, ς1=0, ς2=π2, ρ=1, δ=3, M=1, ℏ(z)=ln(cosz), and Φ(z)=sinz. Then all the assumptions in Theorem 3.1 are satisfied. It is not difficult to verify that
((Φ(z)−Φ(ς1))ρK+(Φ(ς2)−Φ(z))δK)eℏ(z) |
=((sinπ4−sin0)+(sinπ2−sinπ4)3)cosπ4≈0.5178, | (4.1) |
ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)=ΓK(ρ+K)z∫ς1Φ′(λ)(Φ(z)−Ψ(λ))ρK−1eℏ(λ)dλ |
=π4∫0cos2λdλ≈0.6427 |
and
ΓK(δ+K)Iδ,Kς−2,Φeℏ(z)=ΓK(δ+K)ς2∫zΦ′(λ)(Ψ(λ)−Φ(z))δK−1eℏ(λ)dλ |
=6π2∫π4cos2λ(sinλ−sinπ4)2dλ≈0.01715. |
Adding the above equations, we get the left-hand side term of (3.1) as follows
|((Φ(z)−Φ(ς1))ρK+(Φ(ς2)−Φ(z))δK)eℏ(z) |
−(ΓK(ρ+K)Iρ,Kς+1,Φeℏ(z)+ΓK(δ+K)Iδ,Kς−2,Φeℏ(z))|≈0.1432. | (4.2) |
On the other hand, we have
Mρρ+K(Φ(z)−Φ(ς1))ρK+1+Mδδ+K(Φ(ς2)−Φ(z))δK+1 |
=[(sinπ4)+(sinπ2−sinπ4)3]cosπ4≈0.5178. | (4.3) |
It is nice to see that the following implications hold in (4.2) and (4.3)
0.1432<0.5178. |
Example 4.2. Let K=1, ς1=0, ς2=4, ρ=12, δ=52, m=−6, M=2, ℏ(z)=2ln(z−3) and Φ(z)=2(z+3). Then all the assumptions of Theorem 3.3 are satisfied, and Theorem 3.3 leads to the Ostrowski type inequalities
|((2(z+3)−6)0.5+(14−2(z+3))2.5)(z−3)2−(Γ(1.5)I0.5,10+,Φ(z−3)2+Γ(3.5)I2.5,14−,Φ(z−3)2)| |
≤25(2(z+3)−6))1.5+307(14−2(z+3))3.5 |
and
|−((14−2(z+3))2.5+(2(z+3)−10)0.5)(z−3)2+(Γ(1.5)I0.5,10+,Φ(z−3)2+Γ(3.5)I2.5,14−,Φ(z−3)2)| |
≤2(2(z+3)−10))1.5+107(14−2(z+3))3.5. |
A real-valued function M:(0,∞)×(0,∞)→(0,∞) is said to be a bivariate mean [15] if min{a,b}≤M(a,b)≤max{a,b} for all a,b∈(0,∞). Recently, the properties and applications for the bivariate means and their related special functions have attracted the attention of many researchers [17,22,23,25,26,48,49,50,51,56,57,58,59,61,64,65,68,69].
Let μ1,ν1>0 with μ1≠ν1. Then the arithmetic mean A(μ1,ν1), harmonic mean H(μ1,ν1), logarithmic mean L(μ1,ν1) and n-th generalized logarithmic mean Ln(μ1,ν1) are defined by
A(μ1,ν1)=μ1+ν12,H(μ1,ν1)=2μ1ν1μ1+ν1, |
L(μ1,ν1)=ν1−μ1lnν1−lnμ1,Ln(μ1,ν1)=[νn+11−μn+11(n+1)(ν1−μ1)]1/n(n≠0,−1), |
L0(μ1,ν1)=1e(νν11μμ11)1/(ν1−μ1),L−1(μ1,ν1)=L(μ1,ν1), |
respectively.
In this section, we use our obtained results in section 3 to provide several novel inequalities involving the special bivariate means mentioned above.
Proposition 5.1. Let η1,η2>0 with η2>η1. Then
|A(eη1,eη2)−L(eη1,eη2)|≤(η2−η1)2eη2. |
Proof. Let ρ=K=1 and eℏ(z)=ez. Then the desired result follows from the assertion (III) of Theorem 3.1.
Proposition 5.2. Let η1,η2>0 with η1<η2. Then
|H−1(η1,η2)−L−1(η1,η2)|≤(η2−η1)2η21. |
Proof. Let ρ=K=1 and eℏ(z)=1z. Then the desired result can be derived from the assertion (III) of Theorem 3.1.
Proposition 5.3. Let η1,η2>0 with η1<η2. Then
|A(η21,η22)−L22(η1,η2)|≤(η2−η1)η2. |
Proof. Let ρ=K=1 and eℏ(z)=z2. Then the desired result can be obtained from the assertion (III) of Theorem 3.1.
Proposition 5.4. Let η1,η2>0 with η1<η2. Then
|A(ηn1,ηn2)−Lnn(η1,η2)|≤|n|(η2−η1)2max{|η1|n−1,|η2|n−1}. |
Proof. Proposition 5.4 follows easily from the assertion (III) of Theorem 3.1 and eℏ(z)=zn together with K=ρ=1.
In this paper, we proposed a novel technique with two different approaches for deriving several generalizations for an exponentially convex function that accelerates with generalized K-fractional integral operator. We also established strong convergence theorems for Ostrowski type inequalities via exponentially convex functions. By choosing different parameter values K and Φ, we analyzed the convergence behavior of our proposed methods in form of corollaries. Another aspect is that, to show the effectiveness of our novel generalizations, our results have potential applications in fractional integrodifferential, difference equations and fractional Schrödinger equations. Numerical examples show that our findings are consistent and efficient. Finally, we remark that the framework of the generalized K-fractional integral operator, it is of interest to further our results to the framework of Riemann-Liouville, Hadamard and conformable fractional integral operators.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The research is supported by the Natural Science Foundation of China (Grant Nos. Grant Nos. 11701176, 61673169, 11301127, 11626101, 11601485).
The authors declare that they have no competing interests.
[1] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[2] |
M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[3] |
M. Adil Khan, A. Iqbal, M. Suleman, et al. Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6
![]() |
[4] | M. Adil Khan, Y. Khurshid, T. S. Du, et al. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals, J. Funct. Space., 2018 (2018), 1-12. |
[5] |
M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[6] |
M. Adil Khan, S. H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4
![]() |
[7] |
M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8
![]() |
[8] | Y. Adjabi, F. Jarad, D. Baleanu, et al. On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661-681. |
[9] | G. Alirezaei, R. Mathar, On exponentially concave functions and their impact in information theory, J. Inf. Theory Appl., 9 (2018), 265-274. |
[10] | M. Andrić, A. Barbir, S. Iqbal, et al. An Opial-type integral inequality and exponentially convex functions, Fract. Differ. Calc., 5 (2015), 25-42. |
[11] |
M. Avriel, r-convex functions, Math. Program., 2 (1972), 309-323. doi: 10.1007/BF01584551
![]() |
[12] |
M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215
![]() |
[13] | D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional Calculus, World Scientific Publishing, Hackensack, 2012. |
[14] |
S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1-66. doi: 10.1007/BF02592679
![]() |
[15] | P. S. Bullen, D. S. Mitrinović, P. M. Vasić, Means and Their Inequalities, D. Reidel Publishing Co., Dordrecht, 1988. |
[16] |
Y. M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
![]() |
[17] |
Y. M. Chu, M. K. Wang, S. L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., 122 (2012), 41-51. doi: 10.1007/s12044-012-0062-y
![]() |
[18] | R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192. |
[19] | S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type, Springer, New York, 2012. |
[20] | S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babeş-Bolyai Math., 60 (2015), 527-534. |
[21] | S. S. Dragomir, T. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002. |
[22] |
X. H. He, W. M. Qian, H. Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2
![]() |
[23] |
T. R. Huang, B. W. Han, X. Y. Ma, et al. Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl., 2018 (2018), 1-9. doi: 10.1186/s13660-017-1594-6
![]() |
[24] |
C. X. Huang, L. Z. Liu, Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator, Publ. Inst. Math., 92 (2012), 165-176. doi: 10.2298/PIM1206165H
![]() |
[25] |
T. R. Huang, S. Y. Tan, X. Y. Ma, et al. Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 1-11. doi: 10.1186/s13660-017-1594-6
![]() |
[26] |
C. X. Huang, H. Zhang, L. H. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal., 18 (2019), 3337-3349. doi: 10.3934/cpaa.2019150
![]() |
[27] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. |
[28] | J. Jakšetić, J. Pečarić, Exponential convexity method, J. Convex Anal., 20 (2013), 181-197. |
[29] |
F. Jarad, E. Uǧurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16. doi: 10.1186/s13662-016-1057-2
![]() |
[30] |
F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. doi: 10.22436/jnsa.010.05.27
![]() |
[31] |
Y. J. Jiang, X. J. Xu, A monotone finite volume method for time fractional Fokker-Planck equations, Sci. China Math., 62 (2019), 783-794. doi: 10.1007/s11425-017-9179-x
![]() |
[32] |
E. Kacar, Z. Kacar, H. Yildirim, Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iran. J. Math. Sci. Inform., 13 (2018), 1-13. doi: 10.22457/jmi.v13a1
![]() |
[33] | U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv:1612.08596. |
[34] |
R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
![]() |
[35] |
T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. doi: 10.1016/j.cam.2018.07.018
![]() |
[36] | S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 30 (2020), 2577-2587. |
[37] | Y. Khurshid, M. Adil Khan, Y. M. Chu, et al. Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1-9. |
[38] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. |
[39] |
Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266
![]() |
[40] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[41] |
F. W. Liu, L. B. Feng, V. Anh, et al. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains, Comput. Math. Appl., 78 (2019), 1637-1650. doi: 10.1016/j.camwa.2019.01.007
![]() |
[42] | F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010. |
[43] | S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94. |
[44] | K. S. Nisar, G. Rahman, J. Choi, et al. Certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249-263. |
[45] | D. S. Oliveira, E. Capelas de Oliveira, Hilfer-Katugampola fractional derivative, arXiv:1705.07733. |
[46] |
A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1937), 226-227. doi: 10.1007/BF01214290
![]() |
[47] |
S. Pal, T. K. L. Wong, Exponentially concave functions and a new information geometry, Ann. Probab., 46 (2018), 1070-1113. doi: 10.1214/17-AOP1201
![]() |
[48] |
W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[49] |
W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
![]() |
[50] |
W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
![]() |
[51] | W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. |
[52] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Čebyšev type inequalities via generalized k-fractional integral, Adv. Differ. Equ., 2020 (2020). |
[53] | S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1-18. |
[54] |
S. Rashid, F. Safdar, A. O. Akdemir, et al. Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 1-17. doi: 10.1186/s13660-019-1955-4
![]() |
[55] |
E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154. doi: 10.1016/j.camwa.2011.12.023
![]() |
[56] |
J. F. Wang, X. Y. Chen, L. H. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405-427. doi: 10.1016/j.jmaa.2018.09.024
![]() |
[57] | M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 123388. |
[58] | M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
[59] |
J. F. Wang, C. X. Huang, L. H. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162-178. doi: 10.1016/j.nahs.2019.03.004
![]() |
[60] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. |
[61] | B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 7. |
[62] | M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39B (2019), 1440-1450. |
[63] | J. Wu, Y. C. Liu, Uniqueness results and convergence of successive approximations for fractional differential equations, Hacet. J. Math. Stat., 42 (2013), 149-158. |
[64] |
S. H. Wu, Y. M. Chu, Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
![]() |
[65] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[66] |
S. Zaheer Ullah, M. Adil Khan, et al. Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
![]() |
[67] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
![]() |
[68] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[69] |
T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
![]() |
[70] |
S. H. Zhou, Y. J. Jiang, Finite volume methods for N-dimensional time fractional Fokker-Planck equations, Malays. Math. Sci. Soc., 42 (2019), 3167-3186. doi: 10.1007/s40840-018-0652-7
![]() |
1. | Pshtiwan Othman Mohammed, Thabet Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, 2020, 2020, 1687-1847, 10.1186/s13662-020-02825-4 | |
2. | SAIMA RASHID, ZAKIA HAMMOUCH, FAHD JARAD, YU-MING CHU, NEW ESTIMATES OF INTEGRAL INEQUALITIES VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATOR WITH RESPECT TO ANOTHER FUNCTION, 2020, 28, 0218-348X, 2040027, 10.1142/S0218348X20400277 | |
3. | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu, 2D approximately reciprocal ρ-convex functions and associated integral inequalities, 2020, 5, 2473-6988, 4662, 10.3934/math.2020299 | |
4. | Ling Zhu, New inequalities of Wilker’s type for circular functions, 2020, 5, 2473-6988, 4874, 10.3934/math.2020311 | |
5. | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390 | |
6. | Muhammad Adil Khan, Josip Pečarić, Yu-Ming Chu, Refinements of Jensen’s and McShane’s inequalities with applications, 2020, 5, 2473-6988, 4931, 10.3934/math.2020315 | |
7. | Saima Rashid, Ahmet Ocak Akdemir, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Gauhar Rahman, New generalized reverse Minkowski and related integral inequalities involving generalized fractional conformable integrals, 2020, 2020, 1029-242X, 10.1186/s13660-020-02445-2 | |
8. | Zareen A. Khan, Fahd Jarad, Aziz Khan, Hasib Khan, Derivation of dynamical integral inequalities based on two-dimensional time scales theory, 2020, 2020, 1029-242X, 10.1186/s13660-020-02475-w | |
9. | Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798 | |
10. | Saima Rashid, İmdat İşcan, Dumitru Baleanu, Yu-Ming Chu, Generation of new fractional inequalities via n polynomials s-type convexity with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02720-y | |
11. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, Yu-Ming Chu, Some new local fractional inequalities associated with generalized $(s,m)$-convex functions and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02865-w | |
12. | Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860 | |
13. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
14. | Tie-Hong Zhao, Miao-Kun Wang, Yu-Ming Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, 2020, 5, 2473-6988, 4512, 10.3934/math.2020290 | |
15. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
16. | Shuang-Shuang Zhou, Saima Rashid, Fahd Jarad, Humaira Kalsoom, Yu-Ming Chu, New estimates considering the generalized proportional Hadamard fractional integral operators, 2020, 2020, 1687-1847, 10.1186/s13662-020-02730-w | |
17. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328 | |
18. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
19. | Saima Rashid, Zakia Hammouch, Rehana Ashraf, Dumitru Baleanu, Kottakkaran Sooppy Nisar, New quantum estimates in the setting of fractional calculus theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-02843-2 | |
20. | SAIMA RASHID, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, NEW GENERALIZATIONS IN THE SENSE OF THE WEIGHTED NON-SINGULAR FRACTIONAL INTEGRAL OPERATOR, 2020, 28, 0218-348X, 2040003, 10.1142/S0218348X20400034 | |
21. | Ling Zhu, Completely monotonic integer degrees for a class of special functions, 2020, 5, 2473-6988, 3456, 10.3934/math.2020224 | |
22. | Emrah Yıldırım, Some Monotonicity Properties on k-Gamma Function and Related Inequalities, 2020, 6, 2349-5103, 10.1007/s40819-020-00926-y | |
23. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable fractional integral inequalities for GG- and GA-convex functions, 2020, 5, 2473-6988, 5012, 10.3934/math.2020322 | |
24. | Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612 | |
25. | Muhammad Uzair Awan, Nousheen Akhtar, Sabah Iftikhar, Muhammad Aslam Noor, Yu-Ming Chu, New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions, 2020, 2020, 1029-242X, 10.1186/s13660-020-02393-x | |
26. | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392 | |
27. | Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391 | |
28. | Saima Rashid, Rehana Ashraf, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, New weighted generalizations for differentiable exponentially convex mapping with application, 2020, 5, 2473-6988, 3525, 10.3934/math.2020229 | |
29. | Saima Rashid, Fahd Jarad, Yu-Ming Chu, A Note on Reverse Minkowski Inequality via Generalized Proportional Fractional Integral Operator with respect to Another Function, 2020, 2020, 1024-123X, 1, 10.1155/2020/7630260 | |
30. | Thabet Abdeljawad, Saima Rashid, Hasib Khan, Yu-Ming Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02782-y | |
31. | Saima Rashid, Rehana Ashraf, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Imtiaz Ahmad, Estimation of Integral Inequalities Using the Generalized Fractional Derivative Operator in the Hilfer Sense, 2020, 2020, 2314-4785, 1, 10.1155/2020/1626091 | |
32. | Saima Rashid, Hijaz Ahmad, Aasma Khalid, Yu-Ming Chu, Mostafa M. A. Khater, On Discrete Fractional Integral Inequalities for a Class of Functions, 2020, 2020, 1099-0526, 1, 10.1155/2020/8845867 | |
33. | YONG-MIN LI, SAIMA RASHID, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, NEW NEWTON’S TYPE ESTIMATES PERTAINING TO LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p-CONVEXITY WITH APPLICATIONS, 2021, 29, 0218-348X, 2140018, 10.1142/S0218348X21400181 | |
34. | Abdelkrim Salim, Soufyane Bouriah, Mouffak Benchohra, Jamal Eddine Lazreg, Erdal Karapinar, A study on k$$ k $$‐generalized ψ$$ \psi $$‐Hilfer fractional differential equations with periodic integral conditions, 2023, 0170-4214, 10.1002/mma.9056 | |
35. | Farhat Safdar, Muhammad Attique, Some new generalizations for exponentially (s, m)-preinvex functions considering generalized fractional integral operators, 2021, 1016-2526, 861, 10.52280/pujm.2021.531203 | |
36. | Martha Paola Cruz, Ricardo Abreu-Blaya, Paul Bosch, José M. Rodríguez, José M. Sigarreta, Xiaolong Qin, On Ostrowski Type Inequalities for Generalized Integral Operators, 2022, 2022, 2314-4785, 1, 10.1155/2022/2247246 | |
37. | JIAN-GEN LIU, XIAO-JUN YANG, YI-YING FENG, LU-LU GENG, ON THE GENERALIZED WEIGHTED CAPUTO-TYPE DIFFERENTIAL OPERATOR, 2022, 30, 0218-348X, 10.1142/S0218348X22500323 | |
38. | Saima Rashid, Dumitru Baleanu, Yu-Ming Chu, Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems, 2020, 18, 2391-5471, 478, 10.1515/phys-2020-0114 | |
39. | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung, Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions, 2021, 6, 2473-6988, 11403, 10.3934/math.2021661 | |
40. | Artion Kashuri, Themistocles M. Rassias, Rozana Liko, 2022, Chapter 24, 978-3-030-84121-8, 457, 10.1007/978-3-030-84122-5_24 | |
41. | WENGUI YANG, CERTAIN NEW WEIGHTED YOUNG- AND PÓLYA–SZEGÖ-TYPE INEQUALITIES FOR UNIFIED FRACTIONAL INTEGRAL OPERATORS VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION WITH APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22501067 | |
42. | Abdelkrim Salim, Jamal Eddine Lazreg, Bashir Ahmad, Mouffak Benchohra, Juan J. Nieto, A Study on k-Generalized ψ-Hilfer Derivative Operator, 2022, 2305-221X, 10.1007/s10013-022-00561-8 | |
43. | Hengxiao Qi, Muhammad Shoaib Saleem, Imran Ahmed, Sana Sajid, Waqas Nazeer, Fractional version of Ostrowski-type inequalities for strongly p-convex stochastic processes via a k-fractional Hilfer–Katugampola derivative, 2023, 2023, 1029-242X, 10.1186/s13660-022-02901-1 | |
44. | Saima Rashid, Aasma Khalid, Omar Bazighifan, Georgia Irina Oros, New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications, 2021, 9, 2227-7390, 1753, 10.3390/math9151753 | |
45. | Paul Bosch, José M. Rodríguez, José M. Sigarreta, On new Milne-type inequalities and applications, 2023, 2023, 1029-242X, 10.1186/s13660-022-02910-0 | |
46. | Paul Bosch, Yamilet Quintana, José M. Rodríguez, José M. Sigarreta, Jensen-type inequalities for m-convex functions, 2022, 20, 2391-5455, 946, 10.1515/math-2022-0061 | |
47. | Saima Rashid, Zakia Hammouch, Rehana Ashraf, Yu-Ming Chu, New Computation of Unified Bounds via a More General Fractional Operator Using Generalized Mittag–Leffler Function in the Kernel, 2021, 126, 1526-1506, 359, 10.32604/cmes.2021.011782 | |
48. | Weerawat Sudsutad, Nantapat Jarasthitikulchai, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Novel Generalized Proportional Fractional Integral Inequalities on Probabilistic Random Variables and Their Applications, 2022, 10, 2227-7390, 573, 10.3390/math10040573 | |
49. | Salim ABDELKRİM, Mouffak BENCHOHRA, Jamal Eddine LAZREG, Johnny HENDERSON, On $k$-Generalized $\psi$-Hilfer Boundary Value Problems with Retardation and Anticipation, 2022, 2587-2648, 10.31197/atnaa.973992 | |
50. | Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function, 2023, 7, 2504-3110, 161, 10.3390/fractalfract7020161 | |
51. | Jamal Eddine Lazreg, Mouffak Benchohra, Abdelkrim Salim, Existence and ulam stability of k-generalized ψ-Hilfer fractional problem , 2022, 2, 2773-4196, 1, 10.58205/jiamcs.v2i2.19 | |
52. | Qingjin Cheng, Chunyan Luo, Estimation of the parameterized integral inequalities involving generalized p-convex mappings on fractal sets and related applications, 2022, 161, 09600779, 112371, 10.1016/j.chaos.2022.112371 | |
53. | SAIMA RASHID, SOBIA SULTANA, YELIZ KARACA, AASMA KHALID, YU-MING CHU, SOME FURTHER EXTENSIONS CONSIDERING DISCRETE PROPORTIONAL FRACTIONAL OPERATORS, 2022, 30, 0218-348X, 10.1142/S0218348X22400266 | |
54. | Abdelkrim Salim, Mouffak Benchohra, Jamal Eddine Lazreg, On Implicit k-Generalized $$\psi $$-Hilfer Fractional Differential Coupled Systems with Periodic Conditions, 2023, 22, 1575-5460, 10.1007/s12346-023-00776-1 | |
55. | A. Salim, C. Derbazi, J. Alzabut, A. Küçükaslan, Existence and κ-Mittag-Leffler-Ulam-Hyers stability results for implicit coupled (κ,ϑ)-fractional differential systems, 2024, 31, 2576-5299, 225, 10.1080/25765299.2024.2334130 | |
56. | Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040 | |
57. | Mouffak Benchohra, Erdal Karapınar, Jamal Eddine Lazreg, Abdelkrim Salim, 2023, Chapter 2, 978-3-031-34876-1, 15, 10.1007/978-3-031-34877-8_2 | |
58. | Qingjin Cheng, Chunyan Luo, Analytical properties, fractal dimensions and related inequalities of (k,h)-Riemann–Liouville fractional integrals, 2024, 450, 03770427, 115999, 10.1016/j.cam.2024.115999 | |
59. | Paul Bosch, Ana Portilla, Jose M. Rodriguez, Jose M. Sigarreta, On a generalization of the Opial inequality, 2024, 57, 2391-4661, 10.1515/dema-2023-0149 | |
60. | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin, Construction of new fractional inequalities via generalized $ n $-fractional polynomial $ s $-type convexity, 2024, 9, 2473-6988, 23924, 10.3934/math.20241163 | |
61. | YONGFANG QI, GUOPING LI, FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501281 | |
62. | Abdelkrim Salim, Mouffak Benchohra, Jamal Eddine Lazreg, 2023, Chapter 22, 978-3-031-20020-5, 443, 10.1007/978-3-031-20021-2_22 | |
63. | Junxi Chen, Chunyan Luo, Certain generalized Riemann–Liouville fractional integrals inequalities based on exponentially (h,m)-preinvexity, 2024, 530, 0022247X, 127731, 10.1016/j.jmaa.2023.127731 | |
64. | Mouffak Benchohra, Erdal Karapınar, Jamal Eddine Lazreg, Abdelkrim Salim, 2023, Chapter 5, 978-3-031-34876-1, 109, 10.1007/978-3-031-34877-8_5 | |
65. | Paul Bosch, José M. Rodríguez, José M. Sigarreta, Eva Tourís, Some new Milne-type inequalities, 2024, 2024, 1029-242X, 10.1186/s13660-024-03184-4 | |
66. | Mouffak Benchohra, Erdal Karapınar, Jamal Eddine Lazreg, Abdelkrim Salim, 2023, Chapter 4, 978-3-031-34876-1, 77, 10.1007/978-3-031-34877-8_4 | |
67. | Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, On the nonlocal hybrid $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer inverse problem with delay and anticipation, 2024, 9, 2473-6988, 22859, 10.3934/math.20241112 | |
68. | Ibtisam Aldawish, Rabha W. Ibrahim, Studies on a new K-symbol analytic functions generated by a modified K-symbol Riemann-Liouville fractional calculus, 2023, 11, 22150161, 102398, 10.1016/j.mex.2023.102398 | |
69. | Péter Kórus, Juan Eduardo Nápoles Valdés, José Manuel Rodríguez, José Maríá Sigarreta Almira, Petrović-type inequality via fractional calculus, 2024, 25, 1787-2405, 819, 10.18514/MMN.2024.4366 | |
70. | Arslan Munir, Li Shumin, Hüseyin Budak, Fatih Hezenci, Hasan Kara, A Study on Fractional Integral Inequalities for Trigonometric and Exponential Trigonometric-convex Functions, 2025, 21, 1927-5129, 66, 10.29169/1927-5129.2025.21.08 | |
71. | Paul Bosch, Jorge A. Paz Moyado, José M. Rodríguez-García, José M. Sigarreta, Refinement of Jensen-type inequalities: fractional extensions (global and local), 2025, 10, 2473-6988, 6574, 10.3934/math.2025301 | |
72. | Jiao Yu, Quantum integral Favard-type inequality, 2025, 500, 00963003, 129452, 10.1016/j.amc.2025.129452 |